
Faster Transformers for Document Summarization

Dian Ang Yap
Electrical Engineering

Stanford University
dayap@stanford.edu

Vineet Kosaraju
Computer Science

Stanford University
vineetk@stanford.edu

Zaid Nabulsi
Computer Science

Stanford University
znabulsi@stanford.edu

Abstract

The field of sequence transduction has been dominated by complex networks with
an encoder/decoder structure. In recent years, the best performing models for
various tasks, such as text summarization and machine translation, have included
an attention mechanism. The current state of the art is obtained by transformers
(19), but these models are inefficient and intractable with long inputs. In this
paper, we aim to experiment with design architectural improvements to attentions
in thee encoder that improves performance in long inputs but also able to achieve
results comparable to the state of the art. We introduce two novel architectural
changes: a multi-head compressed attention module that groups words using
convolutions, and a strided neighborhood attention that relaxes and reduces long
term dependencies. We then apply these models to large document summarization
and show empirically a speedup of 5.5% in training and 6.8% in inference time,
while obtaining better ROUGE-2 precision and F1 scores, suggesting that our
architectures may be successfully applied to other language understanding tasks.

1 Introduction

In recent years, there have been several successful innovations with neural networks that have im-
proved the field of natural language processing. Chief of these innovations are recurrent architectures,
such as RNNs (6), which allow for multi-word sequence encodings, and attention mechanisms (19),
which improve the accuracy of these recurrent systems. The main drawback of recurrent systems is
that they require sequential processing of the input. Transformers aimed to mitigate this limitation of
RNNs by replacing the recurrent networks with feedforward layers. Transformers have become highly
successful on a wide variety of tasks such as machine translation (19), document summarization
(9), language modeling (14), and question answering (4). However, the main drawback with trans-
formers is that their attention layers serve as bottlenecks. Specifically, the attention of transformers
is quadratic in performance with respect to the input length: O(len(seq)2). Thus, this motivates us
to design architectural improvements to transformers for more efficient training, while maintaining
comparable accuracy to the existing state-of-the-art methods on document summarization.

2 Related Work

Tasks involving sequence transduction, including, including document summarization, have previ-
ously been attempted through various means. Graves (8) and Chopra et. al. (2) try using recurrent
neural networks; Keneshloo et. al. (10) employs a wide variety of RL models for abstractive text
summarization; Dutil et. al. (5) and Rush et. al. (15) introduce sequence-to-sequence models using
attention, and Li et. al. (11) use a generator and evaluator in order to generate paraphrases.

More popular in literature has been the use of attention for summarization as a sequence to sequence
tasks. In fact, Medina, Bahuleyan and Shi et. al. all employ a type of attention specifically for a
machine transduction task, with the the latter focusing on text summarization (13), (1), (17). Xu et.

Input Output

Encoder Decoder

Linear (Softmax)

Encoder Decoder

Encoder Decoder

Encoder Decoder

Overall Architecture

Multi-Head Attention

Linear Linear LinearLinear Linear LinearLinear Linear Linear

Linear

Dot Product AttentionDot Product AttentionDot Product Attention

Encoder

Add and Norm

Feed Forward

Add and Norm

Q K V

Core Attention
Linear Linear LinearLinear Linear LinearLinear Linear Linear

Linear

Dot Product AttentionDot Product AttentionDot Product Attention

Multi-Head Conv-Attn

Conv (k=3, s=1)

Pool (avg)

Figure 1: The transformer consists of several encoder (green) and decoder (purple) blocks (left).
Inside each encoder block is a core attention module that is computed on a given query, key, and
value sentence. The baseline transformer uses a multi-head attention module here, which computes
self-attention multiple times in parallel. In Section 3.3, we propose an augmented convolutional
attention module that groups words into phrases and reduces the operations performed.

al. introduces graphs on top of attention (20), and Vaswani introduces the transfomer (19) which was
extended by Gehrmann who uses bottom-up attention to summarize source texts with a maximum
capped length of 400 (7). Dai et. al. builds on transformers and introduces a new novel architecture
intended to model long-range dependencies, known as the Transformer-XL (3).

However, while these papers present near state-of-the-art results for source texts at a capped length,
the attention module lacks performance accuracy and speedups in even longer sequences, due to
the bottleneck from the attention module which jeopardizes performance and efficiency. Moreover,
modelling long sequences efficiently is a relatively new field, with Liu et. al. introducing memory-
compressed and local attention in a decoder-only module for summarizing sources to generate
Wikipedia articles (9). Here, we introduce two new attention modules that, when used in the encoder,
allow the transformer to perform well for long sequences of source text.

3 Approach

3.1 Task Definition

The specific task we are focused on is that of automatically summarizing long sentences, paragraphs,
and even entire documents. As mentioned, summarization is one example of several goals in NLP
where being able to process large amounts of text efficiently is crucial, due to the long input sequences.
We utilize the CNN/Dailymail Summarization dataset (Section 4.1) and focus on summarizing a
full document into a single paragraph. Notation wise, for a single example we map the raw text,
(x1, x2, . . . , xm′), to a summarized version, (y1, y2, . . . , yn′), wherem′ >> n′ andm′, n′ ∈ Z, with
xi, yj as word tokens.

3.2 Transformers

For our baseline architecture we chose a vanilla transformer, which comprises of several layers of
encoder and decoder modules. As opposed to using a recurrent structure to sequentially process
words, the transformer parallelizes the computation using several linear (fully connected) layers and
self-attentive layers (Figure 1). Within each encoder/decoder is also residual skip-connections to aid
the learning process.

Each attention layer is slightly more complex and takes in three values: a value (V), a key (K), and a
query (Q). From these values, it applies a standard dot-product attention, as shown in Equation 1,
with a scaling factor of 1√

dk
added to ensure that the value of the dot product doesn’t grow too large

2

Table 1: Comparison of runtime, number of non-parallelizable operations, and length of dependencies
supported for a recurrent architecture compared to the transformer architecture.

Layer Asymptotic Runtime Sequential Operations Dependency Length

RNN (Recurrent) O(n · d2) O(n) O(n)

Transformer (Baseline) O(n2 · d) O(1) O(n)

in magnitude with respect to dk, the dimension of the key.

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V (1)

However, instead of running self-attention on an inputted key, query, and value only once, the network
instead makes use of a module called multi-head attention. This module repeatedly runs attention
using different weights on the same inputted triplet. The benefit here is that multiple attentive
properties can be learned in a parallel fashion, essentially allowing for ensembling of attention
weights and learning of a full distribution of word importance. Generally, we define h = 8 unique
heads, where each head has its own learnable weights, Wi

Q for the query, Wi
K for the key, and Wi

V

for the value, and the heads are combined using an overall set of learnable weights, WO:

headi = Attention(QWi
Q,KWi

K , V Wi
V),

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O

(2)

3.3 Proposed Models

Even though the core transformer model is very promising and improves upon recurrent architectures,
it does have some limitations. Consider Table 1, where we compare the transformer model’s
performance in terms of asymptotic runtime, number of operations, and dependency length. Note
that n represents the length of the sequence, and d represents the embedding hidden dimension.

While it is true that the transformer improves over a recurrent architecture by reducing the number
of sequential operations from n to 1, this improvement does have some limitations. Specifically,
the asymptotic runtime per operation of the transformer is only faster than recurrence when n < d.
This is generally true in NMT tasks, where translated sentences are relatively short, but is not true in
summarization, where n is often the entire length of a document.

The main reason this runtime is large in the transformer is that it is supporting a maximum dependency
length of O(n): in other words, the very first word can have dependencies on the very last word.
Again, this is useful in NMT, but is not as necessary in document summarization, where we often
want to summarize paragraphs individually into shorter sentences.

As such, in our proposed changes we hope to decrease the runtime of each operation, while main-
taining O(1) operations, by leveraging the reduced need for long dependencies in document sum-
marization tasks. Even though long term dependencies are still necessary for true natural language
understanding, we believe long document summarization can be approximated with partial language
understanding from shorter dependencies. Note that our proposed changes are only performed in the
encoder self-attention, as that remains the bottleneck of the network.

3.3.1 Convolutional Model

As the dot product attention remains the largest bottleneck in the transformer architecture, we wanted
to reduce the number of computations it required. We introduce a modification of the multi-headed
attention module that shortens the key and value by convolving over sequence lengths beforehand:

MultiHeadConv(Q,K, V) = MultiHead(Q,Conv1D(K>)>,Conv1D(V >)>) (3)

The convolution groups surrounding words into phrases, and using a nonzero stride reduces the size of
the input. We propose two ways of incorporating this change into the multi-headed attention: directly
using the convolution with a stride equal to the kernel size, or by convolving with a stride of one,

3

A B C D E F G H I

ABC DEF GHI

ABC BCD CDE DEF EFG FGH

ABCD CDEF EFGHI

Conv (k=3, s=3)

A B C D E F G H I

Conv (k=3, s=1)

Pool (avg)

GHI

Figure 2: A comparison of the receptive fields of the convolution-only model, and the convolution
with pooling model shows that only the latter explicitly groups all neighboring words into phrases.

Strided Neighborhood Attention

Q K V

Q2

Q3

Strided Split Strided Split Strided Split

Multi-Head
Module

Multi-Head
Module

Multi-Head
Module

Q1

K2

K3K1

V2

V3V1

A1 A2 A3

Mask Mask Mask

Concat

A1 A2 A3

A1 A2 A3

Figure 3: We also propose a strided neighborhood attention module that takes the place of the core
attention module in the transformer encoder. Each query, key, and value is split into overlapping
(strided) blocks. Each corresponding split of the queries, keys, and values is processed with a multi-
head attention module (either the original, or our proposed convolutional one), which generates an
attention output Ai. These outputs are masked and concatenated together to form the final attention
module output. Note that the multi-head attention modules share weights.

and then pooling afterwards (Figure 1). While these two proposed models are related, they perform
very different computations. Consider Figure 2, which compares the receptive fields of these two
models on a contrived input sequence. While the convolution only model groups words into phrases,
there is no overlap between phrases, and so surrounding words are not explicitly grouped together.
Alternatively, with the model that also uses pooling, neighboring words are always explicitly grouped
together. As such, we expect the latter model to outperform the prior.

3.3.2 Strided Neighborhood Attention

As discussed earlier, with document summarization we hope to relax the requirement of full-document
dependencies to reduce computation requirements. Local attention, as proposed by Liu et. al.
(9), addresses this dependency relaxation by splitting the input into blocks, and running attention
independently on each block. However, the problem with this approach is that there are no interactions
between the blocks, and so both short and long term dependencies are lost. To address this flaw, we
implement a novel strided neighborhood attention model that like local attention, restricts attention
dependencies to blocks. However, unlike local attention, blocks overlap so that neighboring words

4

may still interact within a layer. Further, while this reduces dependencies within each layer, over
enough layers, distant words still interact, ensuring the presence of long-term dependencies. This
strided neighborhood attention takes the place of the core attention module in the encoder in Figure 1.
Our proposed model has four main steps: 1) strided split, 2) multi-head attention, 3) strided mask,
and 4) a concatenation, as in Figure 3.

Strided Split & Multi-Head Attention In a regular split of a sequence of length n into c blocks,
each block would be of length n/c and the first word of block i + 1 is exactly one block, which
is n/c words, apart from the first word of block i. In our strided split, we generate c blocks of
length r = n/(c − 1), where the distance between the first word of block i + 1 and block i is the
stride s, where s = n/(c+ 1) words. We perform this strided split on the inputted query, key, and
value, generating c smaller queries, c smaller keys, and c smaller values. Each generated triplet
(Qi,Ki, Vi), i ∈ [1..c] is then passed through a multi-head attention, which returns output Ai.

Strided Mask & Concatenation To combine these individual Ai attention outputs, we wish to
simply concatenate them together. However, each Ai is of length r > n/c, so simply concatenating
all c blocks would result in an output longer than n. As such, we must mask each Ai such that it is
only of length n/c. If we naively masked the same portion of each Ai, such as the first n/c words,
then we would be losing words from the original input, such as the last r − (n/c) words in the last
block. Instead, we must perform a strided mask, where use the first n/c words of A1, we use the last
n/c words of Ac, and we use the middle n/c words of Ac/2. We show pseudocode for the case of
c = 3 splits of length r = n/2, stride s = n/4 below:

1: procedure STRIDEDSPLIT(seq, n)
2: return seq[0 : 2n/4], seq[n/4 : 3n/4], seq[2n/4 : 4n/4]
3: end procedure
4: procedure STRIDEDMASK(seq, n, i)
5: return seq[(i · n)/12 : ((i+ 4) · n)/12]
6: end procedure
7: procedure STRIDEDNEIGHBORHOODATTENTION(Q, K, V)
8: n← len(Q)
9: Q1,2,3,K1,2,3, V1,2,3 ← StridedSplit(Q,n),StridedSplit(K,n),StridedSplit(V, n)

10: A1,2,3 ← MultiHead(Q1,K1, V1),MultiHead(Q2,K2, V2),MultiHead(Q3,K3, V3)
11: A1,2,3 ← StridedMask(A1, n, 0),StridedMask(A2, n, 1),StridedMask(A3, n, 2)
12: return Concat(A1, A2, A3)
13: end procedure

4 Experiments

4.1 Datasets

We focus on conditional language modelling, specifically single-document summarization. In our
proposal and milestone, we experimented on the Wikihow dataset, but we lacked the proper baselines
to compare with other state-of-the-art summarization tasks which were mostly performed on the
CNN/Dailymail dataset. Thus, we preprocessed the CNN/Dailymail dataset with tokenization, while
keeping tags in the target as we found that it empirically improves inference, which can be removed
after the inference step. The data was split into train, validation and test sets in a 92/4/4 ratio into
src.txt and tgt.tagged.txt files, where each article was written in a line in src.txt and the
corrsponding line in tgt.tagged.txt represents the summarization of the article. The sequence
length in the dataset ranges from 250 tokens to 16652 tokens, with a mean of 4153 and standard
deviation of 2014 tokens.

4.2 Experimental Details

In our preprocessing step, we initially truncate our articles to have a max length of 400 tokens, since
longer sequences give rise to memory error in Azure NV GPU machines. We first experiment with
token lengths of 400, and hypothesize that convolutional and strided attention allow longer sequences
to fit in memory. We also truncate the summaries’ length to 100 tokens, while also having a shared

5

vocabulary that allows shared embeddings between the source, target and the generator by ensuring
that the source and target are aligned with the same dictionary.

In the positional encoding module, we add positional encodings with sinusoidal functions to input
embeddings before feeding into the encoder and decoder modules which allows the model to attend
to relative positions. Each dimension i has a unique frequency and offset as shown below.

PEpos,2i = sin
(pos

10002i/dmodel

)
, PEpos,2i+1 = cos

(pos

10002i/dmodel

)
During training, we applied the copy mechanism that allows the summarizer to fall back and copy from
the source text when it encounters <unk> tokens by referencing to the softmax of the multiplication
between attention scores of the output with the attention scores of the source. Using 4 layers in the
encoder and decoder, with dimensions of dmodel = 512 for multi-headed attention and h = 8 unique
heads, we optimized over cross entropy loss between the true summary and the summarized output.

We used pdropout = 0.2 for dropout probabilities, and Noam learning rate decay scheme (Appendix:
Figure 4) with 8000 warm up steps and Adam optimizer with β1 = 0.9, β2 = 0.998 and initial
learning rate of 2. Building on top of the baseline, in the memory compressed attention, we applied
filters of size 3 and stride 3 and convolved the key and queries before feeding them into the multi-
headed attention module. For strided attention, we followed the schema in Figure 3, and applied
strided split to the queries, keys and values, while applying strided mask to make sure the dimensions
of the mask match before feeding the three subsequences into the same multi-headed attention module.
Thus, the size of the sequence fed into the multi-headed attention is reduced by half.

During inference time, we used beam-search with a beam size of 10, and applied a length penalty by
Wu et. al. that penalizes long summarized sequences. We also prevented the model from repeating
trigrams, while also applying a penalty that prevents repeated attention to the same source words that
encourages better recall and attends to the whole article instead of focusing on a few sentences.

4.3 Evaluation Method

We evaluate our results during test time every 10000 steps on our validation set, and we have four
main metrics: speed (as measured in tokens per second), ROUGE, perplexity and accuracy. Accuracy
and perplexity are online metrics that allows us to keep track of progress in training along with
cross-entropy loss, as they can be easily evaluated, especially with accuracy as a bag-of-words metric
that that counts the proportion of correct words in inference as compared to the true summary.

We measure speed in training and inference time, as one of our goals of our research is to increase the
efficiency of existing approaches. ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a
metric that measures co-occurrence statistics (18). There are numerous different flavors of ROUGE
that we utilize, including ROUGE-N with N = 2 and ROUGE-L-F1. (16). ROUGE-N is a measure
of the overlap of N-grams between the system and reference summaries, and is given by:

ROUGE-N =

∑
C∈RSS

∑
gramn∈C COUNTmatch(gramn)∑

C∈RSS

∑
gramn∈C COUNT (gramn)

where RSS is a set of reference summaries-reference summary set, COUNTmatch(gramn) is the
maximum number of n-grams co-occurring in a candidate summary and a reference summary and
Count(gramn) is the number of n-grams in the reference summary.

We also utilize ROUGE-L-F1, which is a longest common subsequence measurement that takes into
account sentence level structure similarity and identifies the longest co-occurring sequence n-grams.
We use this type of ROUGE (especially the F1 type) as it is more appropriate in this setting, since we
do not want to explicitly constrain the output length. (12) Furthermore, this metric is used commonly
in text summarization, allowing us to effectively compare our results with other approaches.

5 Results

We begin by first reporting the accuracy, perplexity and speeds of baselines and our models, with
additional materials such as loss curves and attention visualizations attached in the Appendix. For
consistency, and to allow for a better basis of comparison, we report token processing speed, as

6

Table 2: Figures from epoch 10 on truncation length of 400, with experiments ran on two M60 GPUs
in parallel. n denotes sequence length, s denotes stride length, and c denotes number of splits.

Attention
Accuracy Perplexity Speed (Tokens/s) Theoterical

Runtime

Training Validation Training Validation Training Inference

Baseline 56.12 56.55 7.65 9.26 5.96 54.48 O(n2)
Conv. 56.51 56.12 7.50 9.41 6.28 57.70 O((ns)

2)

Strided 56.62 56.77 7.49 9.01 6.29 58.18 O(n
2

c)

Table 3: Evaluated model trained after 40k steps/10 epochs. No ensemble of models used here.

Baseline Attention Convolutional Attention Strided Attention

ROUGE-1 Recall 38.60 39.26 37.79
ROUGE-1 Precision 41.90 41.19 42.33
ROUGE-1 F Score 38.82 38.77 38.53
ROUGE-2 Recall 16.64 16.86 16.40
ROUGE-2 Precision 18.47 18.06 18.83
ROUGE-2 F Score 16.89 16.80 16.91
ROUGE-L Recall 35.62 36.38 34.93
ROUGE-L Precision 38.76 38.27 39.24
ROUGE-L F Score 35.87 35.97 35.67

measured in tokens per second. We train our model for 40,000 steps, which is equivalent to about
10 epochs for all three models, and run inference on our model at 40k steps on the test set without
model ensemble. On a source truncation length of 400 for the article to be summarized, our models
performs 5.5% faster in training time, and 6.8% faster in inference time with beam search (beam size
= 10) and copy mechanism, ceteris paribus.

In the table, we see that both our convolutional model and our neighborhood attention model achieve
faster speeds than the transformers baseline, which is what we expected because in the baseline model,
attention is applied over the entire document, which is the bottleneck. On the other hand, in both the
neighborhood model and the convolutional model, we restrict attention size significantly, as discussed
in Section 3.3. For each of our models, we also report ROUGE-1, ROUGE-2 and ROUGE-L scores
as below. Better results could have been obtained with ensemble of models in past checkpoints, or by
training for longer epochs (we trained for 2 days on M60 GPU for 40k steps, which is one-fifth of
what Gehrmann et. al. trained for). Also by testing across different sequence lengths, we find that
the strided attention has consistently higher speeds as compared to the baseline and convolutional
attention during training time, with a speedup of 121% when run an sequence lengths of 600. The
corresponding figures are attached in the Appendix for reference.

6 Analysis

In this section, we provide qualitative analysis of the three models and discuss the results. The most
important takeaway from our previous section, where we reported our results, is that we were able to
achieve fairly significant speed-ups from our baseline model in both train and inference time. This is
the anticipated outcome because in our convolutional and strided attention models, we apply attention
to a more restricted area. Thus, the improvements in speed match our expectations.

In terms of evaluation of the models, we see that our models achieve metrics that are on par with, if
not better than, the baseline model. We display two examples of input/output sequences in Table 4 in
the Appendix. In the table, we show the input, which is the first 400 words of a news article. For
each article, we applied each of the three models on it, and obtained three different summarizations.
From the outputs, we make several observations. Firstly, we note that our convolutional attention
model is remarkably similar to the baseline model. In fact, both the models output the same exact
sequence for the first example in the table.

7

Table 4: Table showing two example input news articles to our models. For each of the three models,
we show the summarized output generated. Input articles and output generated are shortened to save
space. The full table is unshortened in Appendix Table 5 and is only shown here for completion.

Document to Summarize (model in-
put)

Baseline Convolutional Strided

five americans who were monitored
for three weeks ... almost all the
deaths have been in guinea, liberia and
sierra leone. more than 10,000 ...died...
ebola is spread by direct contact... .

the last of 17 ...
released ... more
than 10,000 peo-
ple died...

the last of 17 ...
released ... more
than 10,000 peo-
ple died...

more than
10,000 people
... in guinea,
liberia and sierra
leone.

a year ago bloomberg published a story
with the following ... arkansas gov. asa
hutchinson, and likely 14 other states
considering...

mike pence has
scored a lot ...
rush in to de-
fend pence and
the law.

mike pence is
drawing huge
heat ... scored a
lot of points this
week among ul-
traconservatives.

mike pence is
drawing heat for
... points this
week among
ultraconserva-
tives.

While getting the same exact output sequence is not expected (and is an anomaly in our dataset as
verified manually), it is not surprising that both models have very similar outputs. As discussed
in Section 3.3.1, our convolutional attention model is very similar to the baseline, with the only
difference being the application of a convolutional layer before in order to shorten the input sequence.
Thus, it is expected that both models have similar outputs. The fact that they obtained the same exact
output sequence for the first example presented in the table illustrates that our convolutional model is
able to learn the same things the baseline is, albeit with a shorter sequence, indicating that using the
full sequence is not only unnecessary, but computationally inefficient. It may be possible (and we
leave it as future work) to obtain results just as good by shortening the input sequence even more
through the convolutional layer.

Secondly, we see that the strided attention model provides noticeably different outputs than both
our convolutional model and the baseline. This is also an expected outcome, as this model has the
most different architecture, emphasizing short-range dependencies. Thirdly, we see that both our
convolutional attention and strided attention models generate summaries that are on par, if not better,
than the baseline. More specifically, our two new models generally outperform the baseline on longer
input documents. This is evident in the second example in Table 5 in the Appendix, where both
our convolutional and strided attention model generate subjectively better summaries of the article.
The second article displayed in the table is a rather long article of 960 words. The baseline clearly
struggles with this example, generating a summary that does not get the main points of the article
across. The reason for this is that it is trying to attend to too much, and thus, when the input article is
long (like in this example), it loses focus. On the other hand, our strided attention and convolutional
models produce subjectively better summaries that encapsulate the articles main points.

In the previous section, we see that our local strided attention model is able to achieve higher precision
values, while our convolutional attention model is able to achieve higher recall. The reason for this is
that our convolutional model has a wider field of view, while the strided model focuses better on the
local neighborhood, thus obtaining better precision.

7 Conclusion

In this paper, we presented two novel models that are design architectural improvements to trans-
formers that allow for more efficient training while maintaining (and even exceeding) comparable
metrics to existing state-of-the-art methods on document summarization. Through our analysis of the
models, we saw that each model has its own unique advantage that it brings to the table, suggesting
that the architectures of the models are promising. We demonstrate that both models are more
computationally efficient than the current state-of-the-art, and tend to achieve better results on longer
input sequences. As next steps, combining the models might result in even better performance.

Most importantly, our work shows that while transformers are the current state-of-the-art for numerous
different sequence transduction tasks, there is a great deal of room for improvement in many of these
tasks, both efficiency and performance wise.

8

References
[1] H. Bahuleyan, L. Mou, O. Vechtomova, and P. Poupart. Variational attention for sequence-to-sequence

models. CoRR, abs/1712.08207, 2017.
[2] S. Chopra, M. Auli, and A. M. Rush. Abstractive sentence summarization with attentive recurrent neural

networks. In Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 93–98, 2016.

[3] Z. Dai*, Z. Yang*, Y. Yang, W. W. Cohen, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-XL:
Language modeling with longer-term dependency, 2019.

[4] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and L. Kaiser. Universal transformers. CoRR,
abs/1807.03819, 2018.

[5] F. Dutil, Ç. Gülçehre, A. Trischler, and Y. Bengio. Plan, attend, generate: Planning for sequence-to-
sequence models. CoRR, abs/1711.10462, 2017.

[6] S. Fernández, A. Graves, and J. Schmidhuber. An application of recurrent neural networks to discriminative
keyword spotting. In Proceedings of the 17th International Conference on Artificial Neural Networks,
ICANN’07, pages 220–229, Berlin, Heidelberg, 2007. Springer-Verlag.

[7] S. Gehrmann, Y. Deng, and A. M. Rush. Bottom-up abstractive summarization. CoRR, abs/1808.10792,
2018.

[8] A. Graves. Sequence transduction with recurrent neural networks. CoRR, abs/1211.3711, 2012.
[9] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer. Generating wikipedia by

summarizing long sequences. International Conference on Learning Representations, 01 2018.
[10] Y. Keneshloo, T. Shi, N. Ramakrishnan, and C. K. Reddy. Deep reinforcement learning for sequence to

sequence models. CoRR, abs/1805.09461, 2018.
[11] Z. Li, X. Jiang, L. Shang, and H. Li. Paraphrase generation with deep reinforcement learning. CoRR,

abs/1711.00279, 2017.
[12] C.-Y. Lin and F. J. Och. Automatic evaluation of machine translation quality using longest common

subsequence and skip-bigram statistics. In ACL, 2004.
[13] J. R. Medina and J. Kalita. Parallel attention mechanisms in neural machine translation. CoRR,

abs/1810.12427, 2018.
[14] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised

multitask learners. 2018.
[15] A. M. Rush, S. Chopra, and J. Weston. A neural attention model for abstractive sentence summarization.

CoRR, abs/1509.00685, 2015.
[16] N. Schluter. The limits of automatic summarisation according to rouge. In Proceedings of the 15th

Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short
Papers, pages 41–45. Association for Computational Linguistics, 2017.

[17] T. Shi, Y. Keneshloo, N. Ramakrishnan, and C. K. Reddy. Neural abstractive text summarization with
sequence-to-sequence models. CoRR, abs/1812.02303, 2018.

[18] J. Steinberger and K. Jezek. Evaluation measures for text summarization. Computing and Informatics,
28:251–275, 01 2009.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. arXiv preprint arXiv:1706.03762, 06 2017.

[20] K. Xu, L. Wu, Z. Wang, Y. Feng, and V. Sheinin. Graph2seq: Graph to sequence learning with attention-
based neural networks. CoRR, abs/1804.00823, 2018.

9

8 Additional Information

We are doing a custom project with guidance from Kevin Clark, without external collaborators and
without sharing this project for other classes.

9 Contributions

As per our milestone, we wrote the preprocessing scripts for the dataset and the validation scripts
ourselves, as well as core sections of the transformer such as the self-attention module, train and
test iterators, and the main train function in Pytorch. Other implementation details which weren’t
as familiar for us such as positional encoding, Noam’s learning rate decay, and label smoothing
were written with guidance from the OpenNMT’s Annotated Transformer and Vaswani’s paper.
Moreover, we also build upon OpenNMT’s implementation that includes beam search and the copy
attention mechanism that prevents <unk> tokens in the output, which allows us to compare with
state-of-the-art algorithms. Thus, we have our own implemented baselines and improved attention
modules built upon OpenNMT, with us writing our improved attention mechanisms ourselves.

10

10 Appendix

In this section, we present supplementary figures, tables, and equations that we were unable to present
in the main portion of the paper.

Figure 4: Learning rate scheduler with 2000 warm-up steps, and Adam optimizer with β1 = 0.9, β2 =
0.98 and initial learning rate of 1.

11

Figure 5: Speedup ratio with baseline as default (1.0) across different sequence lengths.

Figure 6: Accuracy curve comparing the three models during training.

12

Figure 7: Perplexity curve comparing the three models during training.

Figure 8: Loss curve comparing the three models during training.

13

Table 5: Examples

Document to Summarize (model input) Baseline
Attention

Convolutional
Attention

Strided Atten-
tion

five americans who were monitored for three weeks
at an omaha , nebraska , hospital after being ex-
posed to ebola in west africa have been released ,
a nebraska medicine spokesman said in an email
wednesday. one of the five had a heart-related is-
sue on saturday and has been discharged but hasn’t,
left the area, taylor wilson wrote. the others have
already gone home. they were exposed to ebola
in sierra leone in march, but none developed the
deadly virus. they are clinicians for partners in
health, a boston-based aid group. they all had con-
tact with a colleague who was diagnosed with the
disease and is being treated at the national institutes
of health in bethesda, maryland. as of monday, that
health care worker is in fair condition. the cen-
ters for disease control and prevention in atlanta
has said the last of 17 patients who were being
monitored are expected to be released by thurs-
day. more than 10,000 people have died in a west
african epidemic of ebola that dates to december
2013, according to the world health organization.
almost all the deaths have been in guinea, liberia
and sierra leone. ebola is spread by direct contact
with the bodily fluids of an infected person.

the last of 17
patients who
were being
monitored are
expected to
be released
by thursday.
more than
10,000 people
have died in a
west african
epidemic
of ebola
that dates
to december
2013.

the last of 17
patients who
were being
monitored are
expected to
be released
by thursday.
more than
10,000 people
have died in a
west african
epidemic
of ebola
that dates
to december
2013.

more than
10,000 people
have died in a
west african
epidemic of
ebola that
dates to de-
cember 2013.
almost all
the deaths
have been in
guinea, liberia
and sierra
leone.

a year ago bloomberg published a story with the
following headline: mike pence, a koch favorite,
mulls 2016 run for president. the story ticked
off items on pence’s, conservative things-to-do
list while also noting his close ties to the deep-
pocketed koch brothers, as well as other right-wing
lobbying groups. last august the indiana gover-
nor was in dallas for an americans for prosperity
event; the group is backed by the conservative koch
brothers, and supported gov. pence’s, tax-slashing
budget. now, pence is drawing huge heat for his
controversial decision to sign a religious freedom
law last week that opens the door to discrimination
against gays and lesbians. why would pence ignore
the pleas of indiana’s, chamber of commerce as
well as the republican mayor of his state capital
and sign such a bill ? because there’s, a very pow-
erful wing of his party that wants a conservative as
its 2016 candidate and this bill was pence’s, way
of shoring up his street cred. it is also the reason
why republican jeb bush, pence’s, fellow white
house hopeful, who is viewed as a little light in
that category, was first to rush in to defend pence
and the law. one lesson here: just because more
than 70% of the country now lives in states where
same-sex marriage is legal does not mean 70% of
the country is happy about it. backlash aside, the
fact is pence has scored a lot of points this week
among ultraconservatives. and while that may not
be enough to get him over this political hump, the
very public debate that now embroils him – and
arkansas gov. asa hutchinson, and likely 14 other
states considering...

mike pence
has scored a
lot of points
this week
among ultra-
conservatives.
the indiana
governor was
in dallas for
an americans
for prosperity
event. pence
was first to
rush in to
defend pence
and the law.

mike pence is
drawing huge
heat for his
controversial
decision to
sign a reli-
gious freedom
law last week
that opens the
door to dis-
crimination
against gays
and lesbians.
because
there’s a very
powerful wing
of his party
that wants a
conservative
as its 2016
candidate and
this bill was
pence’s way
of shoring up
his street cred.
pence has
scored a lot
of points this
week among
ultraconserva-
tives.

mike pence
is drawing
heat for his
controversial
decision to
sign a reli-
gious freedom
law last week.
the indiana
governor was
in dallas for
an americans
for prosperity
event. pence
has scored a
lot of points
this week
among ultra-
conservatives.

14

	Introduction
	Related Work
	Approach
	Task Definition
	Transformers
	Proposed Models
	Convolutional Model
	Strided Neighborhood Attention

	Experiments
	Datasets
	Experimental Details
	Evaluation Method

	Results
	Analysis
	Conclusion
	Additional Information
	Contributions
	Appendix

