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Abstract

The Transformer forms the basis for almost all state-of-the-art pre-trained models in
natural language processing but is composed of hundreds of millions of parameters,
making the memory costs of their deployment inhibitory. To confront this, we
apply a variety of compression techniques to the Transformer architecture. We
explore two different quantization methods – a k-means approach as derived in
Han et. al [8] and our own modified version of binarization based on Lam [23] –
and implement iterative magnitude pruning. We are, to the best of our knowledge,
the first to apply quantization methods to the Transformer architecture and the
first to compare quantization and pruning on the Transformer architecture. We
evaluate on the WMT English to German dataset, and, using solely K-means
quantization, we are able to compress the Transformer by a factor of 5.85 while
retaining 98.43% of the performance. If we allow performance to degrade to 90%,
we show we can compress the Transformer by a factor of 10.02. In addition, we
find our proposed quantization method is both significantly faster and gives equal or
better performance at the same compression level. Finally, we apply both K-means
1-bit quantization and our proposed binarization scheme to only the self-attention
portions of the model in order to better understand the effects of compression on
self-attention. We show self-attention layers are highly resistant to quantization,
producing almost identical distributions even when constraining the weights to be
one of 16 values (4 bit compression).

1 Introduction

Historically, computer vision has seen great success in using pre-trained feature extractors like
ResNets [9] or DenseNets [12] to improve performance and generalizability. We now face a similar
point in natural language processing in which pre-trained language models can provide significant
performance benefits on almost every NLP inference task. Unfortunately, these models are incredibly
large, greatly prohibiting their wide usage – it is actually impossible to fine-tune the best performing
pre-trained model, BERT-large, using the original settings, on a GPU with 12-16 gigabytes of
memory[20]. This poses a large barrier of entry for communities without the resources to purchase
either several large GPUs or time on Google’s TPUs.

At the same time, however, work in quantization has shown overly parameterized models can be
significantly compressed without loss of performance. Han et al. showed in 2016 state of the art
vision models like AlexNet and VGG-Net could be reduced to below 5% of their size without loss of
accuracy, illustrating a way to significantly reduce computation and memory costs when using these
large models as a pre-trained feature extractor [7].



Thus, we aim to apply these model compression techniques to the relatively new Transformer
architecture. We choose to focus on the Transformer architecture because it has, to the best of
our knowledge, only received limited attention in the compression domain and almost every large
pre-trained network relies on components of the Transformer architecture [20, 28].

Though the Transformer is composed almost entirely of linear layers which have been shown to be
amiable to deep compression [7], we note Transformers rely on a self-attention mechanism that may
be disrupted by model compression. In particular, as far as we are aware, no work has yet studied how
quantization affects these layers and the Transformer architecture as a whole. Thus, our contributions
are as follows:

• We implement the k-means algorithm derived in [7] and show weights in the linear layers of
the Transformer can be compressed into 4 bit representations, achieving an overall 5.85x
compression ratio while maintaining 98.43% of performance.

• We also implement a modified version of the binarization algorithm used in [11, 22] and
show our method does just as well as or better than k-means compression in producing
binarized weights while being significantly faster.

• We implement iterative magnitude pruning as derived in [8] and are able to remove 50% of
the weights and retain 93.98% of the BLEU score. In addition, we compare the performances
of quantization and pruning.

• We give visualizations of the self-attention distributions post-compression and show com-
pressed models produce almost exactly the same distributions. In addition, we show that, as
compression increases, the model produces sharper, more-defined distributions – brighter
areas, suggesting a distillation of the representations.

In all, we cover and apply several methods of model compression and show the potential for highly
compressed Transformers.

2 Related Works

2.1 Quantization

The quantization literature is extensive, though only in recent years has there been application to
neural machine translation. Gong et. al reviewed a broad array of techniques for quantizing models
post-training, including matrix factorization, vector factorization, scalar quantization via k-means,
and structured quantization using product or residual quantization. They found simple k-means scalar
quantization outperformed vector and matrix factorization methods, though improvements could be
made using product quantization as well [4].

In addition to quantizing models post-training, many methods exist to train pre-quantized models
from scratch. Courbariaux et. al and Rastegari et. al introduced methodologies of training neural
networks using only binary weights matching the performance of several top models on MNIST,
CIFAR-10, and SVHN [6, 11, 14]. Li et. al extended the approach to ternary networks which use one
of three values, -1, 0, 1, and attempt to minimize the Euclidean distance between the original and
ternary weights [13].

Recent work on quantizing neural machine translation models has focused on increasing the speed of
the models to the point where they can be run on CPUs, primarily using 8 and 16 bit quantization [24,
16]. Though some work exists in compressing other NMT models using quantization [21, 25], as far
as we are aware, no form of quantization has been directly applied to the Transformer architecture.

2.2 Pruning

The literature of pruning over-parameterized models is also extensively well studied. Le Cun et. al
introduced the concept of removing connections based on some measure of model complexity [1].
Hassabi et. al later showed retraining the model can lead to worse generalization performance since,
as the retraining process continues, important weights can incorrectly be removed [2]. Unfortunately,
these methods are computationally prohibitive as second derivative computations are expensive.
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Thus, Han et. al introduced a more computationally feasible method for pruning connections and
relearning weights based solely on the magnitude of the original weights, compressing VGG-16 to
less than a tenth of its original size and without loss of accuracy on the ImageNet dataset [8, 3, 5].
Later, Han et. al combined iterative magnitude pruning and k-means quantization and showed the two
are actually complementary to each other, producing compression rates far larger than what either
can do individually [7]. Likewise, Zafrir et. al applied pruning and integer quantization to an LSTM
model and showed a compression rate of 10x with a drop in BLEU score of 2.3 [21].

In recent years, pruning has also been applied to neural machine translation. See at al. pruned LSTMs
and experimented with pruning specific layers differently, finding that, surprisingly, class-blind
pruning performed best, removing 80% of the connections and suffering no loss in BLEU score [15].
Recently, Gale et. al applied iterative magnitude pruning to the Transformer architecture and found
90% of the weights could be removed while only suffering a drop of 2 in BLEU score, performing at
least as well as more complex methods of pruning such as l0 regularization and variational dropout
[27].

2.3 Knowledge Distillation

Finally, other means of compression such as knowledge distillation show impressive performances as
well. Hinton et. al use the logits of a larger pre-trained model to efficiently train a much smaller model
to the same performance [10]. In comparison to quantization and pruning, knowledge distillation
significantly changes the model architecture and allows the model to be represented much more
compactly. Specific to neural machine translation, Chia et. al are able to compress the Transformer
architecture into a small convolution architecture, achieving a 39x reduction in parameter count [19].
Likewise, Senellart et. al are able to distill the Transformer architecture into a small RNN with a 10x
reduction in parameter count and a loss in BLEU score of 2 [26].

3 Approach / Methods

We begin by giving a brief description of the compression task. Given a model M and a task T, we’d
like to derive a model M’ which has fewer parameters than M but achieves the same performance on
task T. In this paper, the task T is English to German sentence translation and our model M is the
Transformer architecture.

3.1 Quantization

3.1.1 K - Means Quantization

Algorithm 1 K-Means Quantization
1: procedure QUANTIZE(w, c) . The original weight and the number of centroids
2: Initialize centroids to be c linearly spaced values between max(w),min(w)
3: centroids = K −Means(w, centroids)
4: Initialize qw to be the same shape as w . The quantized representation of w
5: for wi in w do
6: qi = closest(centroids, wi) . Assigns qi to the index of the closest centroid
7: return q, centroids

We use the same implementation of k-means quantization as in Han et. al [7]. Specifically, we
replace each weight with a corresponding centroid index and keep a table mapping centroid index to
centroid value. After performing algorithm 1, we then fine-tune the centroid locations by re-training
the model and backpropagating through the centroids. For the forward pass, the index stored for
each connection is mapped to a centroid which is then used as the weight. For back-propagation, the
gradient with respect to a centroid is defined as the sum of the gradients of each of the weights in
the cluster. Thus a quantized layer contains only integer indices and a look up table for the centroid
values. We refer readers to [8] for visual illustrations. As another point of detail, we use linear
initialization, which was found in Han et al. [7] to outperform other methods. Linear initialization
produces centroids that fit well to large outliers which are arguably more important to the model’s
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performance in comparison to other methods. It does so by equally spacing the initial centroids
between the minimum and maximum weights.

3.1.2 Modified Binarization

We first introduce the binarization scheme used in [23] that was motivated by [11]. For clarity, we’ll
call this Binary Scheme Fixed (BS-Fixed) . As an alternative to k-means quantization, BS-Fixed
stores the original weights and during the forward pass replaces the values with a masked value of c1
or c2, where c1 and c2 are fixed and chosen with hyperparameter tuning. Specifically, if w represents
our weight matrix, then we replace w with wbin where

wbin,ij =

{
c1 if wij > 0

c2 if wij <= 0
(1)

While this requires us to keep the full precision weights during training, at the end of training, we
can replace the weights with the index of its masked value, thus creating binary representations of
the weights. Furthermore, contrary to the k-means approach, this allows weights to be assigned to
different centroids in each iteration, giving the model more flexibility.

We note, however, that choosing the values of c1 and c2 can be difficult and time-consuming. Thus,
we extend this approach by initializing the values of c1 and c2 in the same way as in Algorithm 1.
Specifically, we initialize c1 and c2 by running k-means with two centroids over the weights, and then
update c1 and c2 using back-propagation, where the gradient is as defined as in k-means quantization.
In addition, rather than setting the values based on the sign of the weight, we instead set the values
based on whether the weight is greater than the average of c1, c2:

wbin,ij =

{
c1 if wij >

c1+c2
2

c2 if wij ≤ c1+c2
2

(2)

These changes eliminate the need for hyperparameter tuning and allow the model to adjust the
locations of c1, c2 as necessary. We refer to this as Binary Scheme Flexible or BS-Flexible for short.

3.2 Pruning

We also implement iterative magnitude as described in Han et. al [8]. Iterative magnitude pruning is
the process of masking out weights with less than a certain magnitude and retraining the remaining
weights. We give a more formal definition in Algorithm 2. We then select the best pruned model based
on the performance on a held-out validation set or until a certain percentage of weights have been
pruned. Magnitude-based pruning tends to be extremely effective in compressing models because
weights with small magnitudes are intuitively less important in performing the target task. Thus,
removing these weights by setting them to zero should not affect performance greatly.

Algorithm 2 Iterative Magnitude Pruning
1: procedure PRUNE(M, threshold, dataset,maxiters)
2: M = learn(M,dataset) . Learn the model on the dataset
3: for 1 : max_iter do
4: for layer in M do
5: for weight in layer do
6: if |weight| < threshold then
7: weight = 0

8: M = learn(M,dataset) . The model now has zero-ed weights.
9: return M
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4 Experiments

4.1 Dataset

We train and evaluate on the WMT English - German translation task. Specifically, we train on all
of Europarl, Common Crawl, and News Commentary, validate on the WMT2014 test set, and test
on the WMT2017 test set. In total, we have approximately 4.5 million sentences to train on and
approximately 3000 sentences to validate and test on. We use a vocabulary size of 32,538. The
dataset is available for download here: http://www.statmt.org/wmt14/translation-task.
html, though the OpenNMT system also gives a pre-processed version here: https://github.
com/OpenNMT/OpenNMT-tf/blob/master/scripts/wmt/prepare_data.sh which we use in
this paper.

4.2 Evaluation Method

To evaluated our compressed Transformers, we compare the compression ratio with the resulting
BLEU score, which is the standard metric for evaluation of machine translations.

We can calculate the compression ratio as follows. Given n weights, b bits to represent a float, and c
clusters, the compression rate r for a layer is given by the equation from Han et al. [7]:

r =
nb

n log(c) + c ∗ b
(3)

The numerator represents the initial cost of storing the weights (n connections times b bits per
connection for the weights), and the denominator represents the quantized cost (n connections times
log(c) bits to store each cluster index, and k clusters times b bits per centroid weight).

To calculate compression for quantization, we modify the equation (3) slightly; we multiply the c ∗ b
term in the denominator by the layer count l, as we store a lookup table of size c ∗ b for each layer
l that we compress. This gives us an accurate estimation of the compression on the layers that we
quantized. We then multiply this by the proportion of the parameters that were actually quantized,
which is all of the linear layer parameters except the generator layer.

To calculate compression for pruning, we simply take the inverse of the proportion of remaining
parameters. For example, for 80% pruning on a layer, there are 20% parameters remaining, yielding
1
0.2 = 5x compression. This is then multiplied by the proportion of the parameters pruned. We
pruned all of the linear layer weights, including the generator layer.

We note that we also factor into our compression ratio layer normalization, which was not compressed
in either pruning or quantization but is an imperceptibly small portion of the model. We do not factor
in word embeddings, whose compression is outside of the scope of this paper but has been explored
[23], and whose compression would not illuminate anything about the Transformer model.

4.3 Experimental Details

We evaluate our quantization technique on the Transformer architecture described in Vaswani et al.
[18] and implemented in OpenNMT. We train each experiment on either a GeForce GTX 1080 Ti or
a NVIDIA Tesla M60. We use a batch size of 256 and aggregate gradients across two batches. We
use linear initialization of centroids for the quantized layers. We quantize the layer weights based
on the number of bits of the experiment, but we fix the quantization of the bias at 8-bit, which we
factor in to our compression calculations. We re-trained the models with quantized layers for 10k
iterations which, depending on the method, can take anywhere between 2 to 48 hours. We used a
learning rate scheduler that conducted a linear warm-up to 1 over 100 iterations. The remainder of
the hyperparameters are kept the same as the ones enumerated by OpenNMT to emulate the Vaswani
et al. [18] Transformer. These hyperparameters were chosen based on the initial loss curves, but were
not tuned for each individual model.

In addition, we quantize every linear layer except the generator module of the Transformer, which in
the OpenNMT implementation is a linear layer with in_features = 512 and out_features = 31538.
We found quantizing this layer resulted in dramatic decreases in performance, likely because the ratio
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of parameters to centroids is much smaller than in other layers for a fixed centroid size. To keep
the ratio fixed, we’d have to manually adjust the number of centroids for the generator. In addition,
k-means over 15,000,000 weights takes an extraordinarily long time. Thus, for simplicity, in this
work, we chose not to quantize the generator.

For our pruning experiments, we use the same hardware and hyperparameters. For starting proportion
X% and ending proportion Y%, our iterative magnitude pruning procedure pruned X% of each of the
pre-trained Transformer layers, began re-training, and pruned (Y−X)

9 % of each of the layers every
1001 iterations. Thus, by the 10,000th iteration, we reached Y% pruning of the model iteratively.

4.4 Results

Table 1: WMT 2017 Test set BLEU and Compression Ratio

Model BLEU % Performance Compression

Baseline model 28.09 100% 1x
K-Means 8-bit quantization 27.38 97.47% 2.92x
K-Means 4-bit quantization 27.65 98.43% 5.85x
K-Means 2-bit quantization 24.94 88.78% 11.69x
K-Means 1-bit quantization 12.07 42.96% 23.37x
BS-Fixed 11.61 41.33% 23.37x
BS-Flexible 12.11 43.11% 23.37x

K-Means 1-bit att-quantization 24.96 88.85% 10.02x
BS-Flexible 1-bit att-quantization 25.54 90.92% 10.02x

Pruned 30% −→ 50% 26.40 93.98% 2x
Pruned 50% −→ 80% 25.02 89.07% 5x
Pruned 50% −→ 90% 9.21 32.79% 10x

We give the BLEU score versus compression results on the 2017 WMT English to German test set for
our compression methods in Table 1. Note that the BS-Fixed and BS-Flexible methods are equal in
compression to 1-bit quantization. 1-bit att-quantization refers to quantizing solely the self-attention
portions of the Transformer.

Figure 1: Attention distributions from the last layer of the decoder over the encoder hidden states.
From left to right, the distribution of: the original model, the 8-bit k-means model, the 4-bit k-means
model, and the model after Binary Scheme Flexible was applied to only the attention layers.

4.4.1 Quantitative Analysis

We’re happily surprised by our results – we find that the Transformer architecture is highly resistant
to quantization, and are, in essence, able to match the original model up to a 4-bit representation. We
were also surprised quantization worked well with our relatively arbitrary choice of hyperparameters,
indicating that this method may be robust to hyperparameter initialization. We also saw Binary
Scheme Flexible outperform 1-bit k-means in both pure 1-bit compression and quantizing only the
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Figure 2: Self-attention distributions over the first layer in the encoder portion of the Transformer.
From top to bottom, the distribution of: the original model, the 8-bit k-means model, the 4-bit
k-means model, and the model after Binary Scheme Flexible was applied to only the attention layers
layers.
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attention layers, suggesting not tying the weights to particular centroids improves performance, and
outperform Binary Scheme Fixed, indicating learning the values to be a superior method. Furthermore,
due to PyTorch indexing procedures, we found our Binary Scheme Flexible to be more than 10x
faster the 1-bit k-means procedure, which requires iterating through and replacing all weights.

We were surprised pruning did so much worse than quantization and were unable to replicate the
results in Gale et al. in which 90% of the weights were pruned while maintaining approximately
90% of the performance [27]. We believe the discrepancy is due to a lack of hyperparameter tuning.
Pruning has two more adjustable components – number of iterations before repruning and starting
percentage pruned – that seem likely to heavily affect results.

We are also quite surprised to find that, after binarizing only the attention layers, we are still able to
recover 90% of the model’s performance. We give a deeper qualitative insight below.

4.4.2 Qualitative Analysis

To better understand the effects of quantization on the model, we show the self-attention distributions
before and after compression for three different quantization levels: 8 Bit K-Means, 4 Bit K-Means,
and BS-Flexible applied to only the attention layers. We note some interesting trends.

In the last attention layer of the decoder over the encoder hidden states, the attention distribution
of the original, 8-bit, and 4-bit model are highly similar (see Figure 1), indicating 4 bit weights,
i.e weights that take on one of 16 values, is enough to get the full effects of attention. Even the
BS-Flexible attention model produces reasonable attention distributions. In addition, the 4-bit model
arguably produces a slightly sharper version of the attention distributions from the 8-bit and original
model – there are less faded squares and more squares with bright colors. We interpret this behavior
as a kind of purification process in which the representations are forced to contain only the most
relevant signals when highly compressed.

We also analyzed the attention distributions in the encoder layers of the Transformer (see Figure 2
and also Figures 3, 4 in the Appendix), and were shocked to find the original, 8-bit, and 4-bit models
are almost indistinguishable from one another. This again highlights the idea that self-attention is
highly resistant to quantization and could be heavily compressed. In addition, we see the BS-Flexible
model is reasonably close to the original as well.

5 Conclusion

In this work, we apply and evaluate a variety of techniques for the compression of the Transformer.
We are the first to utilize quantization techniques on the Transformer, and we compare the results from
both the K-means quantization established in the literature and our modified binarization schemes to
iterative magnitude pruning. We find that significant compression of the Transformer can be achieved
with minimal performance loss. Additionally, we find that the application of our binarization scheme
to every self-attention portion of the encoder and the decoder achieves almost 91% of the performance
of the uncompressed Transformer, despite limiting values in the self-attention matrices to only two
options. We produce self-attention visualizations that illustrate that even 4-bit quantization maintains
nearly identical self-attention distributions despite the constraints on the values, though we were
unable to conduct human comparisons on the translation quality as we do not speak German.

We note that unlike Han et al. [7], we did not combine pruning and quantization for greater gains in
compression. However, the fairly steep performance drop for pruning suggest the combination of the
two might not have been as effective for our Transformer experiments. On that note, we were not
able to conduct significant hyperparameter tuning due to time and computational resources; this most
likely explains the worse performance of pruning in our experiments than in [27]. Additionally, we
do not apply quantization to the larger generator layer due to performance challenges; pruning the
generator and then quantizing may address the large number of weights in this layer. Finally, we do
not extend our flexible or fixed binarization schemes to more than 1-bit quantization, but we believe
our method is likely to outperform k-means quantization based on our results.

Our contributions demonstrate the potential for significant compression of state-of-the-art NLP
models, which would allow for more accessibility in their deployment; in the pursuit of this goal, we
open-source our PyTorch code on a repository forked from OpenNMT at https://github.com/
robeld/ERNIE.
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7 Appendix

7.1 Additional Self-Attention Visualizations
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Figure 3: Self-attention distributions over the third layer in the encoder portion of the Transformer.
From top to bottom, the distribution of: the original model, the 8-bit k-means model, the 4-bit
k-means model, and the model after Binary Scheme Flexible was applied to only the attention layers
layers. Again we see the distributions are almost identical even for 4-bit quantization.
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Figure 4: Self-attention distributions over the fifth layer in the encoder portion of the Transformer.
From top to bottom, the distribution of: the original model, the 8-bit k-means model, the 4-bit
k-means model, and the model after Binary Scheme Flexible was applied to only the attention layers
layers.
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