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Abstract

There has been significant progress in the NLP effort of coreference resolution.
In particular, Kenton Lee et. al have developed a fully end-to-end model that
achieves good performance on LDC’s Ontonotes dataset. However, there has been
recent a recent interest in identifying and designing to address bias in machine
learning models. In particular, these studies have exposed gender imbalances in
the coreference resolution task due to the gender imbalance in existing corpora and
datasets. Our contribution has been to integrate Google’s recently released gender
balanced dataset into Kenton Lee’s fully deep end-to-end model for coreference
resolution.

1 Introduction

1.1 Task

Co-reference resolution is the task of identifying all words and phrases that refer to the same entity
in a corpus of text. In particular, to accomplish this task, one must find all pronouns or referring
expressions and connect them to their antecedents. In natural language, these connections may be
ambiguous and resolving them may rely heavily on contextual clues or implied past experiences. This
makes the task especially difficult in machine understanding of natural language, where human-level
performance has not yet been achieved.

For example, given the following source text and ambiguous pronoun (bolded):

Kathleen Nott was born in Camberwell, London. Her father, Philip, was a litho-
graphic printer, and her mother, Ellen, ran a boarding house in Brixton; Kathleen
was their third daughter. She was educated at Mary Datchelor Girls’ School (now
closed), London, before attending King’s College, London.

Our objective is to find the antecedent for She, which is Kathleen. Note that it may be ambiguous in
certain interpretations of the text whether Ellen may have been the true antecedent.

2 Related Work

Kenton Lee’s et. al. seminal paper introduces the first complete co-reference resolution model
trained end-to-end. The task of co-reference resolution is to identify antecedants to potentially
ambiguous referring words or phrases (e.g. pronounts). The innovation being accomplished in this
co-reference resolution work by Kenton Lee et. al. is using a completely end-to-end model for
learning. Explicitly, they have built a model that utilizes and integrates deep learning at every step.
Historically, co-reference resolution was accomplished with a large preprocessing step to parse each
sentence for analysis.
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Figure 1: End-to-end coreference architecture with 2nd order coreferenec resolution - computes
embedding representations of spans to predict more likely spans for antecedent matches

Kenton Lee et. al. have showed that performance could be significantly improved without using
syntactic parsers. Their results outperformed existing models by 1.5 F1 on the OntoNote benchmark
and by 3.1 F1 using a 5-model ensemble.

In (4), Wiseman illustrated an example of consistency errors where the predicted clusters are locally
consistent but globally inconsistent. To overcome this problem, Lee et. al. proposed a higher-order
coreference resolution improvement together with a coarse-to-fine antecedent pruning in (2). The
coarse-to-fine pruning reduces the additional computation cost from multiple interactions in the
higher-order resolution. The higher-order resolution helps to model to condition on higher-order
structures in the documentation. In this project, we use a 2nd-order coreference resolution which is
shown to have the best performance without incurring too much additional overhead in computation.

3 Approach

3.1 Architecture

We leverage work by Kenton Lee et. al. in coreference resolution using end-to-end models (2), (1).
They addressed the co-reference resolution task as the set of decisions to assign an antecedent yi
for every possible span i in the document, where yi ∈ Y (i) = {ε, 1, ..., i − 1}. The assignment
decisions can be made by consulting a distribution P (yi) over antecedents for each span i, which is
learnt by the model. ε is a dummy antecedent representing two possible scenarios: 1). the span is
not an entity mention or 2). the span is an entity mention but it is not coreferent with any previous
span. These assignment decisions implicitly define a final clustering, which can be recovered by
grouping all spans that are connected by a set of antecedent predictions. Their solution leveraged
several neural network models - they used a bidirectional LSTM and a CNN for word representations
and information encoding. A CharCNN is used to perform character level embeddings and to recover
out-of-vocabulary words. To replace the use of syntactic parsers, they used an attention mechanism
over words in each each span to learn a task-specific notion of headedness. Because computing over
all possible spans in the text would be expensive, a pruning mechanism was also built to identify
more probable spans and discard irrelevant ones (See Figure 1).
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Embeddings: We use GloVe and Turing embeddings to construct vector representations for each
word. A CharCNN is also used to account for encountered words that are not in the vocabulary.

Span Representations (LSTM): To compute vector representations of each span, bidirectional
LSTMs are used to encode every word in the context. The LSTM equations are as follows:

ft,δ = σ(Wf [xt,ht+δ,δ] + bi)

ot,δ = σ(Wo[xt,ht+δ,δ] + bo)

c̃t,δ = tanh(Wc[xt,ht+δ,δ] + bc)

ct,δ = ft,δ ◦ c̃t,δ + (1− ft,δ) ◦ ct+δ,δ
ht,δ = ot,δ ◦ tanh(ct,δ)

x∗ = [ht,1,ht,−1]

Deep contextualized word representations (3) can be used at the input to the LSTMs to improve
performance.

Attention mechanism: An attention mechanism to learn a task-specific notion of headedness over
words in each span is used to replace syntactic parsers which would directly output the head of a span

αt = ωα · FFNNα(x∗t )

ai,t =
exp(αt)∑END(i)

k=START(i) expαk

x̂i =

END(i)∑
t=START(i)

ai,t · xt

FFNN denotes a feed-forward neural network that computes a nonlinear mapping from input to
output vectors. The above span information is concatenated with a feature vector φ(i) to produce the
final representation gi of span i:

gi = [x∗START(i),x
∗
END(i), ˆx(i), φ(i)]

Scoring architecture: a score is computed using the vector representations for each relevant span
with feed-forward networks

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj ,gi ◦ gj , φ(i, j)])

The antecedent scoring function sa(i, j) consists of the element-wise similarity of gi and gj calculate
by element-wise multiplication, and a feature vector φ(i, j) encoding speaker and genre information
from the metadata and the distance between the two spans. The mention scores are used to prune the
space of spans and antecedents, only top M spans is considered for coreference decisions based on
the mention score sm(i).

The outcome of the learning is a ditribution P (yi) over antecedents for each span i:

P (yi) =
es(i,yi)∑

y∈Y (i) e
s(i,y)

Coarse-to-fine antecedent pruning: This pruning is used to further reduce the computational cost
in higher order coreference resolutions. We use a bilinear score

sc(i, j) = gTi Wcgj

to prune antecedents with low likelihood. This is achieved by keeping top K antecedents based on
the score sm(i)+ sm(j)+ sc(i, j) of the remaining M spans. Instead of simply replacing the scoring
function with sc, we can just include sc as an additional factor in the score. This helps to adjust the
likelihood of the antecedent to the span.
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s(i, j) = sm(i) + sm(j) + sc(i, j) + sa(i, j)

Second-order Coreference Resolution: Introduced in (2), higher-order resolutions can be used
to solve consistency errors demonstrated by the example in (4) where The plurality of [you] is
underspecified, making it locally compatible with both [I] and [all of you], while the full cluster
would have mixed plurality, resulting in global inconsistency. As shown in (2), the second-order
coreference gives the best performance. We first calculate the expected antecedent epresentation for
the current span i using the current antecedent distribution P 1(yi).

P 1(yi) =
es(gi,gyi

)∑
y∈Y (i) e

s(gi,gy)

ai =
∑

P 1(yi) · gyi
, fi = σ(Wf [gi,ai])

The span representation gi for the span i is then updated via interpolation with its expected antecedent
representation ai

g2
i = fi ◦ gi + (1− fi) ◦ ai

The refined antecedent distribution is calculated by

P (yi) = P 2(yi) =
es(g

2
i ,g

2
yi

)∑
y∈Y (i) e

s(g2
i ,g

2
y)

The original model is used to initialize the span representation gi. We first calculate the expected
antecedent ai using the current antecedent distribution P 1yi. A gate vector fi is then used to determine
for each dimension whether to keep the current span information or to update it with the information
from the expected antecedent ai using interpolation.

2-stage pruning: The candidate spans and antecedents will go through a 2-stage pruning before
the final 2nd-order coreference resolution computation. In the first pruning stage, only the top M
spans will be kept based on the mention score sm(i). In the second pruning stage, only the top K
antecedents of each remaining span i from the first pruning stage will be kept based on the score
sm(i) + sm(j) + sc(i, j).

3.2 Baseline Implementation

For baseline evaluation of gender imbalance, we sourced the standard (gender-unbalanced) dataset
from LDC - CoNLL 2012 (http://conll.cemantix.org/2012/data.html).

The baseline model architecture is the state-of-art end-to-end coreference annotator by Ken-
ton Lee et. al. The model description is detailed in the above section and in their paper
(http://aclweb.org/anthology/D17-1018). This model was reproduced, trained, and evaluated on
a gender-imbalanced dataset. We have cloned and worked beginning from Kenton Lee’s imple-
mentation (https://github.com/kentonl/e2e-coref) as referenced in his paper (2). We adapted the
implementation to work with tensorflow 1.9. On top of the baseline model we experimented with
different sub-network architectures including our addition of a residual skip-layer feed-forward
network.

We have used the same model as a skeleton to augment and train on a different gender-balanced
dataset.

3.3 Dataset

Our baseline evaluation used the English coreference resolution annotations from the CoNLL-2012
shared task benchmark dataset. This dataset contains 2802 training documentations, 343 development
documentations, and 348 test documentations. The training documentations contain on average 454
words and a maximum of 4009 words.

For our targeted study, we used the Google GAP Conference dataset, which has 8,908 coreference-
labeled pairs of (ambiguous pronoun, antecedent name). The dataset has been specifically designed
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Figure 2: Residual dense skip-connection layers showing the integration of coreference clusters as
input to the model

to represent the challenges of resolving ambiguous pronouns in a gender-balanced context. The
dataset samples each excerpt from various Wikipedia articles and annotations are created with human
labeling. The dataset is provided by the Google AI Language group (https://github.com/google-
research-datasets/gap-coreference).

There are various differences between the CoNLL-2012 shared task dataset and the Google GAP
conference dataset. For the coreference task, the CoNLL-2012 dataset provides, as input, text
paragraphs for training and, as output, span clusters for coreference annotation as labels. The Google
GAP dataset however provides, as input, text paragraphs accompanied by a proposed span cluster
for training and, as output, a label of TRUE or FALSE indicating whether that cluster is a valid
coreference pairing.

3.4 Integration of GAP dataset

Because the original CoNLL-2012 dataset used to train the model differed from the gender balanced
dataset in structure, the model architecture needed updates to accommodate the new input-output
labeling scheme. In particular, proposed cluster spans were now accepted as inputs into the model
instead of predicted as outputs. A TRUE or FALSE label would be the new output.

In the spirit of maintaining the end-to-end nature of Kenton Lee’s model, several fully connected
layers were appended to the predicted span outputs with deep residual skip-connections to compare
the proposed span cluster with the original output from Kenton Lee et. al. These arbitrary length
output sequences were padded up to a constant size before entering the fully connected layers; and
after each fully connected layer, dropout was performed. Each of the layers used a ReLU activation,
except for the final layer, which used a sigmoid to output a probability between 0 and 1. The layer
sizes were chosen to continually decrease until one node was reached, which would be used to predict
the TRUE or FALSE labeling accompanying each example in the Google GAP dataset. The loss
function was thus edited to be the binary cross entropy loss instead of the previous softmax loss.

4 Experiments

4.1 Evaluation

Accuracy was assessed by the F1 score, which is the harmonic mean of precision and recall. Explicitly,
the score is calculated as

F1 = 2 · precision · recall
precision + recall
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Average F1
Clark and Manning 55.0
Kenton Lee et. al. (2013) 50.5
Kenton Lee et. al. (2017) 64.7
Our updated implementation for GAP 58.2

Table 1: Average F1 scores

Figure 3: Plot of loss showing model convergence during training. Left - original model using
softmax loss, Right - model updated for Google GAP dataset using binary cross entropy loss

where precision is the ratio of true positive guesses to total positive guesses and recall is the ratio of
true positive guesses to total ground truth positives. We compute the F1 scores for the standard MUC,
B3, CEAFφ4 metrics. The main evaluation metric is the average F1 of the three metrics.

4.2 Parameter Tuning

Network configurations: The bidirectional LSTMs have three layers and each hidden state has 300
dimensions. The feed-forward network has 2 hidden layers and 150 dimensions. In the CharCNN
network, the characters are represented as learned 8-dimensional embeddings. The convolutions have
kernel sizes of 3, 4, and 5. Each 1D-Conv layer consists of 50 filters. The dropout rate for the LSTM
outputs is 0.4. The dropout for the word embeddings and CharCNN outputs is 0.5. A dropout rate of
0.2 is applied to all the other hidden layers.

The three layer sizes in our skip-connection dense funnel were 1000, 100, and 1. The dropout
probabilities after each hidden layer were 0.5 and 0.1.

Gradient Clipping: To avoid gradient explosion, we apply global clippings based on gradient norm
of max value 5.

Prunning: We used a max span width of L = 30, the number of spans per word λ = 0.4 and the
maximum number of antecedents K = 50 to prune the spans.

Optimizer: The optimizer used is Adam optimizer. The learning rate is 0.001 with a decay rate of
0.999 and a decay frequency of 100 steps.

4.3 Results

Our implementation of the original model achieved an F1 score of 0.7283 on its original dataset. The
average precision was 75.76% and the average recall was 70.11%.

Our implementation of the updated model achieved an F1 score of 0.5818 on the Google’s GAP
dataset. The average precision was 58.19% and the average recall was 56.63%.
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Figure 4: Plot of the F1 performance metric at each epoch, computed on the dev set and the training
set, showing model learning during training

5 Analysis

As shown in Table Table 1, our model trained on the GAP dataset fails to improve the average F1
score compared to the off-the-shelf end-to-end coreference resolver with coarse to fine coreference
resolution on the GAP development set. The primary reason for this is because the original OntoNotes
training data has richer information in each training example. There are significantly more clusters
and each cluster has richer coreference structures, giving multiple spans that refer to the same object.
However, in the GAP data set, only one pronoun and one antecedent are given for each training
example.

Incorrect coreference resolution example: When onlookers expressed doubt, claiming that the
Proctor family was well regarded in the community, the girl promptly came out of her trance and told
them it was all for “sport”. On March 29, 1692, Abigail Williams and Mercy Lewis again said they
were being tormented by Elizabeth’s spectre. A few days later, Abigail complained that Elizabeth
was pinching her and tearing at her bowels, and said she saw Elizabeth’s spectre as well as John’s.

Correct coreference: The correct antecedent of ‘her’ is ‘Abigail’.

Possible reason: The model is restricted to lowered order structure resolutions where it tries associ-
ating determiners to the words with the form of xx’s. Although the gender was not resolved correctly,
‘her’ not being coreferent to ‘John’s’, the limited information in the GAP data set does not help the
model to learn more complex relationships between nouns.

Incorrect coreference resolution example: Meet Mike, the shortest bully to appear on the show.
He stands at 5’4 and is a Bronx gym rat who makes life miserable for his victims, Lorenzo and Joey.
Mayhem Miller brings in MMA fighter Eddie Alvarez with a record of 22 wins and 2 losses to teach
him a lesson.

Correct coreference: ‘him’ is not coreferent to anything in the text according to the GAP labeling.

Possible reason: The model is poor at dealing with coreference resolution with ambiguities. The
coreference cluster [‘him’, ‘MMA fighter Eddie Alvarez’] is correct grammatically but incorrect
when we consider all the context information in the text. I would say the model did it best for this
inference but to predict correctly for this example, it needs to learn far more than linguistic rules
including logic analysis ability.

6 Conclusion

Given the prevalence of NLP systems in modern-day automated decision making and user interaction,
it has become paramount to audit deep neural networks for inherent bias. In particular, datasets
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used to train our models have been shown to possess gender imbalances that cause imbalanced
performance. Our contributions in this project were to integrate a gender-balanced dataset into a
state-of-the-art end-to-end coreference resolution system.

Limited by the information available in GAP data set itself, the model trained with GAP did not
perform as well as the model trained with the original OntoNotes data set. This drastically impairs
the ability of our model to capture various forms and structures in coreference resolution, like the first
example shown in Section 5. Another challenging factor in the GAP data set is its ambiguity. Like
the second analysis example in Section 5, many texts are ambiguous that you can find coreferences
grammatically correct but incorrect given the context information. To predict correctly, the model
needs to have the ability to understand the text meaning which exceeds the scope of the problem we
are trying to solve.

7 Additional Information

Mentor: Xiaoxue Zang
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