
Multi-Hop Question Answering with Bi-Attention
Processing and CNNs

Laura Cruz-Albrecht
Department of Computer Science

Stanford University
lcruzalb@stanford.edu

Krishna Patel
Department of Computer Science

Stanford University
kpatel7@stanford.edu

Abstract

Question answering systems are an exciting but challenging application of Natural
Language Processing. While much work has been done on general QA, there is
a lack of work in the realm of QA requiring multi-hop reasoning, where the QA
system has to reason over information from multiple documents to generate an an-
swer. We aimed to create a multi-hop QA model that utilized novel architectures to
improve upon the exact match (EM) and F1 scores of the current publicly available
baseline published along with the HotpotQA multi-hop question answering data
set. Our best model achieved a QA EM of 40.78 and an F1 of 53.77, just shy of the
published baseline. Through this process, however, we have demonstrated how the
use of a 2 dimensional CNN can be approximately comparable to the use of more
traditional NLP architectures.

1 Introduction

Question answering as a task is incredibly complex and inherently fascinating, as it asks a model
to perform human-like reasoning to identify the answer to a given question. While there is a clear
scientific motivation to build an excellent QA system, good question answering models also have
the potential to be applied in many domains to increase accessibility of information, efficiency of
information retrieval, and can be utilized as a building block for intelligent systems. To date, a
substantial amount of research has been conducted in the realm of question answering, specifically
concerning single-hop reasoning. Single hop-reasoning, as opposed to multi-hop reasoning, is the
ability to identify the answer to a question given a paragraph containing the answer. A popular
example of this is the SQuAD data set, in which most questions can be answered by identifying a
span within a single sentence [1].

On the other hand, multi-hop reasoning presents a more difficult problem. Multi-hop reasoning
requires filtering through multiple paragraphs containing distractions and the aggregation of infor-
mation across sentences in order to answer the question, which is inherently more difficult than
single-hop reasoning as it moves the sphere of question answering research towards computationally
modeling what humans have the ability to do when answering questions.

Currently, Yang et al. have published [2] a baseline model (herein referenced as the HotpotQA
model) that performs reasonably, while relying on an architecture composed of a chain of recurrent
neural networks (RNNs). While the utilization of RNNs is common practice in natural language
processing, RNNs are time consuming to train, and lack the ability to focus on local regions by
convolving a filter across an input as convolutional neural networks (CNNs) do. These facts generally
informed the basis of our approaches, through which we found that 2 dimensional CNNs can be
utilized to give approximately a similar performance to the HotpotQA baseline.



2 Related Work

Several prior works have focused on the general task of question-answering, including research
on the SQuAD [1], TriviaQA [3], and Google’s Natural Questions [4] to name a few. However,
the key work most related to our project is “HOTPOTQA: A Dataset for Diverse, Explainable
Multi-hop Question Answering” by Yang et al. [2]. This work first introduces a novel type of
question-answering dataset, and second, it implements a baseline QA model on this dataset. The
dataset contains questions that require multi-hop reasoning, or reasoning with information across
multiple documents to obtain the answer. This work is quite innovative, for while much work has
previously done to implement question-answering systems, few test the machine’s ability to reason
across multiple documents.

For their baseline architecture, the authors leverage a model similar to that by Clark and Gardner
in “Simple and Effective Multi-Paragraph Reading Comprehension” [5]. Similarly to Yang et al.,
Clark and Gardner were working with entire documents as input. In particular, they focused on
applying the techniques of paragraph-level neural QA models to a document-level systems. They
leverage a pipelined method that first extracts which paragraphs from the input document to use for
training and testing, then feed these paragraphs through a neural model featuring word and character
embeddings, bi-directional GRUs, bi- and self-attention, and a final GRU along with linear layers for
answer prediction.

Also related to our work, but in a different vein, is prior work leveraging CNNs for NLP tasks. While
convolutional neural networks were originally extensively applied to vision-related tasks, research
has found that they can be applied to natural language processing tasks as well. Yin et. al. [6]
provide a comparative study of CNNs and RNNs applied to NLP tasks, and find that for some tasks,
CNNs can be effectively used in place of RNNs. Further, in “Convolutional Neural Networks for
Sentence Classification” by Kim [7], the author illustrates that a simple single-layer CNN with max
pooling could be used to classify embedded sentences.

3 Approach

3.1 Existing Baseline

Figure 1: HotpotQA model architecture [2].

We use the HotpotQA architecture as our baseline.
This architecture is designed as illustrated to the right:
the context (paragraphs) and question are both trans-
formed into an embedded representation (both word
and character level), and fed through a sequence of
RNN and linear layers, with bi-attention and self-
attention between the first and second RNN layers,
respectively.

The model then has an intermediate subroutine to
predict whether or not a sentence is a supporting fact
for each context sentence. It applies a linear layer to
the output of an RNN after self-attention, generating
a scalar value corresponding to each sentence, which
is then used to then classify that given sentence as a
supporting fact. This subroutine obtains an EM score
of 22.24 and an F1 score of 66.62 on test.

The output of this classification module is fed back
into the main model. The main model then uses 3
RNNs and linear layers to then predict three pieces
of information: the start token of the answer, the
end token of the answer, and the question type
(yes/no/span). The model obtains an overall EM
score of 45.46 and F1 score of 58.99 on question
answering on the test set.

2



3.2 Our Approaches

We experiment with various techniques in an effort to improve upon the HotpotQA baseline.

3.2.1 Supporting Fact Classification Module

As a first approach, we focus specifically on improving supporting fact classification accuracy. As
such, we build a module just to classify sentences as supporting facts. In particular, we experiment
with using a CNN for this task, rather than the RNN used in the baseline model. While convolutional
neural networks have traditionally been utilized more in the realm of computer vision, they have also
been applied to natural language processing tasks with great success [7].

Our module utilizes the same first three layers as the HotpotQA baseline (we leverage the publicly
available code from [8]), then branches after the bi-attention layer. We first needed to convert the
output of the bi-attention layer into a tensor that a convolution could be applied to. The output M of
the bi-attention is (para_limit, hidden), where para_limit is the (capped) number of words in the
context. The context consists of several sentences - we slice M into multiple smaller matrices, such
that each contains the words for a single sentence, and stack these slices. This allowed us to convert
matrix M into into a new matrix P of dimensions (sent_limit, sentence_length, hidden).

We then applied a convolutional layer to tensor P , using the general approach delineated in [7].
Namely, we apply one convolutional layer to embedded input text corresponding to a single sentence,
then apply max pooling, and finally apply a linear layer to obtain a scalar output of dimension
(sent_limit, 1). This corresponds to a scalar value for each sentence in the context, and this scalar is
the model’s classification of the given sentence as a supporting fact.

3.2.2 Processed Bi-Attention Models

Our second approach was to experiment with an end-to-end architecture - namely, to perform
question answering (rather than just supporting fact classification). For our model, we again reused
the beginning layers of the HotpotQA architecture (embedding and bi-attention). We then branched.
In particular, we experimented with manipulating the output of the bi-attention layer to perform the
prediction and answering tasks. Then, for the final QA layers, we used the HotpotQA architecture
(the final 3 RNNs).

Similarly to what was done in the previously described custom classification module, we sliced the out-
put of the bi-attention layer into a tensor P of dimensions (sent_limit, sentence_length, hidden).
We then averaged across the words in each sentence, to obtain a tensor of dimensions
(sent_limit, hidden). We then summed across the hidden dimension, to obtain a vector V of
dimension (sent_limit, 1), where each entry vi in the vector is a scalar that (ideally) would be
learned to correspond to whether sentence i is a supporting fact sentence.

This vector V was used as the output vector for deriving the supporting fact classifications. This
vector was also then used to rescale the bi-attention output before feeding it through the subsequent
layers of the main model.

To rescale, we first applied a sigmoid to V to obtain V σ , where V σi corresponds to the probability that
sentence i is a supporting fact. We then multiplied each row of the bi-attention output (corresponding
to a single word w in the context) with V σi , where i is the sentence w belongs to. The goal of
rescaling was to amplify the values of words that are part of sentences that the model assigned a
higher probability of being a supporting fact. This rescaled output was then fed through an RNN
layer; this new output was rescaled in the same way.

We additionally experimented with applying softmax to V instead of sigmoid, but found that sigmoid
performed better.

3.2.3 Integrated Supporting Fact CNN Classification Model

After experimenting with an end to end architecture, we realized that supporting fact classification is
difficult to optimize when we are optimizing an overall loss of L = Lqa + λLsp, where Lqa is loss
in regards to overall question answering and Lsp is loss in regards to supporting fact classification.
Therefore, we proposed creating a pretrained separate module that is optimized for supporting fact

3



classification only, which would then be integrated into the HotpotQA baseline code in the place of
its supporting fact classification architecture.

For our supporting fact classification module, we utilized our first model, described in 3.2.1, which
returns scores corresponding to each sentence with dimension sentence_limit, the maximum number
of sentences in a given context. In order to reintegrate this vector into the HotpotQA baseline’s
pathway, we put this vector through an expansion process as follows. We expanded it such that
each score for each sentence in the context was repeated x times, where x is the number of words
within the sentence whose score it was. We then replaced the −100s that were previously utilized for
padding with 0s to create a 0 padded version, and multiplied it across the output of their self-attention
layer (whose values correspond to words, not sentences). This reasoning behind this multiplication is
that it would result in the augmentation of the signals of words contained in sentences that have been
classified as supporting facts, while simultaneously diminishing the signals of sentences that have
been classified as not supporting facts.

3.2.4 2D CNN Models

Because we experienced great difficulty in creating a module that effectively classified sentences as
supporting facts, our next approaches return back to an end to end model. The first of these two fully
integrated models follows a similar architecture to the HotpotQA baseline up until its bi-attention
layer (see Figure 1).

The main purpose of the bi-attention layer is to integrate information from the context with information
from the question, and therefore, we applied a self-attention layer directly after in order to strengthen
the signals of the information before it entered a 2 dimensional CNN layer with max pooling.
Although 2 dimensional CNNs are not often utilized in NLP, we were inclined to utilize one because
of its capacity to aggregate dependencies across not only the rows but also the columns of our
input, which could have the potential to learn useful functionality particularly for multi-hop question
answering, since such questions depend on phrases that can be found across relevant sentences. The
output of this 2D CNN was integrated into the rest of the HotpotQA question answering architecture,
while a copy of its output is run through a 1 dimensional CNN (with identical preprocessing and post
processing of inputs and outputs to the model described in 3.2.1) for the purpose of supporting fact
classification.

Our last model is similar to the model above, however, the input to the 1 dimensional
CNN was instead the output from our bi-attention layer, creating a bifurcation after our bi-
attention layer where one pathway heads towards a self-attention layer and the 2D CNN
with max pooling, while the other pathway feeds into a 1 dimensional CNN that ag-
gregates the word-based data into sentence-level data (similar to the description in 3.2.1).

Figure 2: A medium level question sampled from
the HotpotQA dataset [2].

After passing through the 1D CNN, this information
is then reintegrated into the model by passing the
sentence-level data outputted by the CNN with di-
mension sent_limit into a the same expansion pro-
cess described in 3.2.3 which results in a support-
ing fact classification weighted vector in the form
of word-level data, which we then multiply element-
wise across the output of the 2D CNN. This final
output then is passed through the remaining three
RNNs of the HotpotQA baseline’s question answer-
ing architecture.

4 Experiments

4.1 Data

We utilize the HotpotQA [2] dataset for our task
of building a model to answer multi-hop questions.
Each data point within the dataset consists of a multi-
hop question, the answer to the question, 10 para-
graphs (or context) to source the answer from (where

4



2 out of the 10 paragraphs actually contain relevant information), and lists of supporting fact sentence
from within the context that support the answer (see Figure 2). The portion of the HotpotQA dataset
that we utilized had a total of 89,791 training examples and a total of 7,376 dev examples, which
both of which were preprocessed with Yang et al.’s preprocessing script [8].

4.2 Evaluation Methods

Following the pattern of analysis in various QA systems [2], [1], we utilize exact match (EM) and
F1 metrics in order to evaluate the performance of our model. We calculate EM and F1 metrics on
our model’s ability to identify supporting facts and our model’s ability to identify the correct answers
separately. We also utilize Yang et al.’s [2] Joint F1 score and a Joint EM score in order to evaluate
the combination of identified supporting facts and answer spans. The Joint F1 score across supporting
fact identification and answer spans is defined as follows:

P (joint) = P (ans)P (sup), R(joint) = R(ans)R(sup), Joint F1 =
2P (joint)R(joint)

P (joint) +R(joint) .

The Joint EM score across supporting facts and answer spans on supporting facts and answer spans is
defined as 1 if both tasks achieve an exact match with the gold answer on a query and 0 otherwise.

4.3 Experiments

For all models, we specified a para_limit of 2,250, which filters out any data point in the HotpotQA
dataset that has greater than 2,250 words in its context. Further, we utilized a supporting fact
classification threshold of 0.3, and a supporting fact loss lambda of 1.0, and a maximum sentence
length of 100 across all models. The model parameters and hyperparameters used are described
below.

Table 1: Model parameters and hyperparameters

Model epochs batch size 1D CNN 2D CNN

CNN classif. module 11 24 k: 5, f : 256, s: 1 -

Bi-atten. + sigmoid 6 48 - -

Integrated SP CNN - SP unit 8 48 k: 5, f : 256, s: 1 -
Integrated SP CNN - full model 2 48 - -

2D CNN, v1 11 48 k: 5, f : 256, s: 1 k: 5, f : 128, s: 1

2D CNN, v2 5 24 k: 5, f : 256, s: 1 k: 5, f : 128, s: 1

4.4 Results

Table 2: Score comparison

Model Split Answer Sup Fact Joint Loss
EM F1 EM F1 EM F1 Overall Sup Fact

HotpotQA baseline
dev 44.44 58.28 21.95 66.66 11.56 40.86 - -
test 45.46 58.99 22.24 66.62 12.04 41.37 - -

CNN classif. module
train - - 18.60 60.24 - - - 0.092
dev - - 15.85 56.36 - - - 0.102

Bi-atten. + sigmoid
train 67.71 74.27 0 9.31 0 6.99 35.38 30.93
dev 40.19 53.43 0 9.42 0 51.47 39.62 34.54

Integrated SP CNN
train 43.34 50.64 0 0 0 0 6.61 0.19
dev 32.06 43.20 0 0 0 0 6.38 0.19

2D CNN, v1
train 79.96 85.54 3.49 15.69 2.91 13.87 3.62 0.17
dev 40.78 53.77 2.59 14.17 1.24 8.30 6.03 0.17

2D CNN, v2
train 18.36 41.37 6.94 28.05 1.61 13.23 7.92 0.15
dev 8.84 30.44 5.86 26.22 0.90 9.38 9.32 0.15

5



Figure 3: Loss and F1 curves for our two best models.

4.4.1 Supporting Fact Classification Module

We find that the classification module does not beat the baseline. However, it does perform comparably,
and we think that the CNN approach is a promising one: perhaps with more hyperparameter tuning
(ie, experimenting with different kernel dimensions, strides, and number of filters), as well as with
training for longer, it may be possible for the module to attain better performance.

4.4.2 Processed Bi-Attention Models

In these experiments, we find that the overall answer F1 and EM is comparable (though lower) than
the baseline. However, the supporting fact classification performance drops quite a bit. This indicates
that the bi-attention rescaling, though promising in principle, is not sufficient to tackle the task at
hand. We also find that, applying sigmoid to V performs better than applying softmax. This makes
sense, since more than one sentence can be a supporting fact, and sigmoid allows those probabilities
to be assigned independently.

4.4.3 Integrated Supporting Fact CNN Classification Model

This model performs very poorly. Rather surprisingly, the supporting fact EM and F1 drop to 0. The
answering part of the model still performs reasonably, with a dev F1 score of 43.20 (though lower
than the baseline, with dev and test around 59), suggesting that the model is simply ignoring the

6



supporting fact classification and learning to answer questions independent of the attempted strong
supervision over supporting facts.

4.4.4 2D CNN Models

We find that the first variant with the 2D CNN performs reasonably on the overall answering task, but
does poorly on the supporting fact prediction sub-task. This is perhaps due to the fact that now the
model is optimizing an overall loss that only includes the supporting fact classification loss as part of
the overall loss; since it’s not being optimized directly, in our case we find it’s not really optimized at
all. The second 2D CNN variant doesn’t do well on either account, suggesting that applying the 2D
CNN before the supporting fact classification (as done in variant 1) is better than after.

5 Analysis

To qualitatively analyze our model, we inspected the answers and supporting facts that our best model
(2D CNN, v1) predicted on the dev set. We observed a few key things (see Figure 4). First, we
saw that the model got a fair number of answers correct, but without having identified any of the
supporting facts. This suggests that while strong supervision over supporting facts would likely be
helpful, it is not essential for the model to tackle the task at hand. Second, we observed that most
of the extracted supporting facts lists were empty - namely, the model did not classify any of the
sentences in the context as supporting facts. While not ideal, this does intuitively make sense given
the structure of the model - the supporting fact classification loss is not optimized directly, which
may be why the supporting fact classification performance is not prioritized by the model.

[H]

Figure 4: A sampling of our best model’s (2D CNN, v1) capability.

7



6 Conclusion

In conclusion, one key thing that we found was that explicit supporting fact classification is not
critical for the ultimate task of question answering in this context. Our models ended up having an
answer F1 score that was much higher than the supporting fact F1 score and joint F1 score. This
could potentially be attributed to the model still learning how to identify supporting facts implicitly,
but lacking the ability to identify them explicitly.

Notably, throughout the course of our experimentation, we also found that the task of optimizing
supporting fact classification is not well suited to standard loss calculations. We found this to be the
case because in order to classify supporting facts correctly, we are looking to be precise in assigning
value to very few sentences out of many. By utilizing a loss function such as cross entropy loss, we
will end up minimizing loss by assigning no value to all of the sentences, thereby only incorrectly
attaining a few false negatives for the few supporting fact sentences.

Overall, we also found that though we were not able to beat the HotpotQA baseline, we found that
CNNs seemed to be a reasonable architectural building block. Our best model (2D CNN, v1), used
a 2D CNN across word-level information rather than an RNN, and attained lower but comparable
overall Answer F1 and EM scores.

References
[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions

for machine comprehension of text. CoRR, abs/1606.05250, 2016.

[2] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2018.

[3] Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale
distantly supervised challenge dataset for reading comprehension. CoRR, abs/1705.03551, 2017.

[4] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee,
Kristina N. Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le,
and Slav Petrov. Natural questions: a benchmark for question answering research. Transactions
of the Association of Computational Linguistics, 2019.

[5] Christopher Clark and Matt Gardner. Simple and effective multi-paragraph reading comprehen-
sion. CoRR, abs/1710.10723, 2017.

[6] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Comparative study of CNN and
RNN for natural language processing. CoRR, abs/1702.01923, 2017.

[7] Yoon Kim. Convolutional neural networks for sentence classification. CoRR, abs/1408.5882,
2014.

[8] Yang et. al. Hotpotqa github. https://github.com/hotpotqa/hotpot.

8


	Introduction
	Related Work
	Approach
	Existing Baseline
	Our Approaches
	Supporting Fact Classification Module
	Processed Bi-Attention Models
	Integrated Supporting Fact CNN Classification Model
	2D CNN Models


	Experiments
	Data
	Evaluation Methods
	Experiments
	Results
	Supporting Fact Classification Module
	Processed Bi-Attention Models
	Integrated Supporting Fact CNN Classification Model
	2D CNN Models


	Analysis
	Conclusion

