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Abstract

The automatic synthesis of images from text descriptors has practical and creative
applications in the fields of computer-aided design, art generation, etc. While it is
hard to generate images that reflect all the necessary details and objects described
in the text, GANs that have been conditioned on text descriptors have rendered
images that are closely related to meanings described in the text [13] [9].
Similarly, in recent years, we’ve seen a surge in the popularity of style transfer
applications [2] [3]. This can be attributed in part to improvements in convolutional
networks, which have helped to provide higher level semantic information about
the content image, which is very useful while transferring the content to another
style.
This project aims to combine these ideas to both render images from text descrip-
tions and stylize them based on a given style image. Our implementation method
will involve generating a stylized output image directly from a (stacked) GAN
system conditioned on the style image as well as the text description, as opposed to
generating the image first and subsequently transferring style without knowledge
of the text description.
Our new model would be a large improvement in running time over the existing
baseline process of first generating images and then stylizing the output, because
style transfer is a slow iterative process, whereas GANs, once trained, only require
a feedforward pass of the generator to produce an output.
Our new model could also produce outputs that more faithfully represent the
meaning described in the text, given that the stylization step is paired with the
generation step, and is also conditioned on the text description. We’ve included
some examples below of GAN-produced images which are harder to interpret
after stylization, especially given that the GAN’s output images can be difficult to
interpret as is.
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1 Introduction

Current methods for generating stylized images from text descriptions (i.e. our baseline) first generate
an images from text with a GAN system, then stylize the results with neural style transfer. This takes
a long time, due to the use of neural style transfer, and would not be suitable to use in any real-time
applications or on low performance computers.

Using a system of only GANs seems like a desirable alternative method to achieve the same goal in
much less time. The main obstacle, however, which is likely why there have not been prior attempts
to transfer style with GANs, is that there is no existing training data linking images to their stylized
alternatives in a variety of styles.

To achieve a GAN-only model without existing training data, we bootstrapped neural style transfer to
generate our own training data from unstyled images. This, in combination with a captioning dataset,
allows us to get training data with a caption and corresponding styled image. We could then condition
the GAN on the image style and image caption and train the system to generate styled images from
caption that are hard to distinguish from the neural style transfer generated images.

Another difficulty of this approach is that GANs are notoriously hard to train, and this especially true
in our case since we don’t have a perfect automatic evaluation criterion.

Unfortunately the system also takes quite a while to train to a satisfactory level, which, in combination
with the training difficulties of GANs, made it prohibitively time-consuming for us to execute a full
hyperparameter search and optimization process.

2 Related Work

The simplest, original approach to text-to-image generation is a single GAN that takes a text caption
embedding vector as input and produces a low resolution output image of the content described in the
caption [6].

The text embeddings for these models are produced by a separate neural net. A popular approach is
convolutional-recurrent network, where the input characters are passed through some convolutional
layers first, then their output is passed through an LSTM, and the final output is the average hidden
unit activation over the sequence [7].

Subsequent models built upon the basic image generating GAN described above. Some papers like
GAWWN were able to add new functionality (like allowing additional user control of image subject
positioning) with still a single GAN structure, through more complicated generator and discriminator
networks [8]. These simple GANs can generate low resolution images which often represent the
content of the text descriptions well, but they don’t scale well to larger resolutions.

StackGAN managed to generate more realistic, higher resolution images by splitting the problem
into two simpler components: [13]

1. Stage-I GAN, which generates low resolution images from the text which vaguely capture
the meaning (like the methods described above)

2. Stage-II GAN which takes Stage-I’s output and the text again, and generates a higher
resolution version with more detail

StackGAN++ builds on top of this with a tree-like generator architecture, allowing for 3 or more
generators and more stable training behavior [14].

AttnGAN uses a 3-stage generator architecture, but conditions on the output of a text attention model,
instead of a text embedding model (like the convolutional-recurrent model described above) [12].

Right now, image stylization is separate from image generation, and is achieved by neural style
transfer, which iteratively refines an image to minimize an image’s "style loss" and "content loss",
which measure how similar the produced image is in content to the content image and how similar it
is in style to the style image, through an ImageNet-trained CNN model hidden activations and a gram
matrix of earlier hidden activations of the same network respectively [2].
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Figure 1: Diagram of the new architecture modified from StackGAN.

3 Approach

3.1 Baseline

Our baseline model first generates images from text using StackGAN, then feeds the outputs into
style transfer [2] [1] using a bash and python script under default configurations.

While we call this the "baseline" model, it is only such in terms of execution time and potentially
output content accuracy, and is instead more of an oracle in terms of output style accuracy, especially
given that we will be using style transfer to help generate our dataset (see below).

3.2 Improvements

In order to combine the two models into one GAN system, we used StackGAN as a starting point,
and added the new conditioning to the Stage-II GAN. This means the Stage-I GAN still generates
images that capture the basic meaning of the image at low resolution, but the Stage-II GAN now
generates higher resolution images in the given style as well.

To train, the loss functions don’t need to be changed: only the images being passed compared. This
means we train the discriminator network on stylized 256x256 images, instead of the originals.

To handle more than one style, we can condition on either the style’s index or an embedding of
the style in both networks of Stage-II. In order to do this, we will pass the index/embedding as an
additional input to the second stage’s generator and discriminator networks. In order to do so, they
need to be reshaped to conform to the shape of the down-sampled image volume of each network.
This can be done stacking each index/embedding redundantly in each row and column of the volume
as new channels, in a similar way that StackGAN inputs text embeddings to these networks. This
method enables even small convolutions to have access to the same information at each position in
the image, which is desirable. See Figure 1 for a diagram sketch of the architecture.

Conditioning on an embedding would allow the system to generalize to more unseen styles, whereas
an index would only allow it to produce styles present in the training set, with the only benefit
of conditioning being that knowledge learned from producing one style of image can benefit the
production of other styles. While conditioning on the style embeddings seems desirable for this
generalization ability, it would require training on a variety of styles, which also requires generating
styled training data for these styles: both of which were not a possibility for us in the time we had.
For this reason, we decided to condition only on style indices, which unfortunately means the model
has no style generalization ability, and is only marginally better than training on each single style
separately.
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4 Experiments

4.1 Data

Our task requires data pairs in the form <text description, stylized image>. We weren’t aware of any
datasets matching this format, so we instead bootstrap an "image captioning" dataset, which have
data pairs in the form <text description, image>, by generating the stylized images using neural style
transfer. While this will limit our output style accuracy to that of the "baseline", we have been treating
the baseline as an oracle in terms of style accuracy, and a baseline in terms of content accuracy and
execution time.

There are several image captioning datasets available to choose from, including:

• COCO: over 200,000 photos of a large variety of subject, with 5 captions per image [4]

• CUB-200-2011: 6,033 photos spanning 200 species of birds [11]. Descriptions originally in
the form of attribute tags; plain text captions subsequently provided by Reed et. al. [10].

COCO’s large variance of subject matter meant that it was necessary to train on a large volume of
photos, which in our case, also requires generating stylized versions of all these photos, potentially
multiple times, to handle each style. To limit training and data generation time to a more reasonable
level, we decided to not only switch to a smaller dataset, CUB, but to limit the dataset to a smaller
number of species within the dataset. (we split the data by species, not as a random sample, in order
to ensure that each category had enough examples). We generated stylized images in two styles for
the first 451 images, which corresponded to 8 species of birds (larger than average categories for the
CUB dataset).

Our stylized image generation script takes as input images preprocessed by StackGAN’s code, which
crops the images to a little larger than the birds’ bounding boxes, and resizes the images to 304× 304
to leave room for random cropping to 256× 256. It then writes these numpy matrices to temporary
images, runs neural style transfer on them, reads in the output, and produced pickle files of the
outputs, in the form of lists of numpy arrays. Note that it also saves the stylized images so more can
be generated later. The output image pickle files are also randomly sampled into a 70-30 train-test
split (since it’s a very small dataset), and produces similar pickle files for the low resolution images,
text embeddings, and style IDs.

Also note that we didn’t make a development segment of our dataset, because training dataset
generation collectively take so long that we couldn’t get a fully trained model on a full stylized
dataset, meaning that any evaluation of our model would be nearly useless.

4.2 Evaluation Method

The inception score is a reasonable metric to help show if the model is producing both diverse and
meaningful images. However, this isn’t sufficient to judge content and style accuracy, so looking at
the images manually is necessary tool. See the "Analysis" section for some qualitative analysis of the
produced images.

Another metric we strived to improve is running time of the model. However, this improvement is
a given: generating an image with the GAN takes under a second, while style transfer takes on the
order of 2-3 minutes with a reasonable graphics card. For this reason, we didn’t analyze runtime, and
instead tried to achieve acceptable quality given the fast execution.

4.3 Experimental Details

We wrote code to encapsulate our project into a black box function in order to run constrained
Bayesian Optimization[5] for a hyperparameter search, but given that we need to execute each
iteration for a large number of epochs before we start to see meaningful results, we decided to just
run our code with a few promising hyperparameter settings.

The hyperparameters that are promising to optimize in the future are:

• Z_DIM: the size of the gaussian noise vector
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• DISCRIMINATOR_LR / GENERATOR_LR are learning rates for discriminator and gener-
ator

• LR_DECAY_EPOCH: the number of epochs between each time it decays the learning rate
• PRETRAINED_EPOCH: decay_start, which is the epoch that learning rate decay starts
• NUM_EMBEDDINGS: the number of caption embeddings per image are compressed (with

a FC layer) down to a length embedding_dim vector
• EMBEDDING_DIM: length of text embedding vector
• GF_DIM: the generator feature vector length, i.e. the depth of the downscaled image volume

(actually this divided by 4)
• DF_DIM: similar but for the discriminator (and it’s divided by 8)

Note that (to train a full model, the authors of StackGAN say that it can take 2-3 days on a TitanX
Pascal GPU).

4.4 Results

No meaningful quantitative results were obtained in this process, because as described above, it takes
too long to reasonably generate enough stylized training data and to perform a hyperparameter search
with enough iterations each time to find the best settings. We do however show some qualitative
results in the Analysis section that demonstrate that model can output images that at least show styling
similar to the input style image, even if the content component couldn’t be seen to any level of detail.

5 Analysis

As a preliminary example demonstrating styled outputs, see figure 2, which shows styled output of
Stage-II, when it is trained on untrained Stage-I outputs (random noise). Brush strokes reminiscent of
Starry Night, the style image, can be seen especially clearly given the near uniform color and form.

Figure 3 shows the outputs of Stage-II when trained for 2000 iterations, and figure 4 shows the
outputs when trained for 4000 iterations. The model starts to converge such that all outputs in figure
4 have a similar pattern. This is evidence that more hyperparameter tuning is necessary (likely the
learning rates of the generator and discriminator). Despite this, both show styles still somewhat
reminiscent of brush strokes (less so for the 4000-iteration trained model).
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Figure 2: GAN system trained on a single style (Starry Night) on untrained (random noise) Stage-I
outputs; unstyled, placeholder test set images shown at left and several outputs are shown in the rest
of each row. StackGAN’s adds random noise to the text embedding, adding variety to the outputs.
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Figure 3: GAN system trained on a single style (Starry Night) for 2000 iterations; real test set images
shown at left and several outputs are shown in the rest of each row. StackGAN’s adds random noise
to the text embedding, adding variety to the outputs.
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Figure 4: GAN system trained on a single style (Starry Night) for 4000 updates; real test set images
shown at left and several outputs are shown in the rest of each row. StackGAN’s adds random noise
to the text embedding, adding variety to the outputs.
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6 Conclusions

We have demonstrated that our architecture produces images that resemble the style of the input
dataset. Given enough time for stylized dataset generation and model training / hyperparameter
search, we are confident that the images produced could also closely represent the content described
in the caption and that the system could handle multiple styles.

However, due to the considerable computational cost of generating a stylized image dataset and
training the model, we don’t recommend attempting to train a system of this architecture unless the
time savings are instrumental to the desired application and such training time is available.

6.1 Future work

With more processing power, several more interesting possibilities arise:

First, we anticipate that conditioning the stage-II GAN on image style embedding (such as the gram
matrix of the low level hidden activations of VGGNet on the style image) instead of just style ID
could yield a model that effectively generalizes to unseen styles.

We also expect that one might be able to achieve better results by also conditioning the text encoder
on the image style, such that it produces embeddings that more accurately predict where each element
described in the text should be placed in the (styled) output image.
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7 Appendix: Implementation Notes

One should note the numerous implementation difficulties/annoyances of taking this approach.

For the baseline model:

• The neural-style repository runs in python 3.6 while StackGAN (pytorch or tensorflow
versions) runs in python 2.7. There are numerous other conflicts in dependencies, so we set
up separate conda environments for each, which have been provided with our code.

• We need to switch conda environments midway through the baseline code, so use a bash
wrapper script that calls a python script for each step in the appropriate environment.

Running StackGAN:

• StackGAN runs in python 2.7 and tensorflow 1.0.1 (0.12 listed in StackGAN’s readme,
but needed to be updated to handle other conflicts), which requires cudnn=5.0 and cuda-
toolkit=8.0 (these aren’t included with current AWS EC2 instances, but can be installed
with conda, meaning the conda environment path needs to be added to torch’s environment
variable LD_LIBARY_PATH)

– Note that the upgrade to tensorflow 1.0.1 comes with some other changes, all
necessary to get StackGAN to a working configuration, which are listed in
this github issue thread: https://github.com/torch/distro/issues/239#
issuecomment-340136687

• Torch (lua version) needs to be installed in order to run the pretrained CHAR-CNN-RNN
embeddings

– install from http://torch.ch/docs/getting-started.html#_
– but before running "./install.sh", run these steps: https://github.com/torch/
distro/issues/239#issuecomment-340136687

• Note that the tensorflow version of StackGAN should be used, because the pytorch version
does not come with a pretrained model for the CUB dataset, and there are small architectural
changes between the two versions that prevent reuse of the model weights.

More information about our configuration can be found in our github repository.
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