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Abstract

Spreading misinformation, internet trolls seek to create chaos on popular channels
of social media communication. We propose a deep learning solution to performing
Reddit troll detection on a comment level basis. We have chosen comment level
detection because account-level approaches require increased amounts of user data,
whereas comments can be analyzed using Natural Language Processing techniques.
We propose a three layer neural network architecture that leverages transfer learning
through BERT word embeddings to successfully detect trolls with an extremely
limited supervised dataset. We show that our best model containing a Recurrent
Convolutional Neural Network (RCNN)(L) outperforms current machine learning
practices with an AUC of 84.6% on our test set.

1 Introduction

In recent years, troll accounts have become prevalent on numerous social media platformﬂ Rus-
sian trolls in particular are known for potentially influencing American elections and destabilizing
international affairs(2)), and they remain at large on Reddit(3)). Given that these Russian trolls often
operate under singular organizations, it raises two questions: do these trolls operate in similar ways,
and can these patterns be identified? In today’s changing political climate, developing better methods
for troll detection is imperative. Social media has a tremendous influence on how people get their
information(4)), and truthful discourse will become increasingly difficult with corrupt interference.

While troll and bot detection is being explored on other high profiles platforms such as Twitter
with deep learning(5)(6), there is extremely limited work on troll detection applications on Reddit.
Furthermore, there appears to be no applications of deep learning on Reddit comments, despite Reddit
being one of the most popular sites for information in the world(7). Comment level troll detection
offers a way to detect signals within the comment alone that indicate troll-like behavior without any
noise from user account data or increased overhead in data processing. We focus our paper on this
type of detection for the above benefits and because NLP techniques can be applied to comments.

In this paper, we present our work to apply deep learning to Reddit in an exploration of its viability
in comment level troll detection with a limited supervised dataset. We circumvent our limited
data by leveraging transfer learning through BERT (Bidirectional Encoder Representations from
Transformers)(8)) to build better word representations that our dataset could not generate normally. We
compare our best model, the RCNN, to two baselines: a non-deep learning approach to comment level
troll detection by Punturo (9)), and our basic one-layer neural network. With our best model achieving
an AUC of 84.6%, we outperform our two baselines of 74% and 66% respectively, indicating a
promising potential for deep learning applications in this field of detection.

!The definition of a troll is nuanced on the internet, and often used interchangeably in existing literature. We
focus on troll detection from a high level standpoint due to limited data.



2 Background and Related Work

Troll and bot detection has already been explored in other platforms such as Twitter. Griffin and
Bickel discuss unsupervised methods to gather Russian troll tweets(10) for sufficient dataset creation.
Additionally, a student paper from CS230 at Stanford University explores Tweet classification of
trolls with LSTMs that achieved 95.07% accuracy(l1). Finally, Kudugunta and Ferrara built a state
of the art model that performs Twitter bot detection on a comment level with a fairly simple LSTM
model, achieving over 96% AUC(6). These findings led us to believe that usage of an LSTM on
comment level detection would be an excellent starting point for our model analysis. Ultimately, the
breadth of exploration into troll and bot detection on Twitter suggests that there is potential to explore
this challenge in other social information mediums.

Although Reddit has far fewer labeled troll datasets compared to Twitter, there is growing concern on
this issue, and Reddit has increased their efforts to address it. In Reddit’s 2017 transparency report,
the CEO released the data of over 900 Russian troll accounts that posted over 7000 total comments,
yielding an extremely limited, but viable supervised dataset(12)). Currently, the only existing related
work on comment level detection is a Medium project by Brandon Punturo in which he utilized
optimized random forest classifiers on this dataset to yield an AUC of about 74%(9). We use this
attempt as inspiration that our challenge is feasible and as a comparative baseline for our paper.

While limited datasets are not ideal, there has been considerable research in navigating this challenge
through transfer learning. Applications of transfer learning achieve significant success by leveraging
pretrained models to reduce the total amount of supervised data required to train neural networks(13).
BERT (Bidirectional Encoder Representations from Transformers) from Google is a type of pretrained
contextual word embedding model that can be utilized when there is not enough labeled data to
identify word embeddings(8)).Using BERT, we now have the capacity to perform deep learning on
our limited dataset to generate classification results.

3 Approach

3.1 Non-Deep Learning Baseline

"Predicting Russian Trolls Using Reddit Comments"(9) is a Medium post that features an Optimized
Random Forest Classifier on the same dataset we used to determine trolls from non-trolls. They
managed to achieve 74% AUC on their test set.

3.2 Neural Baseline

For our neural baseline, we implemented a one-layer neural network with ReL.U activation. The
pooled outputs of BERT are sent through a shallow classification layer after performing ReLU activa-
tion and dropout to introduce non-linearity and reduce overfitting on the training data respectively.
We pool the outputs of our BERT model to create a representation that fits our linear layer.

comment = [a1, ag, ..., a.] € R®

Reddit comments are represented as vectors of words that is padded to be ’c¢’ words long.
x = BERTop1cq(comment) € RE

x = Dropout(ReLU (z)) € R
’x’ is the intermediate output with dimension BERT embedding size ’E’ that will be sent through the
binary classification layer with bias.

logits = xW + b € R?
i = Softmaz(logits) € R?

We use these scores to compute the Cross Entropy Loss to backpropogate through the model.

3.3 Neural Network Architecture Overview

For the remainder of our models, the neural architecture consists of four primary components;
the BERT Pretrained Embeddings Layer(14)(15), a neural "middle layer", a dropout layer, and a
classification layer as displayed in Figure 1. Each Reddit comment from the dataset is first run
through a BERT layer to create an embedding representation of the sentence.
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Figure 1: High Level Overview of Neural Architecture

This is run through various different middle layers such as an LSTM. After performing dropout, we
use a classification layer that outputs logits that are fed into a softmax function to perform binary
classification; whether the comment was written by a troll or not.

Our implementation of BERT is taken from the huggingface repository(14). The remainder of our
model draws inspiration from what we have seen in various CS224N assignments and research on
each model. However, our architecture design decisions, custom pytorch neural net modules, and
modifications are our own. Finally, our run.py file that trains or tests our code draws inspiration from
assignments 3 and 5 from this class. We used these files as starting points, modified them to fit our
specific problem, and implemented our own evaluation metric.

3.4 Recurrent Neural Network
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Figure 2: Repeating Module in an LSTM (16))
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We implemented an LSTM RNN as the middle layer of our neural architecture. LSTMs excel at
analyzing the relationships between the words in the sentence in sequential order(1’/7) and LSTMs
circumvent the vanishing gradient problem that makes loss computations difficult with regular
RNNG5s(18). We chose this model as we are evaluating comments, which have an inherent sequential
structure.

We compute the BERT embeddings representation of the comment, producing an output of comment
length ’¢’ by embeddings size "E’.

Tyers = BERT (comment) € R¥F

This is passed through the LSTM layer to produce hidden states *h’ and cell states ’c’, each with
dimensions of hidden size.
hy,cy = LSTM (Zpert), he € R" ¢, € R"

We perform dropout on the final hidden state, h;,, and then use this as the input for the classification
layer. The resulting logits are used to compute Cross Entropy Loss.

3.5 Convolutional Neural Network

Although LSTMs are effective at capturing sequential sentence information, they are known for not
being as strong at classification problems because they tend to capture too much of information from
the final state(19). We decided to implement a CNN for its classification advantages.

We used a 1-Dimensional Convolutional Layer which has two hyperparameters. The kernel size 'k’
determines the windows size used to compute features over comments of length ’c’, and the filter size
'’ is similar to the hidden size from our LSTM layer in that it defines the number of output features.
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Figure 3: An Example of a CNN(20)

Lconv = Conle(xbert) c fo(ckarl)

These convolutions represent values for k-grams of the comment. We then apply a ReL.U activation
function and max pooling to get the most significant signals from each convolution.

Zeonv—out = MaxPool(ReLU (Zcony)) € RS

Just like the LSTM layer, we feed this through our dropout and classification layer to get the logits.

3.6 Recurrent Convolutional Neural Network
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Figure 4: RCNN Architecture(1)

While both LSTMs and CNNs have their merits for sentence level text classification, both have
drawbacks. LSTMs tend to be weaker at classification, and CNNs have difficulty in optimizing
window size(l). While exploring past 224N projects for inspiration on better text classification
models, we discovered an application of Recurrent Convolutional Networks (RCNNs) on subreddit
classification, and decided to perform our own research on its efficacy(21)).

The RCNN, proposed by Lai, Xu, Liu, and Zhao in 2015 seeks to "learn more contextual information
than [CNNs] and represent the semantic of texts more precisely for text classiﬁcation'ﬂ 1)). This model
aims to utilize advantages from both RNNs and CNNs to excel even further at text classification.

The RCNN model first performs a pseudo-convolutional layer using a bidrectional LSTM to create
an updated representation of each word x; consisting of its left context (c;), the BERT embedding,
and the right context (c;).

z; = [er(wi); e(wy); ¢ (w;)] € REF2R

’E’ is the BERT embedding size and "h’ is hidden size of the left or right context. We process this
representation with a linear layer and tanh activation.

Tintermediate; — tanh(W-Tz + b) S Rh

Once we have the representations of every word in the comment, we perform max pooling to capture
the most important signals from the sentence and convert this comment into a fixed-length vector.

h
LTrenn—out = MaxPOOl(zintermediate) eR

?Quotation can be found on page 2268 of their paper.



Finally, we run the output through our dropout and classification layer to get the logits. Our
implementation of the RCNN model was started on our own. We then drew inspiration from another
implementation of an RCNN(22), but disagreed with some of their design decisions.

4 Experiments

4.1 Data and Evaluation Metrics

We evaluated our model using two datasets that were created by Brandon Puntoro(23)). One dataset
consists of approximately 7,000 comments written by Russian Troll users that were banned in
2017(12). The other is a Google BigQuery dataset of normal Reddit user comments from 2015 to
2018. It is worth noting that these BigQuery comments are random samples, and we are assuming
that none of them are actual trolls. With more time, we would seek to surpass this limitation and
curate a more rigorous dataset. We randomly selected about 7000 comments from the BigQuery
dataset as the non-troll dataset. We then merged and shuffled the datasets, creating an 80-20 split of
train/validation to test data, and a further 80-20 split of the train/validation data respectively. This led
to 64% of the data being used for training, 16% for validation, and 20% for testing.

The metric we used to classify our model’s success is our classifier’s Area Under the Curve - Receiver
Operating Characteristics (AUC-ROC). AUC is a consistent metric that circumvents the situation
where accuracy can be misleading with unbalanced datasets(24). Furthermore, AUC illuminates our
model’s confidence in its classifications, and it is a commonly utilized metric in other text classification
papers(25). We will also measure model accuracy, but will not prioritize it for optimization.

4.2 Initial Experimental Details

Our model is given "vanilla" parameters to generate initial results:

Value
BERT Embedding Size 768
Hidden Size 256
Max Comment Length 40
Dropout 0.2

Table 1: "Vanilla" parameters to generate initial results

Stochastic gradient descent updates are extended using an Adam Optimizer with an initial learning
rate of .001. Our model runs for a maximum of 30 epochs, but we utilize an early stopping mechanism
to reduce overfitting by occasionally reverting training back to the best model seen so far. Finally,
during training, we uniformly initialize every parameter that is not associated with BERT.

On an Azure GPU, our model takes approximately 30 to 60 minutes to train and less than a minute to
test because our training set has less than 10,000 entries. Every thirty batch iterations during training,
we validate the model with the development data. Finally, our model is seeded so that results are
reproducible.

4.3 Optimization

After testing each model with "vanilla" parameters, we achieved promising results from both the
CNN and RCNN, each producing AUC scores on the test set of roughly 83%. We selected the RCNN
as the model to optimize hyperparameters for since it had slightly better performance than the CNN
and fewer hyperparameters since beam size was not a consideration.

Rather than performing babysitting optimization(26), we wanted to push ourselves to find the best
hyperparameters possible. According to Bengio and Bergsta, Random Search is a highly effective
method of optimization(27), and with 60 iterations, there is a 95% probability of having a combination
of hyperparameters that are in the top 5% of all hyperparameters(28)).

We optimized over hidden size, dropout rate, and comment length. After 60 trials with hyperparame-
ters randomly selected from windows of [64, 512], [0.35, 0.65] and [10,80], respectively, we chose



the models that tied for best dev AUC and ran them on the test set. The best model achieved a test
AUC of 0.846 with hyperparameters of 415 (hidden size), 0.445 (dropout), and 70 (comment length).
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Figure 5: Randomized Hyperparameter Search Results

The comment length optimum seems to be the most intuitive of the three values, since about 93%
of our test dataset has 70 words or less (see Figure 8). The dropout optimum of 0.45 also aligns
with dropout numbers we have seen in the paper "Understanding Dropout"(29), which suggest that
a dropout rate around 0.5 increases variance in the training set distribution and the effectiveness of
regularization. Surprisingly, increasing hidden size beyond 400 causes performance to degrade. It
demonstrates that increasing the number of features in our hidden state does not always mean greater
performance. For other optimization experiments, please see appendix.

4.4 Results

AUC Accuracy
Optimized Forest Classifier Baseline 0.74 0.74
BERT Baseline 0.659 0.625
BERT + LSTM 0.805 0.727
Vanilla BERT + CNN 0.826 0.741
Optimized BERT + CNN 0.843 0.756
Vanilla BERT + RCNN 0.836 0.746
Optimized BERT + RCNN 0.846 0.749

Table 2: Experiment results showing AUC and accuracy per model classifier

Our results greatly exceeded our expectations. We knew that BERT was a powerful tool for Natural
Language Processing, but did not expect that combining it with the CNN and RCNN would handily
beat both baselines. We were not surprised that each additional model performed better than the
previous. The RCNN sought to optimize the best parts of the LSTM and CNN, so it would make
sense that it would perform slightly better.

We are also excited to see how well our CNN performed once optimized. Although we weren’t
prioritizing accuracy, it was interesting that it scored the best on this metric. This also reaffirms
the lectures that CNNs tend to be better at classification than LSTMs. It also shows that "standard"
models such as CNNs can perform comparatively well to more complex architectures like RCNNs.

BERT with only a simple classifier was not enough to effectively accomplish troll detection. Unlike
the other training curves, the training loss never properly decreases over time for the baseline model,
and it reaches a maximum development AUC of 0.659, well below any of the scores of the other
models. This suggests that though BERT is a state-of-the-art tool for building contextual word
embeddings, classification solely based on BERT transfer learning is insufficient for specific NLP
tasks.
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Figure 6: Training and Validation Performance of BERT with Different Neural Architectures

4.5 Output Analysis

We examined three failure modes for error analysis on the best performing RCNN model: number of
comments posted per troll, number of words per comment, and trigger words within the dataset.

Classification Ratio of Troll Comments vs Number of Comments per Troll Account
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Figure 7: Distribution of Number of Comments Per User in Test Results

To examine diversity of the dataset, we looked at how well our model performs at classifying
trolls who comment anywhere from a few times to over 400 times. Figure 7 shows how accuracy
generally improves as the number of troll comments per user increases. This suggests that the model’s
evaluation metric success might be biased towards the users who contribute significantly more to
our dataset. However, the model still appears moderately successful at identifying trolls with less
comments, so it is beneficial to explore our model’s efficacy in more detail.

Figure 8 shows the cumulative distribution of number of words per comment in our test dataset. This
figure also shows the false positive and false negative comment length distributions, normalized by
the number of total comments with a given word length. Almost 50% of the dataset has 10 words
or less, and these account for roughly 20% of the error in our model, suggesting that our model
performs better on longer comments. This could be because longer comments have more signals and
nuance for the model to interpret. The plot also shows pretty clearly that the model is just as likely to
misclassify false positives as it is false negatives based on comment length alone.
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Given that our model makes many errors on smaller comments, we took a closer look at the specific
classifications our model made to better understand how our model succeeds and fails on certain text
samples. Italicized sentences are originals, bold words are changes.

Example Test Sentence Prediction True
1 Hillary won the popular vote 1 0
Sam won the popular vote 0 0
Cats won the popular vote 1 0
Hillary played the popular vote 0 0
2 Wow I hope that’s not me 0 0
Cats Wow I hope that’s not me 1 0
3 Hillary is 68, she just can’t be all healthy 1 1
Hillary is 68, he just can’t be all healthy 1 1
Hillary is 68, she just can’t be all there 1 1
Hillary is 68, he just can’t be all there 0 1

Table 3: Example with predictions and gold standards modified to show classification changes.

With smaller comments, our model seems to value "trigger" words in making its prediction. Notably,
the model often categorizes comments with "Hillary" or "Cats" as troll comments. We hypothesize
these are triggers because Hillary Clinton was a regular target of Russian trolls on social media and
cats are mentioned frequently by trolls in the training data. This suggests that our model might be
making mistakes on smaller comments because it relies too heavily on triggers when there isn’t
enough other information to process. However, examples 1 and 3 also show that triggers alone are not
enough for a troll classification. When certain context words are changed in sentences with trigger
words, the classification can also change. Perhaps the relationship between the trigger and context
words is critical towards correctly classification.

5 Conclusion

Our initial concept for this project was to develop a neural network that could detect Russian trolls
on Reddit more effectively than conventional machine learning models could. Our findings showed
that that the usage of BERT and transfer learning alongside standard LSTM, CNN and non-standard
RCNN architectures can beat the baseline by a wide margin.

We recognize two main limitations in our work. First, it is difficult to make strong claims about
our findings because of our small dataset. Secondly, our dataset is skewed where many of the troll
comments come from a small subset of users, which has introduced some bias into our model. Despite
these limitations, we assert that our models offer the best Reddit troll detection capabilities of what
currently exist today. As next steps, we recommend that more work is done in proper data collection
so that we can test our models again for reproducible and scalable success.
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7 Appendix

7.1 CNN Hyperparameter Tuning

We made the assumption that the optimized hyperparameters for RCNN would work well for the
CNN model, and performed babysitting tuning for the beam size hyperparameter. This produced a
CNN model with an AUC of 0.843 and beam size of 3.

We found it interesting that the optimum point was at beam size of 3. Typically convolutions are more
effective at capturing n-gram relationships when the window size is larger. However, 13% of our
dataset has are fewer than 3 words, which might cause our performance to taper out when the beam
size exceeds 3. This reveals an issue with our dataset in that a preponderance of short comments can
make it difficult to build in accurate CNN model with a reasonable beam size of 5 or more.
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Beam Size with Optimized Hyperparameters vs AUC
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Figure 9: Beam Search Results

7.2 BERT Transfer Learning Basis
We also experimented with changing our transfer learning basis from Bert-base-uncased to Bert-large-

uncased to see if increasing to 24 hidden BERT layers and 1024 BERT embeddings improved the
model. However, this actually reduced performance; RCNN AUC decreased to 0.815.
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