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Abstract

Most state-of-the-art coreference models are trained and evaluated on gender
imbalanced datasets such as the widely used OntoNotes [13]. Such datasets include
far more examples of male pronouns than female pronouns, yielding models
whose performance differ across gender. We seek to build a coreference resolution
system that can perform well regardless of pronoun gender. We use a balanced
corpus of gender ambiguous pronouns known as GAP [1]. We perform a gold-
two-mention version of the task, in which the pronoun is given along with two
candidate mentions. We train a basic neural network with linear layers/ReLU using
simple token distance features as a baseline. We then show several improvements
on this baseline using various state of the art techniques described in literature such
as word and character embeddings, hand-engineered features [5], recurrent neural
networks [2] and transformer models [7]. We achieve best overall performance with
hand-crafted features and transformers, and find that training on a gender-balanced
dataset mitigates gender-biased performance on the task.

1 Introduction

Coreference resolution is the task of identifying all mentions within a text that refer to the same
entity and has been a long standing challenge in Natural Language Processing. Recently, coreference
resolution was proposed as a viable alternative to the Turing test [11]. In recent years, the state of the
art co-reference resolution systems have transitioned from heuristic algorithms [6], to mention-pair
ranking models with hand engineered features [5] to a fully end-to-end deep learning solution [2].

However, most state-of-the-art coreference models are trained and evaluated on gender imbalanced
datasets such as the widely used OntoNotes [13]. The GAP dataset, a gender-balanced corpus of
ambiguous pronouns, was created to address this. State-of-the-art models perform quite poorly when
tested on the GAP dataset, and fail to even outperform simple baselines based on parallelism and
syntactic cues [1].

We perform a gold-two-mention version of coreference resolution on the GAP dataset in which
we have access to the target pronoun and two candidate mentions and output a probability that
each candidate, or neither, corefers with the target pronoun. Our main approaches involve taking
inspiration from various state of the art systems for NLP tasks and applying them to the GAP dataset
with appropriate modifications. These approaches include using hand-engineered language features
[5], word embeddings and character embeddings of key words [10], recurrent neural networks [2],
transformer models [7] and a combination thereof. Specifically, since the dataset is relatively small,
many of our approaches involve using transfer learning of pre-trained embedding models such as
GloVe [12], a gender-neutral variant of GloVe [3], and BERT [8].

2 Related Work

The creators of the GAP dataset discuss the performance of several off-the-shelf resolvers on the GAP
validation set as well as some simple baselines such as features based on parallelism cues that we use



Table 1: Sample of Hand-Crafted S ntacticyFeatures

Feature

Count of pronouns in the text
Count of pronouns between target pronoun and candidate
Position of candidate/target pronoun in sentence
Position of sentence containing candidate/target pronoun in document
Syntactic Dependency of candidate/target pronoun
Number of times candidate appears in text

to benchmark our own results [1]. Our approach is inspired by the two state of the art systems: (1)
the end-to-end neural network resolver [2] that the GAP authors found to perform best on the GAP
development set, and (2) the Clark and Manning neural network resolver with hand crafted features
[5] that the GAP authors noted performed best on the OntoNotes test set. The gold-two-mention task)
in which we have access to the two candidate spans is slightly different as compared to the entity
clustering problem in these models, but there is still much we can draw from these models.

Clark and Manning detail a Mention-Pair Encoder which takes as input hand engineered features
from the text and outputs a Mention-Pair Representation. The features used in this approach include
embedding features such as the head word and surrounding words of the mention, mention features
such as type and position of the mention, document genre, distance features, speaker, and string
match features [5]. We use several of these features in our own approach.

Lee et al. provide the first end-to-end approach to coreference resolution, using a bidirectional LSTM
over word and character level embeddings to generate span representations with attention to find the
head word. Mention scores are calculated for each span, along with antecedent scores for each pair
of spans, which together form the basis of a coreference score [2]. As we already have access to
candidate mentions and the pronoun, we need not compute mention scores but draw from the LSTM
and antecedent scoring approach.

3 Approach

3.1 Baseline

We consider two baseline models. The first model was simply using the off-the-shelf HuggingFace
Neural Coreference model [4] which detects clusters of coreference given text. We had to manipulate
the output of this model slightly to frame it as our specific gold-two-mention task which involved
checking if the target pronoun and candidate were in the same cluster. The second baseline model we
used was a two layer neural network trained with basic features, h0, such as the total length of the
text, total number of words in the text and the distance between the target pronoun and the candidate.
This model was implemented from scratch in Pytorch as follows, outputting a probability, pi, for
each candidate or neither:

h1 = ReLU(Wh0 + b) (1)

h2 = ReLU(Wh1 + b) (2)

logits = ReLU(Wh2 + b) (3)

pcandidate = Softmax(logits) (4)

3.2 Approach 1: Hand-Crafted Features

For our first approach, we used feature engineering to derive a variety of linguistic-based features as
in [5]. See table 1 for examples of some of the key features included. This model was implemented
from scratch in Pytorch.
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3.3 Approach 2: Word Embeddings

We use a gender neutral variant of GloVe word embeddings, GN-GloVe [3]. These word embeddings
allow for gender information in certain dimensions of word embeddings, while preventing the
presence of gender in other dimensions. GN-GloVe contains approximately 300,000 of these 300-
dimensional embeddings. We compare the GN-GloVe embeddings with 300-dimensional GloVe
embeddings to see if this affects gender bias on our task. Word embeddings are computed for the
target pronoun, the candidate, the head word of the target and candidate along with the two preceding
and following words [5]. We then concatenate these embeddings at layer 2 of the hand-crafted feature
model described in Approach 1.

3.4 Approach 3: Character Embeddings

This approach is inspired by the approach of using character embeddings for language modelling
tasks [10]. We believe that character embeddings may help provide information around syntactic
structure, such as with the possessive form of mentions as in Abi’s or with punctuation that signals
complex text structure such as commas and parentheses. Firstly, we exract key words from the
text (target pronoun, head word of both candidates, head word of target pronoun) similar to the
Word Embeddings approach. We then lookup the character embedding for each word and feed those
through a character based convolution to get an embedding representation for each word. This process
is described by the equations below.

w =WordExtractor(text) (5)

wembed = CharEmbed(w) (6)

wconv = Conv1D(wembed) (7)

Lastly, we feed wembed through a highway network [9] as they have been shown to empirically
improve results for a variety of language modelling tasks.

3.5 Approach 4: Bidirectional LSTM with Attention

Our third approach is inspired by the end-to-end coreference resolver [2] that the authors of the GAP
paper found to perform best on the GAP dataset [1]. The idea is that the two key components to
learning the task of coreference resolution are the syntactic structures within a span and the context
surrounding the span.

We first compute the span candidate and pronoun using the spaCy span API. We feed our word
representations, which are the gender neutral word embeddings along with the character level
embeddings (computed using a one-dimensional CNN) into a bi-directional LSTM with attention to
the pronoun hidden state. We compute a coreference score for a candidate span, gi, with the pronoun
span, gj , according to the following equation:

s(i, j) = w · FFNN(gi, gj , gi ◦ gj , φ(i, j)) (8)

where the FFNN is a nonlinear input to output mapping of the spans, ◦ represents elementwise
multiplication, and φ(i, j) are additional context relevant features as described in our hand-crafted
features.

3.6 Approach 5: Transformer models / BERT

Recently, transformer models have shown much promise in various NLP tasks even achieving state of
the art results in machine translation [8]. We use a pre-trained version of Google AI’s Bidirectional
Encoder Representations from Transformers (BERT) model to embed the entire text. Then, we
extract embedding representations for key words (the target pronoun and two candidate references)
for fine-tuning. We combine these representations with our own hand engineered distance and
parallelism/syntactic dependency features in a higher layer to achieve our best results. The equations
below describe this process.
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Figure 1: Architecture used in Approach 2. The input is comprised of pretrained word embeddings
and hand-engineered syntactic features and the output layer contains scores for whether candidate A,
B, or neither refers to the same entity as the pronoun.

b = BertModel(text) (9)

btargetwords =
[
botarget ;bo1 ;bo2

]
(10)

soutput = FFNN(btargetwords, h1) (11)

Here, otarget, o1, o2 are the offsets of the tokens corresponding to the target pronoun and two
candidate words in the output of the BERT model. These extracted outputs are concatenated with the
hidden layer of the network that processes the hand crafted distance and parallelism features and then
fed through a final network to produce the output logits.

4 Experiments

4.1 Data

As mentioned previously, the main dataset we use for training/evaluation is the GAP dataset [1]. The
dataset has 4000 examples for training, 4,000 examples for test and 908 examples for validation. See
table 2 for a full description of all columns in the dataset.

4.2 Evaluation Method

For each example, we predict the probability that candidate A corefers with the pronoun, candidate B
corefers with the pronoun, or neither candidate A nor candidate B corefers with the pronoun. We
evaluate our performance using the multiclass logarithmic loss defined below, where N is the number
of examples, and M = 3 according to the three classes (candidate A, candidate B, neither):
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Table 2: GAP Dataset Overview

Column Header Description

1 ID Unique identifier for an example (two pairs)
2 Text Text containing the ambiguous pronoun and two candidate names.
3 Pronoun The pronoun, text
4 Pronoun-offset Character offset of Pronoun in Column 2 (Text)
5 A The first name, text
6 A-offset Character offset of A in Column 2 (Text)
7 A-coref Whether A corefers with the pronoun, TRUE or FALSE
8 B The second name, text
9 B-offset Character offset of B in Column 2 (Text)

10 A-coref Whether B corefers with the pronoun, TRUE or FALSE
11 URL ‘ The URL of the source Wikipedia Page

logloss = − 1

N

N∑
i=1

M∑
j=1

yij log(pij) (12)

Additionally, we take the argmax over the probabilities for each class to output a binary prediction as
to whether a candidate corefers with the pronoun or not and evaluate this output with the metric of F1
score.

In order to measure gender bias, in addition to an overall F1 score O, we also use separate F1 scores
for the masculine, M, and feminine, F, examples and take a feminine-to-masculine F1 score ratio,
F/M, as a measure of bias as done in the original GAP paper [1].

This is a Kaggle competition and so we evaluate the relative performance of our models against the
leaderboard which uses the multiclass logarithmic loss.

4.3 Experiment Details

4.3.1 General Parameters

All the models trained below used the Adam optimizer and were initialized with a learning rate of
0.0005. We use batch gradient descent with a batch size of 64 for BERT and 16 for all other models.
All models were trained until convergence with no early stopping.

4.3.2 Baseline and Feature Engineered Model

Our NN baseline model and NN NLP Features model (Approach 1) were implemented from scratch
in Pytorch. Both were trained using a two layer neural network with 64 units in the first layer, 32 units
in the second layer (with a ReLU layer added after each layer) and an output layer with 3 units (since
our problem formulation has 3 classes). The spaCy library was used in order to extract tokens along
with their syntatic dependency and part of speech information which were then used to compute NLP
features.

4.3.3 Word Embedding Model

We experimented with 300-dimension GloVe and GN-GloVe embeddings [3]. With our basic neural
net with hand-crafted features outlined, word embeddings were extracted for the two candidate
mentions, the pronoun, the head word and the surrounding words for each. These embeddings
were then reduced to 20-dimensions by averaging neighboring entries. Other dimensions were also
experimented with. Word embedding extraction was written from scratch in Pytorch. See Figure 1
for model architecture.
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4.3.4 Character Embedding Model

The character embedding model was impelmented from scratch in Pytorch though some code was
adapted from Assignment 4/5 of the CS224N course. Character embeddngs were of size 8 and in the
convolutional network a filter of size 4 was used. The output word embeddings were of size 32 and a
dropout layer with p = 0.1 was used on the output of the highway network.

4.3.5 LSTM/RNN Model

Word embeddings for the entire text sequence plus padding tokens were fed into an LSTM. Hidden
states for key words, including the candidate mentions, the pronoun, and their head words, were then
extracted and used to compute a coreference score following the scoring mechanism outlined above
from [2]. We experimented with hidden state dimensions, as well as adding in our NLP and distance
features at different layers. We also experimented with reducing the sequence length in hopes of
retaining more relevant contextual information, but this proved difficult as many examples contained
the two candidates at the beginning and end of the sequence.

4.3.6 BERT/Transformer Model

The BERT/Transformer model used the pre-trained bert-large-uncased model from the pytorch-
pretrained-bert package in python. This model represents each token as a 1024 dimensional embed-
ding and we extracted the embeddings for three words - the pronoun and the two candidates. These
extracted embeddings were then projected into a 64 dimensional hidden state with a dropout layer
with probability 0.4. Other than the aforementioned python package, this was written from scratch in
pytorch.

4.4 Results

See Table 3 for the improvement in masculine, feminine, bias, and overall F1 scores for all our
approaches over the baseline models. In general, performance on F1 scores was correlated with a
decrease in the log-loss metric as seen in Table 4 but there were a few cases were it was not such as in
the Character Embedding model (Approach 3). The losses we obtained were in the same approximate
range as losses found on the Kaggle leaderboard and some variance is expected as our final test set
was different than the Kaggle submission test set.

The significant increase in performance over the baseline models from adding a set of hand crafted
syntactic structure features (Approach 1) was slightly surprising to us as this score was already on
par with some of the best off-the-shelf classifers. However, we do not have the task of clustering the
mentions as the off-the-shelf resolvers do. Moreover, we trained and tested on the same GAP dataset
while they trained on OntoNotes, highlighting the issue of overfitting to a particular dataset.

We see more incremental gains over the baseline when using pre-trained word embeddings which was
expected as this approach had shown promising results in other co-reference models [5]. Character
embeddings show slightly better improvement which also is reasonable as they are able to capture
syntactic structures that are important to this type of task.

We did not see a noticeable increase in performance when using the Gender Neutral (GN) GloVe
embeddings versus the regular GloVe embeddings. However, this is explained by the fact that the GN
GloVe embeddings are created to reduce bias in cases of gender with respect to named entities (such
as professions with stereotypical gender associations) but in the GAP dataset both possible candidates
are names and always have the same gender so such information is less relevant. We also found that
LSTMs performed worse than our simple model with pre-trained word embeddings which was also
observed in [5] largely due to overfitting issues, long sequence lengths, and a relatively small dataset.

The best overall model was a combination of fine-tuning BERT along with hand crafted distance
and syntactic structure features. This seems reasonable to us as BERT is one of the most powerful
standalone language models today, has achieved success in other transfer learning settings and we
had already seen strong improvements from our hand crafted features in Approach 1.
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Table 3: Binary Classification F1 Scores by Gender

Model M F B O

Pretrained spaCy NeuralCoref Baseline 54.6 49.9 0.92 52.3
NN Baseline 57.2 58.3 1.02 57.7
NN NLP Features 69.1 67.9 0.98 68.5
NN NLP Features + GN-GloVe Word Embeddings 71.0 70.7 0.99 70.8
NN NLP Features + GloVe Word Embeddings 71.1 70.0 0.99 70.5
NN NLP Features + Character Embeddings 71.7 70.6 0.98 71.2
LSTM + NLP Features 69.2 70.6 1.02 69.9
BERT + NLP Features 74.0 71.7 0.97 72.8

Table 4: Overall Multiclass Logarithmic Loss

Model Loss

Random Baseline 1.0986
NN Baseline 0.9423
NN NLP Features 0.7856
NN NLP Features + GN-GloVe Word Embeddings 0.7270
NN NLP Features + GloVe Word Embeddings 0.7686
NN NLP Features + Character Embeddings 0.7489
LSTM + NLP Features 0.7626
BERT + NLP Features 0.7124

Figure 2: Confusion matrix with predictions from neural net model with GN-GloVe word embeddings
and hand-crafted syntactic structure features
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5 Analysis

5.1 Gender Bias

We were able to achieve nearly perfect bias scores of 1.0± 0.03 on all of our models. We attribute
the lack of bias to training on a gender balanced dataset. Moreover, our spaCy baseline and BERT
which are trained on gender imbalanced corpora had the lowest bias scores, further suggesting the
importance of training on a gender balanced dataset for equal performance across genders.

5.2 Ablation Analysis

The examples with the best performance as determined by their loss are those where candidate A
corefers with the pronoun, with candidate A beginning one sentence and the pronoun beginning the
next sentence. An example of such follows with the pronoun in bold, each of the two candidate
mentions italicized, and the candidate which corefers with the pronoun underlined.

"Philippe Burty (6 February 1830 – 3 June 1890) was a French art critic. He
contributed to the popularization of Japonism and the revival of etching, supported
the Impressionsts, and published the letters of Eug*ne Delacroix."

The above sentence structure has very clear syntactic parallelism cues. These features are easily
captured in our hand engineered NLP features as a mention’s position within a sentence and that
sentence’s position within the document. To test this hypothesis, we removed sentence position
features from our GN-GlOVe word embedding model and saw the loss on the test set increase from
0.7270 to 0.7555, showing a performance gain of 3.8% using the sentence position features.

5.3 Error Analysis

Our worst performance was on examples where neither candidate A nor candidate B corefers with
the pronoun, many of which are difficult for even a human to understand, such as the example below.

"Haufrecht embodied the premise, projecting a drowsy, fatigued lonesomeness
with each action and word. The previous month, Haufrecht had garnered even
stronger praise from Off-Off-Broadway Review’s Doug DeVita as Common Basis
staged another, less heralded premiere, Grace Cavalieri’s Pinecrest Rest Haven:
A frail-looking woman, her white hair tied up in a simple purple ribbon, enters a
peach-and-white nursing-home waiting room and plaintively asks if anyone has
seen her husband."

The low performance here can be explained by a lack of training examples for this class. Only
approximately 10% of the train/test examples fall into the neither class (Figure 2). This examples
highlights the syntactic complexity of the text in the GAP corpus and the challenge of this task.

6 Conclusion/Future Work

By using approaches inspired by various state-of-the-art coreference models in recent years, we
have shown a significant improvement over a baseline model on the gendered balanced GAP dataset.
Furthermore, the resulting F1 scores outperform several proposed models referenced in the original
GAP dataset paper [1]. We find that the best performing model combines both hand crafted distance
and parallelism features along with fine-tuning a pre-trained BERT model and this outperforms other
several approaches such as character and word embedding models.

One primary limitation of our work is that we did not experiment with training data sources other
than the given GAP dataset. As such, one area for future work would be to use the full Wikipedia
text instead of only the excerpt given in the dataset. This is potentially a very large data source and
could allow us to train more complex models. Another idea for future work would be to train the
end-to-end neural network model described in [2] on the larger OntoNotes dataset but try to correct
the gender bias by replacing all pronouns with a gender neutral pronoun such as ze. We think that
this may yield promising given that this model was the best off the shelf resolver on the GAP dataset
as described in the original paper [1].
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7 Additional Information

Our assigned project mentor is Xiaoxue Zang.
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