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Abstract

Motivation: Question answering (QA) systems usually rely on complex natural lan-
guage processing approaches to understand the questions and find answers precisely.
Advances in neural network models promise better performance in open-domains
where large datasets are available, such as SQuAD 2.0, QuAC, and CoQA. However,
these systems need to be exploited further in more restricted domains where construc-
tion of the training sets is costly. With the progress in natural language processing,
extracting valuable information from biomedical literature has become a less daunt-
ing task. Recent developments in training a domain specific language representation
models have paved the way for mining a large number of unannotated biomedical
texts. Aims: We leverage BioBERT to effectively transfer the information from
large-scale biomedical corpora and adapt the recently published SDNet neural archi-
tecture to tackle the BioASQ QA challenge [11 [2]. The original SDNet model was
developed for general conversational QA tasks. We incorporate biomedical domain
knowledge through BioBERT and domain-specific word2vec embeddings into the
system by adapting on the proposed SDNet. Our approach requires some adaptation
to the structure, but we are able to leverage the various attention mechanisms at
its core. Ultimately, we work to develop a novel, contextual QA system specifically
for biomedical-related text mining. Results: We have implemented a combined
BioBERT-SDNet model to achieve competitive, though not state-of-the-art, results
on biomedical question answering tasks. We expect that with some further work,
this model could be a powerful tool for biomedical question answering in practice.
To our knowledge, ours is the first usage of SDNet for non-conversational QA and
the first integration of BioBERT with SDNet.

1 Introduction

Each year, an immense number of new biomedical documents are published. In 2017 alone, the
National Library of Medicine reported that over 800,000 new citations were added to MEDLINE [3].
At such a rate, it is not feasible for medical professionals to keep up with recent developments. For
this reason, natural language processing systems that can identify and return relevant information in
a human readable form are essential.

The BioASQ organization seeks to address this problem via their yearly challenge on biomedical
semantic indexing and QA [4]. The BioASQ challenge incorporates a number of different tasks,
including semantic indexing (Task A), information retrieval (Task B Phase A), and question answering
(Task B Phase B). We focus here on the question answering (QA) component, which in itself comprises
four distinct types of questions including factoid, list, yes-no, and summary. For factoid, list, and
yes-no questions, the challenge measures performance based on both exact answers and ideal answers,
which are short rationales for the exact answers. We concentrate on obtaining exact answers for
factoid questions, which have historically been more difficult than the yes-no questions and which are
easily extensible into list questions. As of last year’s BioASQ6b challenge, the best score obtained on



factoid question exact answering was a strict accuracy of 0.24 [5], indicating that this is indeed an
area of the challenge for which there remains significant room for improvement.

In this project, we leverage BioBERT, a domain specific language representation model pre-trained
on large-scale biomedical corpora, and implement a modified SDNet model for exact factoid question
answering in Task B, Phase B of the BioASQ challenge [2]. Our problem is formulated as follows:
given a passage C, predict the answers Ay, As, As, ..., Ax to the questions Q1, @2, Qs, ..., Qk.

2 Related work

The OAQA Biomedical Question Answering System won the best-performing system in the factoid
category of the BioASQ challenge two years in a row in 2015 and 2016 14 [6]. This system consisted
of a number of distinct modules, including: key multi-word term extraction by frequency; biomedical
named entity recognition and concept identification; synonym retrieval; part-of-speech tagging;
candidate answer generation from identified concepts; and candidate answer relevance estimation.
While successful, this model required great complexity, and has not kept pace with other more recent
developments in terms of performance.

The DeepQA system of the 2017 BioASQ5b challenge introduced an extractive neural QA model,
restricting the system to output substrings of the provided text snippets [7]. This system was
based on FastQA [§], extended with biomedical word embeddings, pre-trained on SQuAD, and
fine-tuned on the BioASQ training set. FastQA is a BiLSTM-based system which at the time of its
publication achieved state-of-the-art results on the SQuAD challenge v1 and continues to rank on
the v1 leaderboard today. As an ensemble system, DeepQA achieved state-of-the-art performance in
2017, but does not seem to have been entered into the challenge the following year.

The LabZhu team led the BioASQ leaderboard for exact-answer factoid questions in 2018 after
performing well in the 2017 BioASQ5b challenge as well [T, [5]. They applied rule-based question type
analysis and used the Stanford POS tagger along with PubTator, a tool for annotating biological
entities and their relationships, for candidate answer generation. They also used word frequencies
for candidate answer ranking. Notably, the LabZhu team’s system outperformed the single model
DeepQA in 2017, though it did not perform as well as the ensemble DeepQA model. Nevertheless,
its exceptional performance shows that even in 2018, rule-based rather than neural QA methods still
dominated for the challenge.

Given the success of the DeepQA system on the BioASQ challenge, it is a natural next step to explore
the performance of current state-of-the-art SQuAD and related models for the BioASQ challenge,
and this motivates our approach.

3 Approach

We implement a domain-specific adaptation of the recently published SDNet model for the BioASQ
challenge. SDNet is a complex, innovative, and contextualized attention-based deep neural network
that integrates the latest BERT contextual model with multiple attention mechanisms to achieve
state-of-the-art results on the CoQA leaderboard. Whereas SDNet was designed specifically for
conversational QA, we adapt it for single-turn QA. One distinct advantage of adapting a model
designed for CoQA over one designed for SQuAD or similar challenges is that CoQA allows for
free-form text answers, while SQuAD, for example, is purely extractive. While at present we have
focused on extractive QA for the BioASQ challenge, the model we have adapted will naturally
be able to tackle abstractive QA as well with some tuning. This capacity is highly desirable as it
enables the generation of more natural-sounding answers and coherent accompanying rationales.
Thus with some tuning our model can naturally be extended to summarization and ideal answer
generation tasks that are both part of the BioASQ challenge and integral to any functional QA
system that might be used in practice by biomedical professionals.

We combine the SDNet model architecture with BioBERT, another recently published development.
BioBERT is a pre-trained biomedical language representation model for biomedical text mining
based on the BERT architecture and trained over large-scale biomedical corpora, including PubMed
abstracts, PMC full-text articles, as well as general-domain corpora including English Wikipedia
and BooksCorpus [2]. While BERT has achieved competitive performance compared to previous
state-of-the-art models on many biomedical-domain text mining tasks, BloBERT has been shown to



perform significantly better, highlighting the importance of domain-specific tailoring. While testing
on the BioASQ4b challenge factoid question set, for example, Lee et. al. found that BioBERT
achieved an absolute improvement of 9.73% in strict accuracy over BERT and 15.89% over the
previous state-of-the-art [2]. For this task, BioBERT was fine-tuned using the BERT model designed
for SQuAD [9].

3.1 Encoding layer

For our model, we use BioBERT rather than the standard BERT as discussed above. Because this
procedure could require up to 20 days on 8 V100 GPUs, we utilize the publicly available pre-trained
weights of BioBERT to fine-tune BERT architecture on our training datasets. These are fed into the
encoding layer of the SDNet architecture.
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Figure 1: Overview of the pre-training and fine-tuning of BioBERT. Reproduced from [2].

SDNet employs both standard GloVe embedding and BERT contextualized embedding. In the SDNet
publication, the BERT contextualized embedding is derived from a weighted sum of all L hidden
states of the transformer with locked internal weights rather than the final hidden state alone as
proposed in the original BERT publication [9]. In detail, suppose that a word w has BPE tokenization
w = {by,ba,...,bs}, and let h! denote the /th hidden state for the tth BPE token b;, 1 <1 < L
and 1 <t < s. Then the contextualized embedding for w is given by the per-layer weighted sum
of average BERT embedding BERT,, = Zle(al/s) >-i_, bl with weights as, ..., a;, where these
weights are hyperparameters that may be tuned.

3.2 Integration layer

The integration layer of SDNet features four different attention mechanisms along with the core
BiLLSTM layers.

3.2.1 Obtaining word input vectors with word-level inter-attention

First, question-to-context attention is conducted based on the standard embedding. Suppose there
are m context words and n question words with embeddings h{, ..., hC € R? and h({?, ...,h@ ¢ R?
respectively, where d is the dimension of the standard embedding. First, the similarity matrix
S € R™*™ is computed, where each entry is given by

Sij = ReLU(UAS)D ReLU(UA?) (1)

where D € R¥** and U € R4*¥ for attention hidden size k. From the similarity matrix, the attention
score distribution a is computed as a;; = softmax (S;;). Then the question-to-context attended

vectors are given by hS = > aijh?.

For notional simplicity, we will refer to the attention function defined here as simply Attn (A, B, C)
moving forward. SDNet also incorporates a feature vector f,, into the input vector for each context
word per the methodology developed in DrQA [I0]. This vector includes a 12-dimensional part-of-
speech embedding, an 8-dimensional named entity recognition embedding, a 3-dimensional exact
matching vector indicating whether each context word appears in the question in original, lowercase,



or lemma form, and a normalized term frequency entry. Using this feature vector, the input vector
for each context word w becomes

~C __ . .hC.

wC = [GloVewic,BERTwic,h, : fwg] ,

7

and our question word input vector remains simply

@ = |GloVe,a; BERT o 2)

3.2.2 Contextualized understanding of context and question

After obtaining input word vectors, the SDNet model uses two BiLSTMs to form the contextualized
understanding for context and question:

RSF L ROF = BILSTM(RSFE . ROk, (3)
RE*, .. hQP = BILSTM(hY* ', ... Ak 1), (4)
{0 =wf, RO =w? (5)

for 1 < k < K where K is the number of RNN layers. In the implementation published, SDNet
implements variational dropout for the input vector to each layer of the RNN, which we do also.

Next, one more layer of RNN is applied for each question word:

n

bfRQEFY L RQEF Z BILSTM(RY, ... hQ), A9 = [h,Q, 1. ;h?vK} . (6)
Self-attention is then applied on the question to obtain the final question representation

{u}, = Attn ({RS" T, (R R ). (7)

Next, multi-level inter-attention is applied from question to context based on all layers of generated
representations. The history-of-word concept from FusionNet [IT] is employed to boost computational

efficiency, where context and question history-of-word vectors are denoted respectively as HoWiC and
HOWZQ From each RNN layer output of question to context, K + 1 times of multilevel attention are

conducted in terms of these history-of-word vectors which we denote HoW¢ and HoWiQ for context
and question respectively:

7

{m ), = Avtn ({HoW 2y {HoWE L, {HOWE Y, ) (8)

with 1 <k < K 4+ 1. Then, an additional RNN layer is applied in order to obtain the contextualized
representation v{ for each context word:

o0, vG = BILSTM(yC, ..., y<), (9)
where y¢ = [hf’l; - hf’k; mz(-l)’c; e ;ml(-KH)’C}. Self-attention on context is applied as the final
attention layer, using the history-of-word concept as above:

s¢ = [GloVe,c; BERT,,c; A . REF m{D9 L omFH) @ ) (10)
and
{oF Yy = Attn ({s 372y, {532, {0 12y, ) - (11)

The final context representation is obtained by applying an additional RNN layer:

{uf}r, =BiLSTM ([w{;9{], ..., [v5;95)]) . (12)

m?



3.3 SDNet output layer

In the output layer, for parametrized vector w we condense the question representation into a

single vector u® = Oy ﬁiuiQ, where 3; = softmaX('wTuZQ). We then generate predicted answers to

questions in the standard way. Details regarding output generation are included in the appendix 8.1.
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Figure 2: Overview of the pre-training and fine-tuning of BioBERT. Reproduced from [2].
4 Experiments

4.1 Data

We used historic data available from the BioASQ4b and BioASQ5b challenges to produce training,
dev, and test sets. The training set for BioASQ4b contained 217 factoid questions, while the
BioASQ5b training set contained 322. Included in each of the provided datasets are a set of questions,
with type identified, and snippets from PubMed that are relevant to the specific question [4]. We
created training datasets from the provided data in both SQuAD and CoQA formats. All of the
information required for SQuAD format input was provided by the BioASQ challenge and so the
SQuAD format was straightforward to produce. However, after processing the raw provided data
into suitable formats, our training datasets still posed significant challenges in terms of both small
size and inconsistancy in well-posedness. We found that though the factoid QA task is posed as one
of extractive question answering, in many cases the golden answer provided cannot be found as-is in
the text. We were able to identify a number of prominent subsets of problems causing mismatch
between context and answer, each of which and their respective fixes are detailed with examples in
the Appendix 8.3. Note that no alterations were made to test sets.

A conversation from the CoQA datasets contains a question, an answer, and a rationale that supports
the answer [I2]. As the SDNet model requires input of CoQA format, we had to generate text spans
to accompany the provided golden answers. To do so we selected the span of text consisting of the
answer text itself, which we could do after ensuring that all questions had an appropriately extractive
answer, and the following span of length equal to three times the length of the golden answer. As our
questions are non-conversational, we simply set all turn numbers to one. An example of processed
question-answer pair from BioASQ datasets and its corresponding CoQA format is provided in the
Appendix 8.2.

4.2 Evaluation Method

Exact answer factoid questions are evaluated based on mean reciprocal rank (MRR), strict accuracy
and lenient accuracy, in accordance with the standard BioASQ challenge evaluation methods [13].
Note that MRR is used as the deciding metric in ranking model performance for BioASQ. We also
compute, in some cases, F} scores to get a better idea of our model performance. We provide the F}
scores calculated across the entire test set and the Fj scores of those questions for which the model
output partially aligned with the golden answers respectively to better analyze model performance.



4.3 Experimental details
4.3.1 Baseline model

To provide an additional baseline, we ran the baseline code provided for the default project on a
training dataset comprising 633 factoid questions from the BioASQ5b training set and the BioASQ4b
test and training sets. In place of the default GloVe word vectors, we substituted a freely available
pre-trained set of domain-specific word vectors [14]. We also ran the baseline code with the biomedical-
domain word vectors on SQuAD data to ensure correctness and to determine how domain-specific
vectors impact performance.

4.3.2 BioBERT

To show viability of BioBERT on the BioASQ challenge, we implemented our BioBERT based
on the BERT repository by Google [15] and used pre-trained weights for biomedical text mining
tasks released by biobert-pretrained repository [16, [I7]. We fine-tuned the BioBERT model on
the BioASQ4b and BioASQ5b training sets respectively and evaluated the model on each of the
provided test sets. Hyperparameter optimization was performed on sampled datasets. The optimal
hyperparameter values were determined to be a batch size of 12, a learning rate of 3e-5, and 50
epochs. The dropout probability was kept as 0.1. We also used a max sequence length of 384 and
a doc stride of 128. The model size was adopted from BERTgagg, with 12 Transformer blocks, a
hidden size of 768, and 12 self-attention heads. Note that as we used WordPiece vocabulary with size
of 28996 provided by Google, any new words in biomedical corpus can be represented with subwords
(for instance, diphtheria-tetanus — dip ##ht ##her ##ia - te ##tan ##us).

4.3.3 SDNet

As in our BioBERT implementation, we obtained the BioBERT v1.0 (+ PubMed 200K + PMC
270K) version of the pre-trained BioBERT weights from the Naver GitHub [16]. As these weights are
available as TensorFlow checkpoint files, we then converted them to PyTorch format for use with
SDNet. Microsoft recently published the SDNet model from [I] to GitHub [I8], and we employed it to
construct our own SDNet model, with integration to BioBERT, modifications to basic configuration
variables and input formatting. We used 300-dim Glove embedding [19] and the transformer output
from BioBERT as contextualized embedding for each word in context and question.

We first evaluated our BioBERT-SDNet model on sampled CoQA conversational question answering
datasets across five different domains. Table 3 summarizes F1 scores of our model and demonstrates
the viability of our implementation. The BioBERT-SDNet model was then trained and evaluated
with BioASQ train/dev sets in CoQA format. We initiated this with GloVE word embeddings of size
300. We used a mini-batch size of 32, a total of 30 epochs, and a learning rate of 0.0001. Specifically
our model employs sizes as following: 2 layers of RNN context encoder, 2 layers of RNN question
encoder, and a query self-attention hidden size of 300. In our 4b training data, 1196 out of 63640
words are out-of-vocabulary (OOV) (1.8793%), while 2095 out of 95793 words are OOV (2.1870%)
in our 5b training data. Figure 7 in Appendix 8.5 demonstrates a successful implementation of
BioBERT-SDNet model with loss convergence on the validation datasets over 30 epochs.

4.4 Results

The default baseline achieved an average strict accuracy of 0.14 over the BioASQ5b test sets, slightly
surpassing the BioASQ5b-baseline strict accuracy of 0.13, and an average F; score of 16.12. Detailed
results on the default baseline evaluated on BioASQ5b test sets are shown in Table 1. We also tested
the baseline model with biomedical embeddings on the SQuAD dataset and achieved an F score of
78.02 and an exact match score of 68.40 on the dev set.

Test Sets 1 2 3 4 5 Average
F1 (all) 9.21 21.30 2344 1444 1222 16.12
SAcc 0.21 0.17 0.4 0.08 0.10 0.14

Table 1: Results of the default baseline model evaluated on BioASQ5b test sets.



Our BioBERT model achieved an average strict accuracy (SAcc), lenient accuracy (LAcc), and mean
reciprocal rank (MRR) of 0.15, 0.25, and 0.19 on BioASQ4b challenge, outperforming the published
BioASQ4b-baselines for factoid questions which were 0.07, 0.16, and 0.11 respectively. For BioASQ5b,
we obtained an average SAcc, LAcc, and MRR of 0.26, 0.40, and 0.31 which were better than those
of the published BioASQ5b-baslines, 0.13, 0.27, and 0.19 respectively.

Metrics Test Sets Avg
4bl 4b2 4b3 4b4 4b5 5bl 5b2 5b3 5b4 5b5 4b 5b
SAcc 0.15 0.06 0.12 0.2 0.12 0.28 0.23 042 0.18 0.2 0.15 0.26
LAcc 031 0.26 0.19 0.32 0.18 044 035 0.5 0.33 0.37 0.25 0.40
MRR 0.21 0.13 0.14 031 014 034 027 046 023 0.26 0.19 0.31

Table 2: Results of BioBERT testing evaluated on BioASQ4b/5b test sets for factoid questions. SAcc,
LAcc, and MRR are reported.

To evaluate our BioBERT-SDNet, we also trained on CoQA data and evaluated on the CoQA dev
set. The resulting F} scores were calculated and categorized by domain names in Table 3. Our
BioBERT-SDNet model achieved an average strict accuracy (SAcc), lenient accuracy (LAcc), and
mean reciprocal rank (MRR) of 0.13, 0.20, and 0.16 on BioASQ4b challenge, outperforming the
published BioASQ4b-baselines for factoid questions. For BioASQ5b, we obtained an average SAcc,
LAcc, and MRR of 0.18, 0.24, and 0.19 which were also above the published BioASQ5b-baslines. F}
scores of all the tests were calculated for measuring both the Fj score of the entire test set and the
Iy score of the test set members with at least a partial match, as shown in Tables 5 and 6.

. , . .
Chlldr:en S Literature Mid/high News Wikipedia Overall
stories school
BioBERT-SDNet 72.0 66.5 67.7 71.3 75.4 70.5
BERT-SDNet 75.4 73.9 77.1 80.3 83.1 78.0

Table 3: Fj scores of our BioBERT-SDNet predictions on CoQA dataset, compared against the
results for single model SDNet with BERT as published in [I].

Metrics Test Sets Avg
4bl 4b2 4b3 4b4 4b5 5bl 5b2 5b3 5b4 5b5 4b 5b
SAcc 0.10 0.13 0.04 026 0.12 0.28 0.19 0.19 0.09 0.14 0.13 0.18
LAcc 0.15 0.16 0.14 0.34 0.18 0.35 0.23 025 0.16 0.20 0.20 0.24
MRR 0.12 0.13 0.11 030 0.16 0.31 0.19 020 0.12 0.13 0.16 0.19

Table 4: Results of BioBERT-SDNet testing evaluated on BioASQ4b/5b test sets for factoid questions.
SAcc, LAcc, and MRR are reported.

Metrics Test Sets Avg
4bl 4b2 4b3 4b4 4b5 5bl 5b2 5b3 5b4 5b5 4b 5b
Fy all 349 719 160 359 230 39.1 371 50.7 274 328 234 374

Fy partial 71.7 55.7 69.2 79.6 652 699 719 776 753 675 68.3 724

Table 5: F scores of BioBERT predictions evaluated on BioASQ4b/5b test sets.

Metrics Test Sets Avg
4bl 4b2 4b3 4b4 4b5 5bl 5b2 5b3 5b4 5b5 4b 5b
Fy all 220 241 132 286 214 399 32.7 39.0 27.8 30.6 21.9 34.0

Fy partial 61.3 49.8 573 806 60.8 712 633 633 612 715 61.9 66.1

Table 6: F} scores of BioBERT-SDNet predictions evaluated on BioASQ4b/5b test sets.



5 Analysis

Model comparison. Both the BioBERT and the BioBERT-SDNet models outperformed the
published baselines. BioBERT produced average F; scores of 23.4 and 37.4 on the BioASQ4b and
BioASQ5b test sets respectively, while BioBERT-SDNet produced average F} scores of 21.9 and 34.0.
In general, the BioBERT model outperformed the BioBERT-SDNet model on every quantitative
metric. It may be the case that SDNet as designed is primarily beneficial to conversational QA in
which previous questions and answers play an important role in context. However, the individual
methods that SDNet incorporates intuitively seem to be desirable for the task. In particular, the
feature vector that SDNet utilizes includes a part-of-speech embedding, a named entity recognition
embedding, an exact matching vector, and a normalized term frequency vector, all aspects that have
been common to many of the most successful BioASQ challenge models in the past.

Upon performing additional studies on the model outputs, we found that the distinction in quality
was not so clear. BioBERT produced answers that completely deviated from the golden answers
48.57% of the time, while BloBERT-SDNet produced answers with zero alighment for only 42.86% of
the questions. Furthermore, in many cases, BlioBERT-SDNet answers were qualitatively preferable.
We compared the answers generated by the two models and observed that while BloBERT generally
produced answers that were lexically similar to the golden answers, oftentimes these responses
were not semantically appropriate or syntactically complete. In contrast, BlioBERT-SDNet more
consistently yielded answers that, even if incorrect, fit well with the question and golden answer
structure. We provide question/answer examples in the appendix 8.5 that illustrate these distinctions.
This qualitative difference observed might be the result of the inclusion of the feature vector in the
model which helps ensure that the output answer has the desired part of speech and named entity
status. As SDNet is a complex architecture with many internal mechanisms, an ablative study testing
these various mechanisms on non-conversational QA tasks could help determine which part or parts
of the model are perhaps better suited to conversational QA and may be removed from the model,
and which provide the qualitative improvements mentioned here.

Limitations within the dataset. We note that both the BioBERT and BioBERT-SDNet models
perform worse on BioASQ4b than 5b. The difference in training data size is a likely culprit. It is
notable that when testing the default baseline model on SQuAD challenge data, the F} is much higher
than the Fy score achieved on the BioASQ test sets with the same model. Since the question/answer
structure between SQuAD and BioASQ is very similar, it is likely that this difference in performance
results from the small training size for BioASQ data rather than any fundamental difference in model
applicability between the two tasks. As observed in past leaderboard results, neural models generally
have not performed as well on BioASQ as rule-based models, and this is likely due in large part to
the increased dependency neural models have on training data over rule-based models. In lieu of an
expansion of the BioASQ challenge training data, pre-training on a similar dataset such as SQuAD
may help alleviate this problem.

6 Conclusion

We have achieved competitive results on biomedical question answering tasks with our implementation
of a combined BioBERT-SDNet model. In comparing with the recently published BioBERT, we found
that while BloBERT-SDNet does not perform quite as well quantitatively, it offers some significant
qualitative improvements in answer generation that mark it as a promising area for future study. It
is particularly noteworthy that the model was able to achieve competitive results while training only
on very small datasets. Though beyond the scope of this effort, pre-training on large datasets such as
SQuAD has yielded large performance gains for similar models in the literature (e.g. [2]). Therefore,
an immediate next step in improving our model would be to conduct pre-training. BioASQ recently
released the training data for the 2019 challenge, and we will test our model on this new dataset, the
largest yet. After pre-training on SQuAD and experimenting further with parameter tuning, we will
submit to the challenge to compare against state-of-the-art models. We expect that with this further
work, the model can be a powerful tool for biomedical question answering in practice.
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8 Appendix

8.1 Generating model outputs for factoid questions

We generate predicted answer span by computing the probability p; that the answer span should
start at the ¢th context word:

p? = softmax ((uQ)TWSuiC)

where Wy is a parametrized matrix. We apply a GRU to obtain

m
t? = GRU <uQ, > Pfuf )

i=1
and from this compute the probability p¥ that the answer span should end at the ith context word:
pP = softmax ((t?)"Wxuf')

where W g is another parametrized matrix. We return the five highest probability spans as per the
BioASQ challenge.

8.2 BioASQ to CoQA conversion example

BioASQ format

{"question":
"What is the inheritance pattern of Li\u2013Fraumeni syndrome?",
"answers": [{"text": "autosomal dominant", "answer_start": 474}]}

BioASQ in CoQA format

"questions": [

{

"input_text":

"What is the inheritance pattern of Li\u2013Fraumeni syndrome?",
"turn_id": 1

X

] s

"answers": [

{

"input_text": "autosomal dominant",

"span_text": "autosomal dominant pattern of inheritance. Familial co",

"span_start": 474,
"span_end": 528,
"turn_id": 1

3
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8.3 Context-answer mismatching

Examples of question-answer pairs that have context answer mismatches, as shown in Figure 3-6.
We define mismatch types including (1) misspellings, (2) non-standardized spellings, (3) word order
mismatch, (4) formatting mismatch, (5) inference required, and (6) unsuitable answer provided due

to over-abstraction.

Question

Which signaling pathway does sonidegib inhibit?

Golden
answer

Hedghog signalling pathway

Appears in
context as

Hedgehog pathway signaling and hedgehog signalling

Mismatch
type

Mismatch type (1) — misspelling of “hedgehog” as “hedgehog”
Mismatch type (2) — non-standardized spelling of “signaling”
(American English) and “signalling” (British English)

Mismatch type (3) — word order mismatch between “pathway
signalling” and “signalling pathway”

Fix

Redefine golden answer as “Hedgehog pathway signaling”

Figure 3: Example question from the BioASQ7b training dataset demonstrating context-answer
mismatching resulting in infeasibility for extractive QA. This example, and others like it, was corrected
by hand and added back to the training set.

Question

What is the meaning of the acronym "TAILS" used in protein N-
terminomics?

Golden
answer

TAILS: Terminal Amine Isotopic Labeling of Substrate

Appears in
context as

terminal amine isotopic labeling of substrates (TAILS) and Terminal
Amine Isotopic Labeling of Substrates (TAILS)

Mismatch
type

Mismatch type (4) — trivial formatting mismatch between acronym
definitions

Fix

Redefine golden answer to “Terminal Amine Isotopic Labeling of
Substrates (TAILS)”

Figure 4: Example question from the BioASQ7b training dataset demonstrating context-answer
mismatching due to formatting inconsistencies resulting in infeasibility for extractive QA. This
example, and others like it, was corrected by hand and added back to the training set.
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Question How many clinical trials for off-label drugs in neonates are cited in the
literature?

Golden none
answer

Appears in | Of the 17 Paediatric Investigation Plans submitted, 14 have resulted in
context as an EMA Decision, 3 were withdrawn by the applicants, 8 were granted
a full waiver from development, and 1 resulted in a negative opinion.
Decisions as issued included 15 clinical trials, with at least 1,282
children to be recruited into studies across five different products.
Neonates were included in four of the products. CONCLUSIONS: The
small number of submissions indicates a lack of new drugs being
developed for the management of pain. Ethical concerns that too
many vulnerable children will be recruited into clinical trials must be
balanced against limiting the number of off-label prescribing and
obtaining age-appropriate information on paediatric use.

Mismatch Mismatch type (5) — inference required
type
Fix Cut from training set

Figure 5: Example question from the BioASQ7b training dataset demonstrating context-answer
mismatching resulting in infeasibility for extractive QA as inference is required. This example, and
others like it, was cut from the training set.

Question What is the genetic basis of Rubinstein-Taybi syndrome?
Golden Mutations or/and deletions in the genes of the cAMP-response
answer element binding protein-BP (CREBBP) (50-60% of the cases) and of the

homologous gene E1A-binding protein (EP300) at 22913 (5%).

Appears in | Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in
context as both the CBP and EP300 genes cause disease. And Mutations in the
CREBBP (CREB-binding protein gene) cause Rubinstein-Taybi syndrome
(RSTS) and CREBBP mutations were identified in 12 of the 21 patients

Mismatch Mismatch type (6) — unsuitable answer provided due to abstraction;
type note that calculations are required and response is a full sentence not
taken from the context

Fix Cut from training dataset

Figure 6: Example question from the BioASQ7b training dataset demonstrating context-answer
mismatching resulting in infeasibility for extractive QA as the golden answer provided requires
significant abstraction. This example, and others like it, was cut from the training set.

8.4 Qualitative analysis of predictions

Question 1: Where are Paneth cells located?

Golden: in the intestinal crypt base columnar cells

BioBERT-SDNet: Intestinal stem cells

BioBERT: The intestinal epithelium is a classic example of a rapidly self-renewing tissue
fueled by dedicated resident stem cells.

Question 2: Which disease is treated with Eliglustat?
Golden: Gaucher’s disease type 1
BioBERT-SDNet: Gaucher’s disease type 1
BioBERT: glucosylceramide synthase

We notice that even though answers provided by BioBERT-SDNet did not match exactly with the
golden answer in Question 1, the answer does capture the information included in the golden answer,
and moreover is semantically and syntactically appropriate. In contrast, the output of BioBERT
does not make sense though it is lexically similar to the golden answer and has significant overlap in
word content. In Question 2, BioBERT-SDNet output an exact match to the golden answer while
BioBERT yielded a clearly wrong answer. We have found that BioBERT-SDNet usually produces
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exact match when the golden answers are short, and captures partially the golden answer when the
ideal answer is long.

8.5 SDNet loss

Loss converging over 30 epochs for BioASQ 4b and 5b challenges.

8 Experiment
. # BioASG-4b
BioASQ-5b
7 L
L)

Dev Set Loss

T T T T T T T T
0 3 6 9 12 15 18 il 24 2T
Number of Epochs

Figure 7: BioBERT-SDNet Loss on BioASQ dev sets over training epochs.

8.6 Further results reference tables

Test 1 Test 2 Test 3 Test 4 Test 5
S L M| S L M| S L M| S L M| S L M
BioASQ baseline [0.10 0.15 0.12|0.06 0.16 0.11(0.12 0.19 0.14/0.03 0.19 0.08[/0.06 0.12 0.08

OAQA - - - - - - 10.23 0.27 0.24(0.29 0.39 0.33/0.21 0.29 0.29
LabZhu - - - [0.19 0.26 0.23/0.19 0.27 0.22|0.10 0.19 0.14|0.18 0.33 0.25
BioBERT 0.15 0.31 0.21{0.06 0.26 0.13(0.12 0.19 0.14|0.29 0.32 0.31{0.12 0.18 0.14
SDNet 0.10 0.15 0.12(0.13 0.16 0.13|/0.04 0.14 0.22|0.26 0.34 0.30|/0.12 0.18 0.15

Table 7: Results evaluated on BioASQ4b test sets for factoid questions. Strict accuracy S, lenient
accuracy L, and mean reciprocal rank M are reported. Results can be accessed at the BioASQ
webpageﬂ

Test 1 Test 2 Test 3 Test 4 Test 5
S L M| S L M| S L M S L M| S L M
BioASQ Baseline [0.28 0.40 0.33|0.16 0.35 0.22{0.11 0.27 0.19({0.03 0.12 0.07(0.06 0.20 0.12
DeepQA Ensemble [0.56 0.68 0.60|0.38 0.52 0.44|0.31 0.62 0.42]0.33 0.55 0.42(/0.26 0.51 0.35

LabZhu 0.40 0.44 0.42(0.32 0.48 0.38(0.35 0.42 0.38/0.27 0.45 0.35/0.40 0.51 0.45
Default Baseline 0.21 - - 10.17 - - 10.14 - - 10.08 - - |0.10 - -

BioBERT 0.28 0.44 0.34(0.23 0.35 0.27|0.42 0.50 0.46/0.18 0.33 0.23|0.20 0.37 0.26
SDNet 0.28 0.35 0.31(0.19 0.23 0.19(/0.19 0.25 0.20/0.09 0.16 0.12]/0.14 0.20 0.13

Table 8: Results evaluated on BioASQ5b test sets for factoid questions. Strict accuracy S, lenient
accuracy L, and mean reciprocal rank M are reported. Results can be accessed at the BioASQ
webpageﬂ
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