seq2graph: A Neural Approach to Scene Graph
Generation from Natural Language

Frits van Paasschen Isaac Kasevich
Department of Computer Science Department of Computer Science
Stanford University Stanford University
Stanford, CA 94305 Stanford, CA 94305
fritsvp@cs.stanford.edu isaack970@cs.stanford.edu
Abstract

In recent years, research has explored the possibility of encoding image semantics in graph-
based representations that capture both high and low-level features of the images they
describe. These encodings, generally known as ‘scene graphs’ [13], can be used in a variety
of applications from image search and retrieval to image generation [8] [10]. Given the
usefulness of these scene graphs, recent research has explored the possibility of not only
creating scene graphs from images [2], but also of generating scene graphs from a natural
language description of a scene [1]]. This is especially poignant in applications related
to image retrieval and scene generation [§]], as natural language descriptions present an
obstacle in achieving consistency and accuracy in scene generation and image retrieval
systems. In this paper, we present our approach towards a neural end-to-end system for
parsing paragraph level natural language descriptions of images into scene graphs. Overall,
though we still believe our approach could work, we were unable to successfully build and
test a fully viable end-to-end neural solution to this problem.

1 Introduction

A scene graph, defined by [8]] and [13]}, is a graph G = {V, E/, A} that defines the semantic structure
of a scene or image such that V' = {vy,...,v3} is a multiset of the objects in the image, £ =
{(vi, ek, v;)|vi,v; € N, e, € R} is a set of relationships (R being the set of all relationship types
and N being the set of all node types) between these objects, and A = {(v;, ax)|v; € V,ai, € Q} is
a set of attributes connected to each object in the image (@) being the set of all attribute types). The
goal of this project is to provide a flexible neural solution to generate semantically rich scene graphs
from natural language descriptions, not the images they describe.

Scene graphs have a variety of applicable use-cases. For example, they have been used to generate
the scenes they describe [10], and for more accurate image retrieval within image databases [[1]]
[8]. As such, a system that could reliably convert paragraph-level descriptions of scenes into their
corresponding scene graphs could be utilized in a variety of applications. We motivate our project on
this main principle.

2 Related Work

Although we take a novel approach to scene graph generation, the general strategy behind a significant
amount of our approach closely resembles that proposed in [1]. We build on this approach using
techniques defined in [24], [2], [18]], and [5]. Similar work that we experimented with is also proposed
in [200, [27], [, [12], [15], and [16].

Perhaps the most applicable work in this field of research to our project of scene graph generation
from natural text has come from [[1], where scene graphs are generated from one-sentence descriptions
using the following pipeline: first, the sentences are parsed into grammatical dependency graphs in

a form consistent with [7] and [26]. Then, these dependency trees are modified by accounting for
quantifiers, using co-reference resolution [14], and by accounting for plural nouns. From there, the
authors of the paper use tree-regexes [28]] and a classification model to extract object node types, to
predict relationships, and to extract object attributes. Evaluated on a downstream metric of image
retrieval, this approach succeeds at capturing the semantics of a sentence and representing these
same semantics in a scene graph. While this approach did successfully generate scene graphs from
sentences, it predicts nodes and edges independently. Further research in graph generation [11] has
shown that this type of approach is suboptimal.

Recurrent neural networks have been applied to scene graph generation given input images or data
(L8] [2] [L1]. By modeling the generation of a graph as a sequence of node and edge adding actions,
recurrent neural networks are able to model complex graph dependencies and generate semantically
viable graphs. Additional research into graph generation has generally used paired RNNs in the form
of GRUs or LSTMs, one of which is used to sequentially add nodes to a graph, while the other is used
to sequentially add relationships between added nodes and the rest of the graph [2] [[L1] [12]]. While
they have not yet been used to generate scene graphs from text, we view these model architectures as
promising areas with which to experiment in designing a sequence-to-scene-graph model.

In our research and our approaches, we also considered research applications of attention [5]],
neural sequence models [2]] [11], neural coreference resolution [23], neural dependency parsing [24]],
multitask learning [20] [27]], and set prediction [16] [[15].

Given existing research, we see an area of limited understanding into fully neural approaches towards
generating scene graphs directly from textual descriptions. As such, we designed an end-to-end
pipeline that does not rely on regular expressions or rich, hand-designed semantic rules and features
as in [1]], and that utilizes a novel combination of cutting edge techniques such as those proposed in
(2], [24], [11], and [5].

3 Approaches

3.1 One-Shot Node Multiset Prediction

In the previous milestone, we began with the task of generating a node multiset from a paragraph-level
input sequence.

We simply began with input paragraphs P of variable length and paired outputs in the form of
multisets V. To represent these multisets computationally, we defined k-hot vectors, v € Z!™V| (where
| V| denotes the total number of node types). In these vectors, nonzero indices indicate the presence
of a certain nodes, and the scalar values at those indices indicate how many of each node type is
present in the scene.

We represented the output as a set of object nodes rather than as a sequence of nodes, as there is no
“ground-truth” ordering available due to the isomorphic structure of scene graphs. Additionally, [16]]
showed that we cannot simply choose an arbitrary ordering of nodes. Moreover, it is computationally
intractable to maximize over all | N|! possible orderings. While there has been substantial research
into making this type of problem tractable [[15] [16] [[11]], these are generally not applicable to
multisets.

We experimented with multiple novel encoder-decoder pair architectures to attempt to solve the initial
node-generation problem. All experiments use the same encoder architecture, which is shown on
the left of Fig. 1.: We begin with a sequence of paragraph words, [z1, ..., z,]. We look up a word

embedding e; € R? for each word x;. We then run the sequence of embeddings through a stacked,
bidirectional LSTM with hidden and cell sizes h;, c; € R?. After passing through the LSTM, we
concatenate the first and last states hidden states to pass to the decoder;

— o
dec = [h1; hy,] € R*,
We experimented with two decoder architectures:

1. Baseline: Dense Multi-Layer Perceptron (MLP) w/ ReLu
We pass the encoding output through multiple dense layers with ReLu activation. Notably,
since the output must be of RIVI, we require the final linear layer to output a vector § of this

Binary Target: BCE Regression Target: MSE
Loss Loss

) —
States
Dense1 + Sigmoid

ense2
]
[Stacked BiLSTM a
A - ResConv3
] MaxPooling <]
7 (Stride of 2) N,
.

Sm—
1 }’ ResConv

[Embedding

Figure 1: Convolutional Multitask Architecture

dimension. We then optimize with respect to Mean-Squared Error Loss commonly used in
OLS regression:

. 1 .
Uy,) = Wlly = Jll2,

where y is the target k—hot vector.

. VGG-Inspired Multitask Convolutional Decoder with Max Pooling

We first define the ResConv sub-block (commonly used in Computer Vision architectures)
which consists of two successive 1d convolutions (with ReLu activation) and a skip (e.g.
residual) connection from the input of the first convolution to the output of the second. We
stack several of these ResConv blocks linearly, with MaxPooling layers between blocks to
facilitate comprehension of higher-order features. We flatten the output of the final ResConv
block and pass it through two separate dense layers. The output of the first dense layer is
passed through a sigmoid activation, yielding a binary vector output ;. The output of the
second dense layer is taken to be the multinomial vector output g,,,. We then generate a
mask of the multinomial target vector y,,, as a binary target ;. The joint loss is then the
weighted sum of an averaged Binary Cross-Entropy between y,,, and ¢,,, and the MSE loss
discussed previously:

(s Yos Yms Ym) = MBcE(Us: Ys) + (1 — N)larsE(Yms Ym)
1 0 NG i NG
=N [AZ (4" 108(3") + (1 = 5 Tog(1 = g4")) + (1= Mllym

where)\ is the weighted-sum hyperparameter. This is an implementation of multitask
learning, where we hypothesized that the model could learn to optimize for a difficult task
(counting objects) by simultaneously optimizing for an easier task (recognizing the presence
of an object). This architecture is shown on the right of Fig. 1.

Note: We also experimented with a fully-convolutional decoder (adding more and more output
channels at each level until reaching | V| in the final layer), though we abandoned this model after
terrible initial performance.

3.2 Scene Graph Prediction using Dependency Parsing and Iterative Message Passing

Given the performance of this multitask architecture (discussed in the Experiments section), we
decided to try a different novel approach that combines elements of both [[1] and [2], which we call
seq2graph. At a high level, we propose a candidate set of objects and edges (relations between
objects) for each example, and use a variant of the model proposed by [2]] to classify each object and
relationship. Our proposed model proceeds as a pipeline over six core units, each of which will be
further discussed in detail:

1. Dependency Parser:

A paragraph is split into raw input sentences, which are fed through an AllenNLP Depen-
dency Parser [24], from which we extract candidate objects for each sentence.

_gm||2 ;

2. Candidate-Target Alignment [training only]:
Because scene graphs (i.e., a set of nodes and a set of relations between nodes) are inherently
unordered, we must align target objects and relations between objects to candidates in an
unsupervised manner (as in [1]) in order to train our downstream models.

3. Feature Extraction:
Before attempting to classify candidate objects and edges, we must extract features from
each:

e Object Feature: the 100-dimensional GloVe [22]] word vector for the candidate object.

o Edge Feature: the projection of an attention-weighted concatenation of biLSTM
hidden states run over the input sentence.

4. Graph GRU:
We then feed node and edge features generated in (3) into a GraphGRU model as utilized by
[2]]. At ahigh level, each candidate object and edge maintains its own Gated Recurrent Unit
(GRU) state as its representation. Instead of receiving messages from preceding time-steps
as in a traditional RNN, messages are iteratively passed between nodes and the edges in
which they participate.

5. Softmax Classifiers:
We predict the node label for each candidate node and relationship label (if any) for each
candidate edge with a standard softmax classifier with cross-entropy loss.

6. Graph Merging:
Because we split the input paragraph ¢ into n; individual sentences to parse, we will produce
n; scene graphs that would need to be merged into a single, final scene graph. This is left
for future work.

3.2.1 Dependency Parsing

For the first step in this ordered approach, we rely on a pretrained neural dependency tree parsing
model [24] downloaded from [29]. To use this dependency parser, we first split an input paragraph
into its sentence components. We then consider each sentence individually in the dependency parsing
process and graph processing step. We note that while we do lose dependencies over multiple
sentences (i.e., “The man is running. The man is wearing a red hat.” should intuitively involve
just one man object), we believe that we could successfully merge generated scene graphs for
each sentence downstream. This dependency parser uses deep biaffine attention combined with a
bidirectional LSTM over the input sequence to produce a dependency graph in a form consistent with
Stanford Dependencies [26]].

We then implement an algorithm with [25]] in mind to extract salient node features from the depen-
dency parse of a sentence. This algorithm uses a modified breadth first search of the graph to propose
objects and numerical modifiers attached to each object to recreate the graph-processing step found
in [[1] (pictured in Fig. 2).

In addition to a modified BFS algorithm described in Algorithm[T] we attempted to incorporate neural
coreference resolution using another pretrained model [23]] from [29] for more complex sentences.
For example, given the sentence “There is a dog holding a stick, it is fluffy.”, we want our model to
attribute the fluffy attribute to the dog, not the stick through coreference resolution on it. However, this
model introduces significant complexity into our graph processing algorithm, and so for the scope of
this project we chose to forgo using an external model for explicit coreference resolution.

3.2.2 Candidate-Target Alignment for Training

A critical component of our pipeline is candidate-target alignment. Because we only have access to
full scene graphs and not direct pairs of objects or edges, we must create them in an unsupervised
manner.

The task is defined as follows: given a set of identified candidate objects, a set of target objects, and a
set of target subject-object-predicate relationship triples (target relationships), align (match 1-1) target
objects to candidate objects. That is, we define a mapping 7 : 0bjcand — 0bjitarger Over all candidate
and target objects in an example. We align objects in a hierarchical manner, first looking for direct
matches between candidate and target, then looking for targets within increasing edit distances, and

nmod:poss

nsubj et

nmod

det:gmod

man’ riding

det:qmod

nmod:poss

Figure 2: Graph Processing Step Replicated from [[1]]

Algorithm 1: Algorithm for Finding Raw Object Multiset from Parsed Dependency Graph

Result: Returns a list of objects given an input dependency graph
find_objects(root, objects, quantifiers);
if root is of subject/object type then
search root subtree for other subject/object types using BFS;
if subtree contains subj/obj types then
add objects to list;
delete current head from list;
end
use BFS to search subtree for numerical modifiers and add to quantifiers list;
else
\ find_objects(root.children, objects, quantifiers);
end
return objects, quantifiers;
end

finally taking the target with the closest word-vector cosine similarity. Then, we align relationships:
we propose an edge between every candidate object pair (01, 02). If (7(01),7(02), pred) exists
in the target relationship set (for some predicate pred), we align pred as the target edge label
for (01,02). If (7(01),7(02),_) does not exist, we align the special <NONE> relation to (o1, 02).
We return set of (candidate, aligned) object pairs, and the set of (candidate object pair,
aligned relation) edge pairs.

3.2.3 Edge Feature Extraction

To extract meaningful features for proposed edges, we (fEst run a bi-d(iiectional LSTM over the input
sentence. We then take the edge feature fi,; as Weage| 1 a(i); Ra(j); P a(); Pai)] € R?, where o)
is a function that finds the position index in a sentence where a word appears and Weqq4. € R4dxd jg

a learnable parameter. If a word appears more than once in a sentence, we simply take the average
across those hidden states.

3.2.4 Graph GRU and Softmax Classification

Given a set of edge features and object features (simply their 100-dimensional GloVe word embed-
dings [22]]), we then proceed with a new graph-decoder architecture proposed by [2]] for scene-graph
generation from images. For each node and edge, we maintain a Gated Recurrent Unit (GRU) cell.
Instead of updating the cells sequentially, as in a normal RNN-architecture, we update them through
iterative message passing. As described by [2], in the first iteration each node and edge state is
randomly initialized and then fed, as input, the corresponding node or edge feature. In successive
iterations, the states are updated with a message m, defined for nodes and edges respectively as:

[node message]: m; = Z o(wi [k hisg]) + Z o (w3 [his hji)
jii—j jig—i

[edge message]: m;_,; = o(vi[hs; hisj]) + o (vEThi; hj—i])

Table 1: Dataset Statistics

Examples # Relationships # Objects Max Paragraph Length Max # of Nodes
18,550 842 5099 304 167

where w1, ws, vi, and vy are learnable. After the last iteration, we run softmax classifiers over all
NodeGRU states and EdgeGRU states to predict one label per node and one relationship (or <NONE>)
per edge.

4 Experiments

4.1 Data

We relied on several sources to create a data set with mappings from descriptive paragraphs to scene
graph representations of the images described by these paragraphs. We downloaded the latest version
of the Visual Genome Scene Graph dataset [6]. Additionally, we used a dataset created by [[19] that
maps a subset of the Visual Genome set of images to descriptive paragraphs. By cross referencing
the image identification numbers of the paragraphs from [19] and the scene graphs from [6], we were
able to obtain a dataset of labeled pairs. See Table 1| for dataset statistics.

Below is a random (not cherry-picked) input/output pair example:

e Paragraph: “A time clock hangs on the wall in the center of the image. A silver object is sitting on
top of it. On either side of the clock hangs grey time card holders. Each slot is number. Below the time
clock, on a shelf is a white hard hat with a black and grey chin strap. Under the helmet is a file folder.

e Object SynSet Multiset: {time_clock.n.01, wall.n.01, clock.n.01, glass.n.01, numeral.n.0l, shelf.n.01,
support.n.01, strap.n.01, paper.n.01, point.n.09, prison_guard.n.01, lock.n.01, mailbox.n.01, pipe.n.01}

o Relationship SynSet Multiset: {(time_clock.n.0l, along.r.01, wall.n.0l), (clock.n.01, be.v.0l,
glass.n.01), (numeral.n.01, along.r.0l, paneln.0l), (supportn.0l, havev.0l, shelfn.0l),
(time_clock.n.01, have.v.01, point.n.09), (prison_guard.n.0l, be.v.01, time_clock.n.01), (support.n.0l,
havev.01, shelf.n.01), (time_clock.n.01, be.v.0l, wall.n.01), (point.n.09, be.v.01, time_clock.n.0l),
(time_clock.n.01, havev.01, lock.n.01), (shelfn.01, be.v.01, wall.n.01), (support.n.0l, be.v.0l,
wall.n.0l1), (time_clock.n.01, have.v.01, lock.n.0l1), (time_clock.n.01, have.v.01, point.n.09), (mail-
box.n.01, have.v.01, numeral.n.01), (clock.n.01, be.v.01, time_clock.n.01), (prison_guard.n.01, be.v.01,
time_clock.n.01), (pipe.n.01, be.v.0l, time_clock.n.01), (clock.n.01, be.v.01, wall.n.01), (numeral.n.0l,
along.r.01, wall.n.01), (support.n.0l, be.v.01, wall.n.01)}

After collecting and formatting this raw data, we performed several preprocessing steps by removing
uncommon object nodes and relationships, removing paragraphs with very small or nonexistent
scene graphs, and transforming each object and relationship type to its ‘synset’ — a representation
of all the object or relationship’s synonyms. Each synset can be translated to a numerical index
using a dictionary we aggregated. For both of our approaches, we arrange our training data into
train/development/test segments using 90%, 7%, and 3% of the data, respectively.

4.2 Evaluation method

For our object prediction experiments, our evaluation metric was relatively straightforward. For
predicted multisets, we use F1 score:

Fle 94 prec.is?'on x recall
precision + recall

In addition, we compute a raw accuracy, which is a percentage of how many nodes were correctly
identified and an order accuracy, which is the percentage of the nodes identified of the right order
(that is, how many nodes had the right count associated with them).

For our end-to-end experiments we simply use the precision metric from the F1 score to evaluate
the quality of our end-to-end scene graph generation models.

Table 2: Results

Encoder Decoder/Predictor F1 (%) Accuracy (%)
2-Layer Bi-LSTM, d = 128 2-Layer Dense 27.8 24.62
3-Layer Bi-LSTM, d = 256 2-Layer Dense 34.1 32.21
2-Layer Bi-LSTM, d = 128 Multitask Conv (3x Maxpool) 29.6 21.11
2-Layer Bi-LSTM, d = 128 Multitask Conv (2x Maxpool) 31.3 21.84
3-Layer Bi-LSTM, d = 256 3-Layer Dense 334 31.04
3-Layer Bi-LSTM, d = 256 Multitask Conv (2x Maxpool) 34.3 33.17
Dependency Parse+Align 2 Layer Dense d = 128 (object) - 0.059
Dep. Parse+Align+BiLSTM d = 128 2 Layer Dense d = 128 (edge) - 0.061

4.3 Experimental details

Outside of the dependency parser, our entire infrastructure was built from scratch, with each module
of our model created in PyTorch, and the various training loops for each part of our model tailored to
load our data in a way that was able to be input to our model. For each of our experiments, we used
an Adam optimizer with the same default intializations as in previous assignments.

For our one-shot multi-set prediction experiments, we split the 18,550 data pairs into 16,695 training
examples, 1,555 development examples, and 300 test examples. We trained each model to completion
over 40 epochs over our dataset, evaluating on the development set ever 500 iterations. We also used
a batch size of 128 examples in training. Table 2 shows our various model training configurations for
each experiment run.

For our end-to-end experiments, we attempted various methods with which to train our models. First,
we attempted to pre-compute our dependency and alignment algorithm outputs, so that these could
be input into the object decoder in a batched manner. However, we found that this method created far
too high of a RAM overhead to be tractable using our resources. Next, we created a modified training
loop to batch small sets of dependency parses and alignment outputs, and then feed them into our
object and edge models. However, due to a possible memory leak in our implementation, we were
unable to get our model to run for more than one epoch without crashing our VM and, as such, report
incredibly disappointing results. In our alignment step, we chose to not consider sentences which did
not have any aligned ground truth relationships, and chose to cut off our Levenstein distance search
at an edit distance of three. For our edge feature encoder, we chose a hidden size for the LSTM of
128. Finally, we did not fully implement the iterative message passing step as discussed previously,
instead focusing on trying to fully train baseline end-to-end models which did not include iterative
message passing.

4.4 Results

We report the F1 Node Prediction Scores and Node Prediction Accuracy Percentages for our first
approach in Table 2] Adding additional complexity to our node prediction model in the form of
multitask learning and convolutional blocks did not necessarily increase the performance of our
system. In addition, an overall accuracy averaging from 25-30% and a max F1 score of 34.3 is not
very accurate.

We were unable to successfully implement, train and test our designed end-to-end systems. This was
due to a memory leak either in our alignment or dependency parsing system, which caused our (56
GB) VM to crash near the end of the first epoch of training. As a result, we report validation results
at the latest point we were able to reach in training our end-to-end system. The models that we were
able to train obviously failed to learn their respective tasks to any meaningful level, with precision
metrics in the sub-percent range.

5 Analysis

In this section, we present several examples of model output for the various models we trained for the
purpose of qualitative analysis. Since we used several different approaches, and built fully custom

models for each approach, the outputs are formatted differently for each model. First, we analyze two
(random) sample outputs of our one-shot multitask node prediction model:

o Input Paragraph: A woman is standing in front of an elephant cage. An elephant is extending its
trunk to the womans hand, which she is holding out to him. The woman has brown hair pulled back in
a ponytail, and sunglasses on the top of her head. She is wearing a red skirt and tan tank top, and
sandals on her feet. She has a brown purse strung over her shoulder.

Predicted Object SynSets: [shoe.n.0l, trunk.n.01, girl.n.01, airplane.n.0l, shirt.n.0l, ele-
phant.n.01, elephant.n.01, elephant.n.0l, elephant.n.01, elephant.n.0l, man.n.01, window.n.0l,
sign.n.02, bench.n.01, clock.n.01, sheep.n.01, short_pants.n.0l, person.n.0l, person.n.01, person.n.01,
person.n.01, earn.0l, woman.n.01]

o Input Paragraph: This is an image of a sporting event. The woman is playing tennis. The woman
is holding a tennis ball. The ball is light green. The woman is about to serve the ball The girl is
holding a tennis racket. The girl is wearing a shirt. The shirt is white. The shirt has a design of a bird
on it. The girl has on black shorts. The racket is orange and black.

Predicted Object SynSets: [shoe.n.01, line.n.0l, ball.n.01, shirt.n.0l, court.n.0l,
short_pants.n.01, leg.n.01, woman.n.01, racket.n.04]

These outputs gives us some insight into the performance of our multitask object prediction model.
This model is obviously able to capture the general semantics of a scene. For example, when it is
input a paragraph describing a tennis sporting event, it predicts ‘line’ such as the lines found on
the court. This is done without a reference to ‘line’ in the source paragraph. Therefore, we can be
confident that our encoding architecture is learning the general semantics of the paragraph in question
to some degree. In addition, it is reasonably predicting objects that are present in the source paragraph.
However, this model seems to have problems with predicting how many of each object is present
in each input paragraph. This is likely because the model fails to accurately learn the grammatical
structure of the paragraphs.

Now, we qualitatively analyze several non-cherry-picked outputs from our dependency parsing and
alignment pipeline:

o Sentence: There is a person sitting at the table.

Output: Candidate Objects: [person, table], Alignments: [person:person.n.0l, table:table.n.01],
Relationships: [(person,have.v.01,table)]

o Sentence: The other elephants are in the forest.

Output: Candidate Objects: [elephants, forest], Alignments: [elephants:elephant.n.01, for-
est:land.n.01], Relationships: [(elephant,along.v.01,forest),(forest,behind.v.01,elephants)]

Here, we see that our dependency parsing and alignment systems are not completely failing to
capture relevant information in the downstream scene graph. We did, however, see errors in aligning
raw candidate objects to the target synsets to create viable training pairs. This is inherent to the
unsupervised nature of our alignment algorithm, but we found this (alignment in general) to be a
major bottleneck issue in training downstream models.

While we were not able to test the downstream node and edge prediction model due to implementation
bugs and memory issues, results from [2]] cause us to believe that our model design had a high
likelihood of working if we had been able to successfully implement it in the time provided for this
project.

6 Conclusion

We present novel methods and experiments that test these methods for the purpose of generating
semantically rich scene graphs from paragraph level descriptions of images. Our two main approaches
utilized a variety of techniques to predict node multisets and to predict object and relationship pairs
present in natural language. While our models failed to precisely generate accurate scene graphs,
and in some cases failed to train entirely due to computation restrictions, we see this as a first step in
building a fully neural end-to-end system for generating scene graphs from natural language. This
is a novel research question and, given more time, we would like to explore future work on using
one-shot recurrent models and attention mechanisms, along with cleaner data.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

Schuster, Sebastian, et al. "Generating semantically precise scene graphs from textual descriptions for
improved image retrieval." Proceedings of the fourth workshop on vision and language. 2015.

Xu, Danfei, et al. "Scene graph generation by iterative message passing." Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. Vol. 2. 2017.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks."
Advances in neural information processing systems. 2014.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly
learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. "Effective approaches to attention-
based neural machine translation." arXiv preprint arXiv:1508.04025 (2015).

Krishna, Ranjay, et al. "Visual genome: Connecting language and vision using crowdsourced dense
image annotations." International Journal of Computer Vision 123.1 (2017): 32-73.

De Marneffe, Marie-Catherine, et al. "Universal Stanford dependencies: A cross-linguistic typology."
LREC. Vol. 14. 2014.

Johnson, Justin, et al. "Image retrieval using scene graphs." Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015.

Chen, Dangi, and Christopher Manning. "A fast and accurate dependency parser using neural
networks." Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP). 2014.

Johnson, Justin, Agrim Gupta, and Li Fei-Fei. "Image generation from scene graphs." arXiv preprint
(2018).

You, Jiaxuan, et al. "Graphrnn: Generating realistic graphs with deep auto-regressive models."
International Conference on Machine Learning. 2018.

Haigh, Alex, Schwager, Sam, and van Paasschen, Frits. "Deep Autoregressive Models for Conditional
Graph Generation". CS236 Final Project. 2018.

Liu, Ying, et al. "A survey of content-based image retrieval with high-level semantics." Pattern
recognition 40.1 (2007): 262-282.

Jerry R Hobbs. 1978. Resolving pronoun references. Lingua, 44(4):311-338.

Rezatofighi, S. Hamid, et al. "Deepsetnet: Predicting sets with deep neural networks." 2017 IEEE
International Conference on Computer Vision (ICCV). IEEE, 2017.

Vinyals, Oriol, Samy Bengio, and Manjunath Kudlur. "Order matters: Sequence to sequence for sets."
arXiv preprint arXiv:1511.06391 (2015).

Srivastava, Rupesh Kumar, Klaus Greff, and Jiirgen Schmidhuber. "Highway networks." arXiv preprint
arXiv:1505.00387 (2015).

Yang, Jianwei, et al. "Graph r-cnn for scene graph generation." Proceedings of the European Confer-
ence on Computer Vision (ECCV). 2018.

Krause, Jonathan, et al. "A hierarchical approach for generating descriptive image paragraphs."”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

Collobert, Ronan, and Jason Weston. "A unified architecture for natural language processing: Deep
neural networks with multitask learning." Proceedings of the 25th international conference on Machine
learning. ACM, 2008.

Loper, Edward, and Steven Bird. "NLTK: the natural language toolkit." arXiv preprint cs/0205028
(2002).

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for
Word Representation.

Lee, Kenton, Luheng He, and Luke Zettlemoyer. "Higher-order coreference resolution with coarse-to-
fine inference." arXiv preprint arXiv:1804.05392 (2018).

Dozat, Timothy, and Christopher D. Manning. "Deep biaffine attention for neural dependency parsing."
arXiv preprint arXiv:1611.01734 (2016).

De Marneffe, Marie-Catherine, and Christopher D. Manning. Stanford typed dependencies manual.
Technical report, Stanford University, 2008.

De Marneffe, Marie-Catherine, and Christopher D. Manning. "The Stanford typed dependencies
representation.” Coling 2008: proceedings of the workshop on cross-framework and cross-domain
parser evaluation. Association for Computational Linguistics, 2008.

[27]

(28]

[29]

(30]

McCann, Bryan, et al. "The natural language decathlon: Multitask learning as question answering."
arXiv preprint arXiv:1806.08730 (2018).

Tamburini, Fabio. "Semgrex-Plus: a tool for automatic dependency-graph rewriting." Proceedings of
the Fourth International Conference on Dependency Linguistics (Depling 2017). 2017.

Gardner, Matt, et al. "AllenNLP: A deep semantic natural language processing platform." arXiv
preprint arXiv:1803.07640 (2018).

Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint
arXiv:1412.6980 (2014).

10

	Introduction
	Related Work
	Approaches
	One-Shot Node Multiset Prediction
	Scene Graph Prediction using Dependency Parsing and Iterative Message Passing
	Dependency Parsing
	Candidate-Target Alignment for Training
	Edge Feature Extraction
	Graph GRU and Softmax Classification

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

