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Abstract

Recently, transformers have outperformed RNNs on sequence to sequence tasks like
machine translation. Nima Sanjabi [15] showed that transformers also succeed in
abstractive summarization tasks. However, like vanilla RNNs, transformer models
produce summarizations that are very repetitive and often factually inaccurate. We
improve on the transformer model by applying variants used to successfully solve
these problems on RNN summarization models. We use techniques such as n-gram
blocking and coverage loss to reduce repetition. We also add a pointer-generator
network to allow the model to copy words from source texts and thus reduce both
unknown word tokens and incorrect factual representations. We explore whether
these mechanisms improve performance on the summarization task and whether
they reduce redundancy and factual error as they do for RNN models. We find that
pointer-generator networks improve ROUGE scores and the fluidity of summaries.
Coverage and n-gram blocking also improve ROUGE scores and reduce repetition,
with n-gram blocking significantly outperforming coverage.

1 Introduction

Summarization, a core problem facing modern natural language processing systems, is the task
of reducing a text, such as a sentence, article, or even novel, to a shorter version that retains the
quintessential ideas of the original text. Most summarization systems take one of two approaches: the
extractive approach, whereby a system identifies and copies key phrases from the original text to form
a new summary, or the abstractive approach, whereby a system generates entirely new words and
phrases to write a summary. Extractive summarization is considered the easier task, as the copying of
words and phrases tends to ensure grammatical and factual correctness. Abstractive methods, on the
other hand, more accurately replicate the human summarization process, and a successful abstractive
model can demonstrate the knowledge of important skills such as generalization and paraphrasing.

Before 2014, the majority of work regarding text summarization made use of the extractive approach
with relative success [16]. After the development and success of sequence to sequence models
pioneered by Sutskever et al. [17] in 2014, abstractive summarization based on seq2seq models
(especially RNNs and LSTMs) became widespread, competing with extractive models for state-of-
the-art results. Finally, in 2017 with the release of the seminal paper Attention is all you need [19],
transformers began to surpass RNN models in terms of both performance and popularity on seq2seq
tasks like machine translation. Nima Sanjabi demonstrated that tranformers also perform well on the
abstractive summarization task [15].



However, both RNNs and transformers face similar issues in abstractive summarization. Both models
create summaries with too much repetition, fail to handle out-of-vocabulary words, and have many
factual inaccuracies. While these issues have been addressed in RNNs by the use of pointer-generator
networks and coverage vectors [16], these methods have yet to be tested on transformers.

Given the promising results of transformers on abstractive summarization, the similar weaknesses
of summaries produced by both RNNs and transformers, and the success of variants (such as those
mentioned above) in addressing these issues in RNNs, we present new variants of the transformer
that make use of pointer-generator networks, coverage vectors, and n-gram blocking to reduce the
issues transformers face in abstractive summarization. We use the CNN/DailyMail dataset, as it is
one of the most popular datasets for summarization and makes for easy comparison to related work.
We find that the pointer-generator network improves ROUGE scores for transformer models, as do
coverage and n-gram blocking.

Our pointer-generator network, based on that used by See et. al. [16], allows the transformer to point
to and copy words from the source text, as well as generate new words and phrases. This technique
combines the extractive and abstractive approaches in order to better handle out-of-vocabulary words
and factual inaccuracies. In addition, we compare a coverage loss also as proposed by See et. al.
[16] against n-gram blocking as techniques to reduce repetition in summaries. We find that n-gram
blocking significantly outperforms coverage in terms of both ROUGE scores and fluidity of summary.

2 Related Work

2.1 RNNs and Related Models

Rush et. al. [13] were some of the first to use modern neural methods for abstractive summarization
to high results. On both the DUC-2004 and Gigaword datasets, they found that their attention-based
sumarization method scored several ROUGE points higher than the then-current state of the art
systems. After the development of LSTM models by Sutskever et. al. in 2014 [17], the use of LSTMs
to solve many natural language processing tasks quickly grew. Chopra et. al. [1] were some of the
first to use LSTMs for abstractive summarization and improved on the scores of Rush et. al. by
several ROUGE points. They additionally showed that LSTMs had significantly lower perplexity
than the attention-based models used by Rush et. al.

There have been many additional improvements on this basic LSTM model for abstractive summa-
rization, including adjusting summary style for user preferences (Fan et. al. [2]). However, the most
relevant to our work is that of See et. al. [16] who tested the impact of pointer-generator networks
and coverage on RNNs. See sections 2.3 and 2.4 for more detail on their work.

2.2 Transformers

Recently, a new neural architecture called a transformer has surpassed RNNs on sequence to sequence
tasks like summarization in terms of both performance and popularity. The seminal paper on
transformers by Vaswani et. al. [19] demonstrated that transformers produce state of the art results on
machine translation, while allowing for increased parallelization and significantly reduced training
time. A recent paper by Nima Sanjabi [15] also showed that transformers perform well in comparison
to various seq2seq models in summarization tasks.

Otherwise, there has been little work around the use of transformers on abstractive summarization,
and even less work that goes beyond simply using a basic transformer model on various datasets.
One of the few papers that alters this simple model was written by Liu et. al. [6], who made use of a
two-stage extractive-abstractive approach to create Wikipedia articles from several reference articles.
Their abstractive stage consisted of an isolated transformer decoder used to summarize these reference
articles. Their work produced state of the art results; however, their focus was on multi-document
summarization and does not address the common pitfalls of transformer summarization mentioned
previously.

2.3 Pointer-generator Networks

The pointer-generator was first proposed by Vinyals et. al. [20]. Their work focused on solving the
convex hull, delaunay triangulation, and traveling salesman problems. The pointer-generator has
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since been applied to several natural language processing tasks, including translation (Gulcehre et al.
[4]), language modeling (Merity et al. [7]), and summarization (See et al. [16]).

Recent work on pointer-generator networks for abstractive summarization includes that by Miao and
Blunsom [9], who applied pointer-generators to sentence compression for state of the art results, and
Gu [3], who similarly produced state of the art results in summarizing the LCSTS dataset. These
papers largely inspired the work done by See et. al., who improved on these previous models by
explicitly calculating pgen and using only one attention distribution (versus Gu et. al. who use
two distributions). See et. al. [16], who applied their model to an RNN, produced state of the art
performance on abstractive summarization, and their model is the basis for our pointer-generator
network. It should be noted that the model constructed by See et al. largely contrasts the work
famously done by Nallapati et. al. [10], who only used pointer-generator networks when activated by
out-of-vocabulary words.

2.4 Coverage and N-gram Blocking

Coverage was initially proposed for machine translation by Tu et. al. [18] and Mi et. al. [8] to
significant success. See et. al. [16] adapts the idea of coverage to reduce repetition, which is the basis
for our use of coverage. Their definition of coverage, in turn, largely derives from that used by Xu et.
al. for image captioning [21].

N-gram blocking is another technique used to reduce repetition. The technique is so common to
natural language processing models that it is not credited to anyone in particular.

3 Approaches

3.1 Baseline: Transformer

For our baseline, we use an open-source implementation [5] of the basic transformer architecture as
laid out in the seminal paper Attention is all you need [19].

3.2 Coverage

3.2.1 N-Gram Blocking

We reduce repetition in summaries by adding n-gram blocking to our decoder. The decoder uses
beam search to construct hypotheses and then selects the hypothesis with the largest total score. In
selecting the next word for a beam, n-gram blocking simply eliminates options which would create
an n-gram that already exists within the beam. For example, given the beam "to be or not to", 2-gram
blocking would eliminate the word be as an option for the next word to come because the 2-gram to
be already exists within the sentence.

3.2.2 Coverage Loss

We also use a coverage loss1 to reduce repetition in summaries. See et al. created a coverage vector
ct which is the sum of attention at

′
over all previous RNN time steps.

ct =

t−1∑
t′=0

at
′

Using this coverage vector, they defined a coverage loss which penalized their model for repeatedly
paying attention to the same words.

covlosst =
∑
i

min(ati, c
t
i)

We calculate the same coverage vector and coverage loss for our transformer model, where at is the
joint attention of the last transformer layer in time step t. We add the coverage loss, weighted by a

1This coverage loss technique was used by See et al. to improve an RNN model; they, in turn, adapted it
from Tu et. al [6].
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hyperparameter λ, to the the transformer’s original loss function.

losst = − logP (w∗t ) + λ
∑
i

min(ati, c
t
i)

3.3 Pointer-Generator Network

Figure 1: Pointer-generator network on a
transformer; marks st, h∗t and xt for calcu-
lating pgen. This original diagram is based
on the diagram of a transformer presented
in Attention is all you need[19].

We add a pointer-generator network to our trans-
former to allow our model to copy words from
the source text. With a learned probability pgen,
our model will generate a new word as normal
from Pvocab, the softmax of the transformer out-
put. Otherwise, the pointer-generator will utilize
its joint attention to selectively point to and then
copy words directly from the source text.

We borrowed this technique from See et al. who
used it on their RNN summarization model.
Their model calculates pgen using the RNN de-
coder’s hidden state st, a context vector h∗t and
decoder input xt as follows.

pgen = σ
(
w>h h

∗
t + w>s st + w>x xt + bptr

)
We mapped st, h∗t and xt from their RNN model
to analogous values in our transformer model.
We generated an attention distribution over the
source, at, by summing across the multiple-
heads of the encoder-decoder multi-head atten-
tion in the last decoder layer. The context vector
h∗t was taken as the average across the source
dimension of the final encoder layer’s output,
weighted by the source attention distribution at.
We took the output of the final decoder layer
as analogous to the RNN-decoder hidden state,
st. The pointer-generator network for use on a
transformer can be seen in Figure 1.

4 Experiments

4.1 Data

We use the CNN/DM dataset, which consists of
about 300, 000 pairs of news articles and multi-
sentence summaries. However, it should be
noted that the dataset is not ideal for summariza-
tion as it was originally meant for the Question
Answering task. Nevertheless CNN/DM has
been used widely for summarization, making it
a good basis for comparison with other models.

4.2 Evaluation Method

To evaluate our results, we use ROUGE, the standard metric used for the summarization task. As the
standard metric, it will allow for easy comparison across models. ROUGE is calculated as follows

Rougen(c) =

∑
s∈Sref

∑
gramn∈s

match(gramn)∑
s∈SRS

∑
gramn∈s

count(gramn)
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where c is the candidate summary, Sref is the set of reference summaries, match(gramn) is the
number of times that the n-gram is found in the candidate summary, and count(gramn) is the
number of times that the n-gram appears in the reference.

It should be noted that ROUGE is flawed because its focus on n-gram overlap does not handle the
wide variety of valid summaries well. Nevertheless, ROUGE is the best automated metric that we
have.

As we are concerned with limiting repetition and reproducing facts correctly, we will also examine
the summaries by hand to determine the general performance of the model in these respects.

4.3 Experimental Details

When training our baseline, we experimented with many hyperparameters. We chose to use a single
layer transformer rather than the standard 6 layer transformer. The one-layer model was complex
enough to model the summarization problem and it trained much faster. We used 8 heads for the
transformer’s multi-headed attention, which is fairly typical. We used frozen pre-trained uncased
300-dimensional GloVe embeddings trained on 6 billion tokens with a 400k vocabulary [12].

We implemented the decaying learning rate suggested by the original transformer paper [19], which
linearly increases the learning rate over a warm-up period, then decays the rate over time. During
the warm-up period, however, we used a constant base learning rate because we found this custom
schedule worked better empirically.

Because of time constraints, we trained our baseline and subsequent models on 40,000 examples and
validated on about 5,000 examples. We used a dropout rate of 0.1, a batch size of 4, a maximum
source sequence length of 400 and a maximum target sequence length of 128. Our loss was given by
the cross-entropy loss for predicting the next word in the target sequence given the source sequence
and all of the preceding target sequence words. We trained the baseline model for 450 epochs, which
took approximately 24 hours.

We ran several training experiments on our Pointer-Generator model. We first trained the entire
transformer with the Pointer-Generator from scratch and found that training took even longer than the
basic transformer baseline. This was expected, given the additional parameters that must be learned
by the pointer-generator. Given that the baseline transformer already took a long time to train, we
then experimented with training our Pointer-Generator by restoring parameters from our baseline
transformer, with and without freezing the Transformer parameters. We then trained the unfrozen
Pointer-Generator model for an additional 80 epochs, which took approximately 18 hours.

For our coverage loss, we experimented with the λ hyperparameter that weights the coverage loss
when it is added to the total loss. We ultimately chose to use a value of 1 for λ, which is consistent
with the λ chosen by See et. al. [16]. We trained the Pointer-Generator + Coverage model for 95
epochs, which took approximately 9.5 hours.

Finally, we evaluated the Pointer-Generator model using ngram blocking where n = 1, 2, 3, 4, 5.

Table 1: Results
Method R-1 R-2 R-L

Vanilla RNN (See et al., 2017) 30.49 11.17 28.08
Pointer-Generator (See et al., 2017) 36.44 15.66 33.42
Pointer-Generator + Coverage (See et al., 2017) 39.53 17.28 36.38
Transformer (Sanjabi) 27.4 - -
Transformer Baseline 20.23 3.45 13.43
Transformer + Pointer-Generator 22.10 4.03 14.66
Transformer + Pointer-Generator + Coverage 22.93 4.08 15.08
Transformer + Pointer-Generator + N-Gram Blocking (2-gram) 25.31 4.16 15.99
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4.4 Results

We have reported all of our scores for the models we trained in Table 1. First, we note that our
transformer baseline has a lower score than either the Vanilla RNN or Sanjabi’s transformer. We
credit this difference to the fact that See et. al. trained their model for 4+ days and Sanjabi trained
her model for 2+ days, while we only had the time to train our model for 24 hrs. In summary, we
achieved 2

3 the score of Sanjabi in half the time. We chose to prioritize testing and implementation
of variants of the transformer over increasing the training time of the baseline. Given the training
validation curve from our baseline, which can be seen in Figure 2, we believe that our ROUGE scores
would have continued to increase if we had more training time.

As expected, we saw that the pointer-generator improved our ROUGE scores. Like the basic
transformer, we saw that our ROUGE scores steadily increased over time, and if we had more time
to train, we believe that our ROUGE scores would have continued to improve. The scores reported
above came from restoring our baseline transformer and training for additional epochs with the
pointer-generator model. A noteworthy takeaway from our experiments is that allowing the model
to learn both transformer and pointer-generator parameters produced significantly higher results
than freezing the transformer parameters learned during baseline training and only learning the
pointer-generator parameters.

As we expected, we again improved our scores by adding coverage loss to our transformer-pointer-
generator model. The scores reported above came from restoring our pointer-generator model and
training for additional epochs with the coverage loss.

Similarly, we saw that n-gram blocking significantly improved our scores. Figure 3 shows ROUGE
scores as a function of n for the Transformer + Pointer-Generator model. In addition, it was far more
effective in regards to improving ROUGE scores than coverage. This was as we expected; coverage
loss requires the model to learn how to not repeat, while n-gram blocking simply blocks all repetitive
phrases (there is no learning involved; we can explicitly reduce repetition). See Section 5 for further
comparison and discussion of these results.

Figure 2: The ROUGE-1 validation scores
for the Baseline model as a function of the
number of batches trained on. It is clear
that the model’s scores were still improving
when we stopped at 450 epochs.

Figure 3: The ROUGE-1 scores on the test
set for the Transformer + Pointer-Generator
model as a function of n, the length of the n-
gram used for n-gram blocking. ROUGE-1
scores are listed as a fraction of 100.

5 Analysis

Though our baseline transformer produced lower scores than expected, it did produce relatively high
results given our limited training time. That being said, we can see from the example below that our
summaries face significant issues; in particular, repetition is a clear issue in the example below, as is
the mishandling of out of vocabulary (OOV) words, evident in the use of the "[UNK]" token.
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Human Summary: oleg kalashnikov died of gunshot wounds , ukraine ’s interior ministry
said . he was a party of regions deputy in ukraine ’s previous parliament . kalashnikov was
ally of deposed ukrainian president viktor yanukovych .

Baseline Transformer Summary: viktor [UNK] was found dead at the vladimir putin ’s
death . he was found dead in his remained remained remained remained remained ...
Pointer-Generator Summary: russian oleg oleg oleg oleg sergei yanukovych was found
dead . viktor was found dead at home in kiev in kiev . viktor yanukovych was found dead in
the the kremlin has been been been been since .
Pointer-Generator + Coverage Summary: ukrainian prime minister yanukovych was
found dead in his home in kiev . ukrainian leader was found dead in his home in kiev , in
kiev .
Pointer-Generator + 2-Gram Summary: oleg viktor yanukovych was found dead in his
home in kiev . he is of the ukraine of ukraine ’s parliament . the former ukrainian president
vladimir putin says he was “ “ the communist party ”.

Table 2: The human, baseline, pointer-generator, coverage, and n-gram blocking summaries
produced for a single article.

Our pointer-generator network improved our ROUGE scores from our baseline; further analysis of the
summaries outputted by this model show that while we successfully reduced OOV mishandling, we
still suffer from factual inaccuracies. For instance, in the example below, it is clear that we no longer
run into out of vocabulary words; indeed, the model uses words like "yanukovych", "sergei", and
"oleg" in its summary, despite the fact that these are uncommon words that our baseline transformer
could not generate. However, our model also falsely states that the Yanukovych has died, instead of
stating that Oleg Kalashnikov has died. Finally, we can see that the pointer-generator has significantly
improved the fluidity of our summaries by allowing us to point to words. Yet, we have not entirely
addressed the factual inaccuracies that arise in abstractive summarization and still face clear repetition
issues.

When adding coverage to our model, we once again improved our ROUGE scores and clearly
addressed some of our repetition issues. While we no longer repeat a single word over and over, we
find that our examples now begin to repeat ideas and phrases ("in kiev" and "was found dead" are
repeated several times in our summary).

In comparison, n-gram blocking does not repeat phrases or single words multiple times in a row. One
caveat of the n-gram blocking performance is that we get several out of place punctuation marks (in
the above example, one set of quotation marks); this is probably due to the fact that placing these
punctuation marks allows us to avoid repeating phrases. That being said, the n-gram blocking method
clearly produces the more fluid summary and contains more unique ideas.

While we saw that n-gram blocking produced less repetitive summaries than coverage loss, we note
that n-gram blocking is a much hackier way of producing summaries. It does not reflect any learning
on the part of the model, whereas the improvements we saw from coverage loss do. In the larger
scheme, we believe that coverage loss is a better way to train models to repeat less, while n-gram
blocking can be used to make up for occasional mistakes during evaluation. Though, from our results,
more work is needed to improve the effectiveness of coverage loss in reducing repetition.

6 Conclusion

We have presented new transformer models that make use of pointer-generator networks, coverage,
and n-gram blocking to reduce repetition, factual inaccuracies, and OOV mishandling in abstractive
summarization. We have shown that each of these models [in this order] improves on the performance
of the previous models.

Our work is limited in that we did not let any of our models train to full convergence, which makes our
results less comparable to those of state-of-the-art examples. Future work should include additional
hyper-parameter tuning and extended training time for each model, in order to make claims about
these models compared to current state-of-the-art results.
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In examining the output of each of our models, we noted that the pointer-generator network eliminated
OOV words, but its summaries still suffered from factual inaccuracy. We also found that n-gram
blocking performed better than coverage loss for reducing repetition.

Future work could also include experimenting with model architecture, including additional Trans-
former layers and different mechanisms of calculating the attention distribution over the source
sequence. It would also be interesting to experiment with applications to other data sets including the
New York Times Annotated Corpus [14] and Gigaword [11].
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