Memory Transformer Networks

Jonas Metzger
Stanford University
metzgerj@stanford.edu

CS224N Custom Project with Prof. Manning

Abstract

We propose a novel neural architecture, the Memory Transformer Network. While
the conventional Transformer encoder cannot feasibly process documents of ar-
bitrary size due to the associated quadratic increase in computational costs, the
Memory Transformer does not suffer from this limitation. This is achieved by a
recurrent design, in which the model considers only chunks of the document at a
time, while building up a compact representation of the complete document. The
purpose of this architecture is to extend the recent superiority of transformers over
previous recurrent architectures on small-scale NLP tasks such as SQuAD to tasks
that involve reference documents of arbitrary size. The proposed architecture is
applied to a large scale-version of the SQuAD task, in which it is shown to signif-
icantly outperform other baselines. Finally, we will extrapolate from the success
of the Memory Transformer and propose a novel sparse self-attention mechanism,
which achieves linearly scaling computational costs.

1 Introduction

Transformer networks, proposed by Vaswani et al. (2017), have quickly gained popularity in natural
language processing relative to previous recurrent neural architectures. They are attractive from a
statistical perspective as their use of self-attention greatly facilitates the learning of longer-range
dependencies between words, compared to LSTMs or other RNNs for example. Computationally,
they are attractive due to their increased parallelizability relative to previous recurrent architectures.
In particular, they achieve state-of-the-art performance on many NLP tasks, when unsupervised pre-
training as a language model is combined with consecutive task-specific fine-tuning, as demonstrated
by Devlin et al. (2018)’s pretrained bidirectional transformer encoder model BERT.

However, the standard transformer architecture is clearly not suited for the processing of larger
documents: the computational complexity of the self-attention mechanism scales quadratically with
the input sequence length, as it involves calculating multiple dot products for every pair of words in
the input sequence. As a consequence, in order to make use of a transformer on tasks that require
the processing of longer documents, one would have to apply it to short, fixed-length sub-sequences
of the original document, piece by piece. This obviously limits the length of dependencies that
can be picked up by the model. An additional problem of the transformer encoder in this context
is that it produces word-level embeddings for every word in the input document, i.e. entities or
concepts that are referred to multiple times in a source document receive multiple embeddings -
and words that are rather unimportant are not sorted out. This makes it significantly harder to fine
tune a pretrained transformer such as BERT to process larger documents: A large part of what it
means to understand a document consists of understanding which concepts in the given document
are important, and to condense the information about a given concept that is scattered across the
document into one representation for this concept. A model as described previously would have to
learn most of this during the fine-tuning stage, which limits its potential performance drastically and
requires significant amounts of memory.

In order to resolve these issues, we propose a novel neural architecture, the Memory Transformer. It
is a recurrent extension of the original transformer, which successively builds up a knowledge rep-
resentation by processing the documents in chunks. This representation consists of the transformed
embeddings of the most important words that have previously been processed. All words in the
currently considered chunk of the document can attend to these important previous words, and vice
versa. The proposed memory mechanism can thus be regarded as a form of conditional computation.

We will apply the novel architecture to a large-scale version of the SQuAD (v2.0) task and show that
it outperforms two different baselines, one without a memory and one with a naive implementation
of a memory mechanism.

Finally, extrapolating from the memory transformer’s success in learning a form of conditional com-
putation of sparse attention, we will propose a novel sparse self-attention layer, which can directly
replace existing self-attention layers in current transformer models. In contrast to the current self-
attention layers however, its computational cost scales only linearly in document length to its use of
conditional computation when calculating attention scores, while still permitting training via back-
propagation due to sufficient differentiability.

2 Approach

2.1 Model Architecture

The memory transformer builds on the architecture of the original transformer encoder in Vaswani
et al. (2017). In particular, the model mainly consists of sub-parts M’ (), which can be regarded as
a composition of n transformer layers Tj,, identical up to their parameters 6;, i.e.:

Mg (z) = (Ty,, © ... 0 Ty,) () (1)

where o denotes function composition. Every transformer layer Ty consists of a self attention 1aye
Sp and a standard point-wise fully-connected network Fp with one hidden layer, both wrapped in
individual sub-connection layers C. The model can thus be written as

Ty(x) = (C(Fp) 0 C(Sp))()- 2

A sub-connection layer C' contains a standard Layer Norm, a residual connection and a Dropout
layer, applied as follows:

C(F)(xz) = Layer Norm(x + Dropout(F(x))) 3)

Note that, for ease of notation, we omitted the dependency of Layer N orm on its trainable parame-
ters, which are not shared between different sub-connection layers.

Departing from the original architecture, we introduce a memory mechanism to the transformer,
which effectively permits words in the currently considered chunk of the document x;,, to sparsely
attend to a matrix x,,,, containing the embeddings of the m most important words that were read
previously. In addition to these embeddings, the model also stored a vector 2;,,,;, containing a scalar-
valued importance score for every word in memory, which will be key to achieving a trainable sparse
attention to previous words. We will come back to this later.

First, x;, is passed through an embedding layer F(x;,), which is identical to the one initially pro-
posed by Vaswani et al. (ibid.), i.e. it is the sum of their sine-based positional embedding and learned
word-vectors. Note that the positional embeddings are independent across chunks, i.e. the first word
in every chunk receives the same positional embedding. Subsequently, both the embeddings in mem-
Ory ZTyem and the embeddings of the chunk are independently fed trough N; individual transformer
layers which do not share parameters. The embeddings for the memory are then transformed by an-
other point-wise fully-connected layer Fjy, which this time is not bypassed by a residual connection,
after which they are concatenated with the embeddings of the current chunk. They are then jointly

'Tdentical to the one proposed in Vaswani et al. (2017). In fact, we partly built on the pytorch implementation
from ”The Annotated Transformer” at http://nlp.seas.harvard.edu/2018/04/03/attention.html.

fed through N, transformer layers, allowing memory and current input to attend to each other. This
yields embeddings for both the words in memory and the words in the current chunk, denoted by e:

e = M2 ((Fop (MY (2mem))s MV (E(win))) @)
These embeddings can subsequently be fed into some task-specific layer to produce the desired
predictions. What remains to be specified is the mechanism by which the memory is updated. The
update will simply be performed by selecting the m most important words among those in the current
chunk and in memory. The general idea is sketched in Figure[T] To do so, we introduce a vector V;
of the same dimension as our embeddings and a scalar b;, which linearly transform any embedding
in e onto the real line, yielding an importance score for every word in memory and in the current
chunk. We will then keep only the embeddings and the importance scores of the m words with the
largest importance scores. Denoting this operation by keep_-m_max(-, -), we obtain the embeddings
and importance scores of the new memory via:

/
imp

(@) ems Timp) = keep_m_max (e, Vie+b;) 5

importance -~

NN X X |

fully-connected
+ self-attention <

layers CRONOoN N X
\ L N N
_— — — - M— v —
memory sequence 1 memory sequence 2 mem

Figure 1: Sketch of general memory recurrence.

This is obviously not a differentiable step. We employ a simple trick to nevertheless allow the
model to learn via back-prop which words to assign a high importance score to: We simply add the
importance scores to the attention scores within the attention layers. More precisely, for any
attention head in any self-attention layer in M, ég », 1.e. after the concatenation, we do the following:

For a given queryﬂ we the obtain the attention scores for all other words by calculating the dot
product with the key of those words. Before applying the soft-max to get the attention distribution
however, we simply add the importance score ., (saved from the previous iteration) of a given
word in memory to the key of that word. Otherwise, the self-attention mechanism proceeds as
familiar. This will incentivize the model to increase the importance score for words that are worth
attending to, and importantly, decrease the importance scores for words that are less important. The
keep_m_max operation then simply selects the most important words according to this definition,
and the bias term by ensures that adding the importance scores does not sub-optimally weight words
in memory relative to words in the current chunk. We omitted this dependence of e on x;,,,, earlier
for ease of exposition.

We show that this approach trains well and outperforms two baselines on a large scale QA task. In
the last section, we will use this as the motivation to propose a novel, sparse self-attention layer
based on the same principle, with computational costs that scale only linearly in document length.

>We use the terms queries, keys and values just like Vaswani et al. (2017).

2.2 [Experiments

2.2.1 Large SQuAD Objective

We compare the performance of the novel architecture on a modified version of the SQuAD task,
designed to test the large-scale question answering capabilities of the new architecture. While the
original SQuAD task is posed as a set of questions about short paragraphs extracted from Wikipedia
articles, we will increase the scale of the problem by directly concatenating a fixed number of suc-
cessive paragraphs coming from the same article into one reference document. Due to memory
limitations, we currently only considered reference documents consisting of two concatenated para-
graphs. We skipped examples where this lead to reference documents of greater length than 850
tokens. Many examples in this task come close to this threshold, and are thus significantly longer
than the examples considered by Devlin et al. (2018) for example. To further emulate a large-scale
problem, we restrict the model capacity relative to the size of reference document by requiring the
memory transformer and any baseline to only look at document chunks of 48 tokens at a time. We
consider three models, the memory transformer, a naive-memory baseline and a no-memory base-
line, which are described in the next subsection. For the memory transformer and the naive-memory
baseline, we set the size of the memory to m = 16 tokens.

To facilitate a baseline without a memory module, the SQuAD task is interpreted as a token-level
classification task. Every token is either part of an answer, or not. In addition to the parameters
outlined in the previous section, we additionally learn a linear transformation mapping the token
embeddings e onto the real line. This is number is fed into a sigmoid, yielding a distribution over
the two classes. The model is trained via weighted log-likelihood, where we weight the two classes
with the inverse of their frequency in the training data. This choice was made to give equal weight
to type I and type II error, and to ensure the activation of the sigmoid is centered around 0.5, which
yields better gradient signals. In our setting, skipping examples longer than 850 tokens and using a
batch size of 16 without masking padding tokens, the share of answer tokens was 0.0058.

For the memory transformer and the naive-memory baseline, this task is performed in two phases.
First, during the reading phase, the models read the whole reference document chunk by chunk,
building up their memory. Next, during the inference phase, with their memory fixed to that obtained
from the reading phase, the models jointly observe a SQuAD question and a given chunk of the
reference document. The embeddings for the tokens in the current chunk are fed into the classifier
head and contribute to the average log-likelihood across all document chunks. We maximize the
log-likelihood across all questions and reference documents. The no-memory baseline simply skips
the reading phase.

2.3 Baselines

In addition to the memory transformer, we consider two baselines. One simply discards the memory
module all together, and is thus a simple transformer encoder with Ny 4+ N transformer layers. The
other baseline, the naive-memory baseline, implements a different kind of memory module. This
memory does not require any importance scores, as the elements in the memory do not directly
come from the embeddings of previous tokens. Rather, we initialize a sequence <MEM> tokens of
length m, and embed them as we would embed any other sequence of tokens. Additionally, in all
models, we left two dimensions of the positional embeddings “empty” (i.e. constant at zero). The
naive-memory baseline sets the embedding vector in these two dimensions to one for the memory
tokens, in order to be able to identify the memory as such. The embeddings in e corresponding to
the <MEM> tokens are simply used as the memory in the next time step.

3 Experiments

3.1 Training

We consider the same hyperparameters for all three models. We used a pytorch implementation of
the BERT tokenizelﬂ a batch size of 16, maximum reference document length of 850 and a chunk
size of 48 tokens. The model hyperparameters are an embedding size of 128 dimensions, all hidden

*https://github.com/huggingface/pytorch-pretrained-BERT

layers in the point-wise fully-connected layers have size 512, the number of attention heads in every
self-attention layer is 8. All dropout probabilities are 0.1, N; = 2 and Ny = 4, and m = 16. We
used the Adam optimizer with a learning rate of 1e — 5 and a weight decay of 0.01.

The small chunk size of 48 was chosen to mimic a task in which reference documents are large
relative to the feasible model size, which obviously puts the no-memory baseline at a disadvantage.
While larger m was found to increase the performance of both models with memory, the memory-
transformer drastically improves in performance relative to the naive-memory baseline with growing
m, which suggests an inductive bias of the memory-transformer towards a distributed knowledge
representation. All other hyperparameters were chosen to optimize the absolute performance of the
no-memory baseline subject to constraints on memory and compute.

3.2 Results and Analysis

0.655
0.650
0.645
0.640
0.635
0.630
0.625
0.620
0.615
0.610

0.605

2.000k 4.000k 6.000k 8.000k 10.00k 12.00k 1400k 16.00k 18.00k 20.00k 2200k 2400k 26.00k

Figure 2: Pseudo F1-score (smoothed). pink: memory transformer; orange: naive-memory baseline;
green: no-memory baseline

We track multiple performance metrics. The two most obvious are the training and test loss. Addi-
tionally, over the test set, we calculate the average predicted probabilities for “answer”, where the
averages are taken over all answer” tokens and all ”no answer” tokens respectively. These can be
interpreted as a kind of true positive rate (tpr or recall) and the false positive rate (fpr). In terms of
those, the precision would be defined as tpr/(tpr + r * fpr), where r equals the ratio of the number
of the negatives relative to the positives. To reflect the fact that due to our weighted log-likelihood,
the classes contribute as if we had equal shares of positives and negatives, we will instead consider
a ’pseudo precision” with » = 1. Combining recall and ”pseudo precision” as if the latter were the
actual precision, we get a "pseudo F1-score”, which we track during training and plot in Figure 2]

We observe that the memory transformer clearly achieves the best pseudo F1-score, being the only
model that clearly exhibits a trend promising continuing improvement over further training steps. In
comparison, the baselines both appear to have plateaued in performance much earlier. This is in line
with our general impressions that the relative performance of the memory transformer architecture
starts to outperform the baselines particularly for larger batch sizes, longer training and large mem-
ory. In light of the fact that the application in the present paper only represents a very small-scale
proxy for a large-scale task, this is particularly promising.

In terms of the test loss depicted in Figure[3] all methods achieve similar performance, and suggest
further improvement over longer training. The train loss is plotted in Figure 6]

Further insight into the performances of the models can be obtained from considering the average
predicted probability for “answer” for the “answer” tokens (Figure [d) and the "no answer” tokens
(Figure [5) respectively. From the shape of these graphs, it appears that the relative performance
of the models on the pseudo Fl-score metric is mostly driven by their relative ability to detect

0.960

0.940

0.920

0.900

0.880

0.860

0.840

0.820

0.800

0.780

0.760

2.000k 4.000k 6.000k 8.000k 10.00k 12.00k 14.00k 16.00k 18.00k 20.00k 22.00k 24.00k 26.00k

Figure 3: Test loss (smoothed). pink: memory transformer; orange: naive-memory baseline; green:
no-memory baseline

0.655
0.650
0.645
0.640
0.635
0.630
0.625
0.620
0.615
0.610
0.605
0.600

0.595

2.000k 4.000k 6.000k 8.000k 10.00k 12.00k 14.00k 16.00k 18.00k 20.00k 22.00k 24.00k 26.00k

Figure 4: Average “answer” probability for “answer” tokens (smoothed). pink: memory trans-
former; orange: naive-memory baseline; green: no-memory baseline

“answer” tokens, rather than their relative performance on the “no answer” tokens. The differences
in performance in the former case are also larger (around 0.2 probability mass) than in the latter case
(around to 0.1 probability mass). If we had the goal of engineering a solution which produces sharp
answer predictions maximizing an exact match (EM) score, it seems reasonable to expect that doing
well in detecting answer” tokens is more important than confidently ruling out ’no answer” tokens,
which lends credibility to the ranking of the methods according to the pseudo F1-score in this case.

4 (Full) Attention Might Be More Than You Need

The successful training of the memory transformer suggests the possibility of a novel form of sparse
(self-)attention mechanism, which avoids the quadratic scaling of computational costs. We will
briefly propose it here and explore its performance in future work. Consider a single self-attention
head, with an input sequence of L word embeddings. These word embeddings are linearly trans-
formed into query vectors ¢; and key vectors k; Vi. Conventional self-attention layers would go on

0.390

0.380

0.370

0.360

0.350

0.340

0.330

0.320

0.310

2000k 4.000k 6.000k 8000k 10.00k 12.00k 14.00k 16.00k 1800k 20.00k 22.00k 24.00k 26.00k 28.00k

Figure 5: Average “answer” probability for “no answer” tokens (smoothed). pink: memory trans-
former; orange: naive-memory baseline; green: no-memory baseline

to compare all pairs (g;, k;) to assess which words j a word ¢ should attend to, thereby incurring
computational costs which scale quadratically in L. However, an individual self-attention head in a
multi-head attention setting is likely to be fairly specialized on certain kinds of connections due to
its low complexity. It is therefore likely that it would suffice to let any word in this head only attend
to a small number of n candidate words, which have a high plausibility of being attended to by any
other word in this head given their embedding. Building on the success of the memory transformer,
we propose the following approach in this setting: In addition to the keys and queries, calculate
plausibility scores p; for every word ¢ via a linear mapping from the word embeddings onto the real
line, using trainable weights that are specific to this self-attention head. This additional computation
can be offset by reducing the dimension of the vector of values v; computed by this attention head
by one. Let N (p) denote the set of indices of the n words with the largest plausibility scores. Then
compute the length n vector of attention weights w; for a given query ¢; as

w; = softmax(s;), S;; = Z K(qi, k;) +pj, € i (6)
JEN(ptei)

where K (-,-) denotes some similarity kernel function, e.g. the scaled dot product as proposed
in Vaswani et al. (2017). e; denotes some random noise component that might be added to aid
exploration during training. Multiple such attention heads can be combined into a sparse multi-
head attention layer. Holding n fixed, the computational complexity of such a self-attention layer
only scales linearly in L by focusing only on high plausibility candidates rather than all words in
the source document. This self-attention mechanism naturally gives rise to the Sparse Transformer
Network. In contrast to this architecture, the memory transformer can be viewed as additionally also
budgeting the available memory, in case the full set of reference documents for a large-scale NLP
task cannot be jointly loaded onto the GPU.

5 Conclusion

We proposed the Memory Transformer, a neural architecture alleviating the architectural limitations
inherent in conventional transformer networks which prevent them from being scaled to large-scale
NLP tasks. We examined the performance of the method on a large-scale version of the SQuAD
task and achieved promising results. We further outlined how the core idea underlying the memory
module, sparse attention, could be employed to obtain a novel, scalable self-attention mechanism,
giving rise to the Sparse Transformer. It will be interesting to see how well the memory transformer

1.22

1.20

1.18

1.16

1.14

1.12

1.10

1.08

1.06

1.04

1.02

1.00

0.980

2000k 4.000k 6.000k 8000k 10.00k 12.00k 1400k 16.00k 1800k 20.00k 22.00k 24.00k 26.00k

Figure 6: Train loss (smoothed). pink: memory transformer; orange: naive-memory baseline; green:
no-memory baseline

networks can be pretrained to make use of their memory module via unsupervised language mod-
eling tasks, such that they start off any task-specific fine-tuning with the ability to extract the most
important concepts from a source document.

References

Devlin, Jacob et al. (2018). “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: CoRR abs/1810.04805. arXiv: 1810 .04805. URL: http://arxiv.org/
abs/1810.04805.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in Neural Information
Processing Systems, pp. 5998-6008.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

	Introduction
	Approach
	Model Architecture
	Experiments
	Large SQuAD Objective

	Baselines

	Experiments
	Training
	Results and Analysis

	(Full) Attention Might Be More Than You Need
	Conclusion

