
DeepBLEU

Austin Narcomey, Andrew Narcomey, Khalid Ahmad
{aon2, aon1, kahmad}@stanford.edu

Abstract

BLEU has been a key tool in the evaluation of machine translation that has al-
lowed for rapid development of new neural network models. However, its ease
of computation comes at the expense of true language understanding. This prob-
lem motivates our project to test a variety of neural network models, based upon
LSTMs, using a collection of human-evaluated machine translations. We aimed to
exploit the technique of attention, which has proven successful in NLP tasks, such
as machine translation and natural language inference, to develop a better model
for machine translation evaluation. We show that using an LSTM layer with a
Multi-layer Perceptron outperforms BLEU with respect to correlation with human
judgment, as does a model with self attention to encode inputs, thus providing
more useful metrics that do not rely on numerous external databases and do not
require extensive training.

1 Introduction

The focus of this project is to explore neural-network-based machine translation metrics that escape
the pitfalls of traditional automated metrics such as BLEU, while remaining more efficient, cheap,
and scalable than human evaluation. Evaluation is a critical aspect of developing more powerful
NLP systems, which have to experimentally demonstrate stronger performance. Human evaluation
is regarded as the gold standard for rating machine translation, discussed in Papineni et al. [8],
therefore the aim of this project is to develop a model that can more closely match human ratings
than other automated metrics such as BLEU, while retaining similar scalability and efficiency, which
is something that human evaluation lacks.

Our objective is to construct a model that maximizes the correlation between a model’s machine
translation scores and the scores given by human raters in datasets from WMT (http://statmt.org). We
will refer to this task as MT Eval: given a series of English reference translations and corresponding
model translations into English, evaluate the quality the translation with maximum correlation
to human evaluation. We test the performance of many different networks built upon an LSTM
architecture with self-attention and inter-sequence attention variations, and other types of layers and
architecture that map from sentence encodings to translation scores. We draw inspiration in our
implementations of attention from transformer models as they are known to produce promising results
when applied to NLP challenges, Domhan (2018) [2]. We have included non-neural-network-based
baseline models to give context to the performance of our models in machine translation evaluation.

2 Related Work

The most recent work in the use of neural networks for evaluation of machine translation models was
done in Guzmán et al. [4], published in 2017. The paper explores the use of an LSTM that takes
as input generated translations, a reference translation, and BLEU, NIST, TER, and Meteor scores
between each translation and the reference. While the results of this study demonstrated that the use
of these metrics shows promise in improving machine translation evaluation models, the aim of our
project is more in line with that of Gupta et al. [3], a paper published in 2015 that provides a novel



approach, called ReVal, to MT Eval purely using recurrent neural networks for an evaluation metric.
The paper explores new evaluation metrics for machine translation models, which are demonstrated
to have better or at least comparable correlation with human raters than popular state-of-the-art
non-neural methods such as BLEU, METEOR, TERp, and DISCOTK-PARTY-TUNED, when used
on their own. Their aim is to demonstrate a simpler, more compact evaluation model, as many of
their comparisons make use of complex external resources for information. They experiment with a
standard LSTM (Mikolov et al. [7], Hochreiter et al. [13]) and a Tree-LSTM model (Tai et al. [14])
to do this. The task for the non-neural baseline models and for the experimental models in ReVal is
to evaluate the quality of a translation, given a reference translation and an MT model translation
as inputs, and generating a similarity score from 1 to 5 as output. The goal is to generate machine
translation ratings yielding maximum correlation with human raters.

We explore the aspects of Gupta et al. [3] that are responsible for its strengths and weaknesses
in building such a model while also experimenting with techniques that have emerged since its
publication in 2015, such as inter-sequence attention, as explored by Chen et al. [12][11], and self
attention, as explored by Vaswani et al. [10] from 2018. Furthermore, concepts from CS 224N were
employed for analyzing and improving LSTM models as used in Gupta et al. [3].

We referred to model architectures in Natural Language Inference (NLI) tasks, such as Chen et
al. [12][11], as NLI similarly involves an input of two sequences and a scalar classification output.
Rocktäschel et al. [9] demonstarted that attention is a valuable technique in elevating NLI models
above the performance of simple bag-of-words baselines, which makes attention promising for our
MT Eval task. State-of-the-art models in NLI are capable of interpreting and comparing two input
sequences and then making a classification decision based upon that comparison, which we repurpose
for the MT Eval task by comparing reference and translation sequences and rating the translation
based on qualities like fluency and semantic similarity to the input.

3 Approach

3.1 Implementations

3.1.1 NIST and BLEU

We used two untrained baseline models common in automated MT Eval, BLEU and NIST. BLEU
and NIST are not trained and so our BLEU and NIST models do not rely on any hand-crafted external
resources.

3.1.2 Baseline LSTM

For our baseline neural implementation, we trained a bidirectional LSTM neural model without
attention, similar to the one outlined in ReVal. The base neural model, henceforth referred to as
Vanilla LSTM, is structured as a pair of single-layer LSTMs which separately encode the reference
translation and machine translation inputs, followed by a series of weight matrix operations to
combine the two encodings into a scalar similarity score. Using the two sentence encodings href and
htran, two new encodings are made, h+ ∈ R2h×1 and h× ∈ R2h×1. h× is a representation that uses
the angle between the encodings of the reference translation and the machine translation, and h+ is a
representation using the absolute distance between the encodings of the inputs. Two weight matrices
are trained, W (+) and W (×), such that

hs = σ(W (×)h× +W (+)h+ + b(h)), hs ∈ R2h×1. (1)

A third weight matrix is also trained, W (p), such that

p̂θ = softmax(W (p)hs + b(p)), p̂θ ∈ RK×1. (2)

Lastly, ŷ is calculated as

ŷ = rT p̂θ, r
T = [1, 2, ...,K], ŷ ∈ RK×1. (3)

For this problem, K = 5, since the ratings are between 1 and 5. This method of calculating ŷ from
encodings was chosen to match the method used in Gupta et al. [3]. This method of producing ŷ
from rT p̂θ was used in all model implementations for better comparison of results to those reported
for the ReVal implementation [3].

2



Further implementations of variations on Vanilla LSTM used multi-layer LSTMs as encoders and
were referred to as LSTM Stackedl, where l is the number of layers used per LSTM encoder.

3.1.3 Multi-Layer Perceptron

For more complex implementations, a Multi-Layer Perceptron (MLP) was implemented to take
the LSTM encoded hidden states for the machine translation and reference sentence as inputs, and
extract a series of features with each layer that culminates in a translation score distribution. A
similar approach is used in some modern NLI models Chen et al. [12], in which an MLP, following
Pooled LSTM hidden states, generates a probability distribution over entailment labels. We use
mean pooling and max pooling over the two sequences as described in Section 3.1.5 so that we can
propagate information from the entire sequence into the MLP. Various configurations of MLPs were
implemented, with each non-output layer consisting of a linear layer with tanh activation and optional
dropout and batch normalization layers. The output layer consisted only of a final linear layer of
output dimension K = 5. MLP output, houtput ∈ RK×1 is then used to produce p̂θ as

p̂θ = softmax(houtput). (4)

Finally, ŷ was produced using (3), with rT the same as used for the standard model. Implementations
of MLPs of different layers were referred to as MLPd, were d is the number of layers in the MLP
implementation excluding the input layer.

3.1.4 Attention

Two different intermediary Attention layers were tested for processing of machine translation encoded
hidden states, htran, and reference translation encoded hidden states, href , before being passed into
the MLP. These layers implemented two different types of attention: inter-sequence attention and
self attention. Attention has been found to be effective at characterizing the relationships between
components of sequences, identifying which states are most closely related and what other states
must be paid "attention" to when examining a given state.

Inter-Sequence Attention: Used in NLI applications to attempt to predict how much the meaning
of one sentence implies the meaning of the other, as explored in Chen et al. [12].

Takes in htran ∈ R2h×T , with hidden size h and machine translation sequence length T , and
href ∈ R2h×R, with reference translation sequence length R, and calculates e as

e = htran × href , e ∈ RT×R, (5)

which is meant to represent the relationship between each pair of hidden states between htran and
href . From there atran, attention for htran over href , and aref , attention for href over htran, are
calculated as

atran = βhtran, β = softmax(e, dim = R), atran ∈ R2h×R, (6)

aref = αhref , α = softmax(e, dim = T ), aref ∈ R2h×T . (7)

Original sequence htran is then concatenated with atran to produce htran_with_att ∈ R2h×T+R.
Original sequence href is then concatenated with aref to produce href_with_att ∈ R2h×T+R.

Inter-sequence attention was explored as a technique for characterizing how states in a machine
translation sequence relate to the states in a reference translation sequence, and vice versa, creating a
representation of the relationship between two sentences which could then be analyzed to approximate
their semantic similarity.

Self Attention: Used in Sentiment Analysis applications to attempt to better characterize the
meaning of a given sentence by taking into account how much different words in a sentence influence
the meanings of each word in that sentence. The best example of the use of self attention to accomplish
this can be found in Vaswani et al. [10], where self attention is used to encode the meanings of
sentences and then use those encodings to produce decoded output translations.

Takes in htran ∈ R2h×T , with hidden size h and machine translation sequence length T , and
href ∈ R2h×R, with reference translation sequence length R, and calculates etran and eref where

etran = htran × htran, etran ∈ R2h×T , (8)

3



eref = href × href , eref ∈ R2h×R, (9)
which is meant to represent the relationship between each pair of hidden states in htran and in href ,
respectively. From there, atran, attention for htran over htran, and aref , attention for href over
href , are calculated as

atran = αhtran, α = softmax(etran), atran ∈ R2h×T , (10)

aref = βhref , β = softmax(eref ), aref ∈ R2h×R. (11)

Original sequence htran is then concatenated with atran to produce htran_with_att ∈ R2h×2T .
Original sequence href is then concatenated with aref to produce href_with_att ∈ R2h×2R.

Self attention was explored as a technique for improving the encoded representations of two sequences
of the same language. Going further, an MLP (section 3.1.3) was then used as a feed-forward network
aimed at taking in these revised encodings and extracting from them a representation of their semantic
similarity. This was done in an attempt to approximate the capabilities of a Transformer [10] that
decodes concatenated encoded translation and reference translations into a representation of their
similarity.

3.1.5 Pooling

An additional Pooling layer was implemented to process input before being passed into the MLP,
incorporating information from the entire sequence and standardizing dimensions of the input to the
MLP by eliminating the dimension dependent on sequence lengths. As discussed in CS224N lecture
material, RNN architectures output a final hidden state that is predominantly determined by the end of
the sequence, so this Pooling layer aims to counteract this deficiency of recurrent networks. The Pool-
ing layer takes in seq ∈ RH×T+R, with number of hidden states H , corresponding to concatenated
htran and href in models without Attention or concatenated htran_with_att and href_with_att in
models with Attention, and creates two sequences, seq_max_pooled and seq_mean_pooled, where

seq_max_pooled = maxPool(seq, dim = H), seq_max_pooled ∈ RH×1, (12)

seq_avg_pooled = avgPool(seq, dim = H), seq_avg_pooled ∈ RH×1. (13)
Both seq_max_pooled and seq_avg_pooled are then concatenated together to produce
seq_pooled ∈ R2H×1, which is then returned to be passed into the MLP.

3.2 Code Base

All model implementations were coded by our team. Vanilla LSTM model was implemented in
pytorch based on specifications outlined in Gupta et al. [3]. The MLP layer was implemented based
on concepts outlined in Chen et al. [12].

Inter-sequence attention was implemented based on concept described in Chen et al. [12], modified
to exclude knowledge-enriched co-attention which had no application to MT Eval. Self attention was
implemented based on concept described in Vaswani et al. [10], modified to serve as single-head
instead of multi-head attention without positional encoding. Pooling was implemented based on
concept described in CS224N Assignment 5 (A5), modified to include both max and mean pooling.

ReVal code base was used only in further processing of preprocessed WMT-13 and SICK datasets, to
ensure matching of their dataset. Utils.py and Vocab.py were modified from CS224N Assignment
4 (A4) to operate on a single vocabulary, translations_vocab, rather than a source and target
vocab. Run.py was adapted to train neural modesl and evaluate performance on the validation set
using pearson and spearman correlation, rather than perplexity.

Our code base can be found at https://github.com/ANarcomey/DeepBLEU.

4 Experiments

4.1 Data

We make use of 4 different datasets extracted from WMT-13, 14, and 15, and the SICK dataset from
Marelli et al. [6].

4

https://github.com/ANarcomey/DeepBLEU


WMT-BASE Our standard dataset, referred to as WMT-BASE, consists of training, validation, and
testing segments extracted from WMT-13 to match dataset used in Gupta et al. [3]. The WMT-BASE
corpus contains 9, 559 training examples, in which each example contains a human-created reference
translation, a model-generated translation to evaluate, a score given by human raters, and the number
of human raters. For this corpus, the model-generated outputs are translations into English and the
references are corresponding sentences in English. For the WMT data, human ratings were derived
by giving each human rater a correct human-generated source sentence along with 5 translations
from different models. Each rater was told to rank the translations from 1 to 5 with ties allowed,
where 1 indicates most similar sentence meaning and 5 indicates least similar meaning. Allowing
ties means 5 very poor translations could all have rank 5, for example. Each translation received
an integer score from 1 to 5 from each worker and its final score was the average of all its ratings,
so scores are not strictly integer values. The development and test sets for the WMT-BASE corpus
each contain 1, 000 similarly structured examples extracted from WMT-13. The WMT-BASE data as
provided in Gupta et al.[3] inverts the conventional WMT scale, resulting in a scale in which accurate
translations receive a score of 5 and poor translations receive a score of 1. We converted all of the
data obtained for WMT-14 and WMT-15 into this inverted scale, for consistency with WMT-BASE.

WMT+SICK Our second corpus, referred to as WMT+SICK, was made by combining WMT-
BASE with the SICK dataset. The SICK dataset contains 4, 500 sentence pairs with scores of
semantic relatedness and entailment. Relatedness was scored on a continuous scale from 1 to 5
(with 5 indicating that both sentences conveyed the exact same idea and 1 indicating both sentences
conveyed entirely separate ideas). Entailment was removed from dataset through processing. The
resulting data set contains 14, 059 training examples along with the same validation and test sets used
in WMT-BASE.

WMT-LARGE Our largest corpus, referred to as WMT-LARGE, extends the training set WMT-
BASE with data from WMT-15 and consists of similarly structured training, validation, and testing
segments. We pulled raw WMT-15 data from WMT (http://www.statmt.org/wmt15/results.html) and
aggregated individual ratings into a structured dataset. The added WMT-15 data consists of English
references and translations into English from source languages Czech, French, German, Finnish, and
Russian. This augmented training set gives models more data as well as access to a wider range of
translation errors due to the varied selection of source languages.

WMT-14 We pulled raw data from WMT (http://www.statmt.org/wmt14/results.html) and aggre-
gated individual ratings into a dataset structured like WMT-BASE. The data extracted from WMT-14
consists of English references and translations into English from Czech, French, German, Hindi, and
Russian. We use this WMT-14 data to match reporting in Gupta et al. [3], but it is not stated exactly
how the raw data was aggregated and pre-processed so our results cannot be precisely compared. We
average ratings for the same reference and model translation, and filter out any translation-reference
pairs with fewer than 3 ratings.

4.2 Experimental Details

Multiple different model configurations were explored combining LSTM depths, MLP depths, and
use of different Attention schemes. Different configurations ultimately narrowed down to 7 model
implementations, each utilizing Embedding and Hidden Size of 256, Learning Rate of 0.001, and
Dropout Rate of 0.3. Defining model features are shown in Table 1 below. We recorded all of our
experimental results in a spreadsheet at https://goo.gl/CHHBXz.

Vanilla Stacked2 MLP2 Inter-Seq
+ MLP2

Self +
MLP2

Inter-Seq
+ MLP3

Self +
MLP3

LSTM Layers 1 2 1 1 1 1 1

MLP Layers N/A N/A 2 2 2 3 3

Attention N/A N/A N/A Inter-Seq Self Inter-Seq Self

Table 1: Parameters/Architecture Choices Used in Implementation of Models

5



4.3 Evaluation Method

The goal of the MT Eval task is to provide a metric with maximum correlation to human judgement
on machine translation datasets. Given that human raters are currently considered the most accurate
judges of translation quality, performance of models were judged based on rating similarity to human
raters Papineni et al. [7]. Average Pearson and Spearman correlation were used to evaluate rating
similarity over all language pairs, as done in Gupta et al. [3].

NIST BLEU Vanilla Stacked2 MLP2 Inter-
Seq +
MLP2

Self +
MLP2

Inter-
Seq
MLP3

Self +
MLP3

Train Pearson 22.07 30.57 72.23 71.34 63.74 63.86 50.55 64.89 49.90

Spearman 21.36 30.00 71.19 70.60 62.81 63.10 51.21 64.03 50.24

Dev Pearson 18.89 28.94 34.61 35.38 34.76 34.47 35.09 35.15 35.19

Spearman 17.69 27.30 34.51 35.00 34.03 33.73 34.50 34.74 34.57

Test Pearson 19.14 26.76 37.14 37.98 40.59 39.80 40.17 39.18 40.36

Spearman 18.48 25.40 36.84 37.88 39.85 39.03 39.62 38.33 39.74

Table 2: Pearson & Spearman Correlations For Models Trained On WMT-BASE Data

NIST BLEU Vanilla Stacked2 MLP2 Inter-
Seq +
MLP2

Self +
MLP2

Inter-
Seq +
MLP3

Self +
MLP3

Train Pearson 31.11 37.32 50.16 53.67 49.19 50.10 51.8 48.66 48.92

Spearman 30.36 38.02 48.77 53.08 50.33 50.99 52.47 49.73 50.11

Dev Pearson 18.89 28.94 34.60 34.50 34.24 34.62 34.56 34.10 35.14

Spearman 17.69 27.30 33.76 33.27 33.46 33.80 33.38 33.49 34.33

Test Pearson 19.14 26.76 38.66 38.28 39.31 39.47 39.78 38.75 40.22

Spearman 18.48 25.40 38.02 37.45 38.33 38.51 38.23 37.65 39.19

Table 3: Pearson & Spearman Correlations For Models Trained On WMT+SICK Data

NIST BLEU Vanilla Stacked2 MLP2 Inter-
Seq +
MLP2

Self +
MLP2

Inter-
Seq +
MLP3

Self +
MLP3

Train Pearson 16.37 28.87 49.39 49.25 39.15 41.40 37.93 43.58 43.48

Spearman 15.97 27.25 48.55 48.33 38.14 40.60 36.93 42.82 42.54

Dev Pearson 18.90 28.94 35.12 37.19 37.07 35.30 36.73 36.60 36.71

Spearman 17.69 27.30 33.64 35.48 35.82 33.70 35.40 34.99 35.32

Test Pearson 19.14 26.76 37.92 36.60 38.03 37.96 37.85 36.77 36.82

Spearman 18.48 25.40 36.86 35.88 37.11 36.50 36.18 35.63 35.82

Table 4: Pearson & Spearman Correlations For Models Trained On WMT-LARGE Data

6



NIST BLEU Vanilla Stacked2 MLP2 Inter-
Seq +
MLP2

Self +
MLP2

Inter-
Seq +
MLP3

Self +
MLP3

Test Pearson 19.84 27.31 23.91 26.78 26.77 27.31 27.83 27.43 26.03

Spearman 19.23 24.37 24.83 25.90 26.52 27.08 27.71 27.06 25.35

Table 5: Pearson & Spearman Correlations For WMT-LARGE Models Tested On WMT-14

5 Analysis

We see that for all trained models, scores on WMT-14 are significantly lower than both validation
and test performance on WMT-LARGE. This is most likely because WMT-14 data, in the way
we aggregated and minimally processed it, comes from a different distribution than the training
data derived from WMT-13. Untrained metrics NIST and BLEU perform similarly, but trained
models suffer because they were trained on a different data distribution. We also see that the trained
models largely do not benefit from the larger training set of WMT-LARGE, which may be a result of
early-stopping criteria ending training too early, since the much larger dataset requires more time to
fit than WMT-BASE.

5.1 Qualitative Analysis

In analyzing the errors each model makes, we saw that untrained metrics BLEU and NIST most
closely predict human ratings when the reference and translation sentences are almost exactly identical
or one segment is identical and the other segment is very incorrect. Here "most closely predict"
means minimizing (human_score - model_score)/human_score. Given that BLEU and NIST
operate on n-gram pattern matching, they assign near perfect scores for near identical translations just
like human raters, and will assign middle-range scores for sentences where a segment is identical,
with better scores for longer identical segments. BLEU scores are most distant from human ratings
when the translation uses a different phrase to indicate the same meaning, such as "You have to
pay extremely careful attention, says Wentzler" and "Wentzler adds: vigilance is required." In this
common failure case of BLEU and NIST, the reference and translation use very different phrases that
carry identical meaning.

The trained models offer no guarantee that identical translations and references will receive a perfect
score, but the models are capable of combining information in the sequences in much more complex
ways than matching n-grams. The Self+MLP3 model is qualitatively invariant to the order of words:
the reference-translation pair which most closely predicted the human rating in the test set was
"Similar conclusions are also reached by the joint audit from the Czech and German auditors" and
"An audit conducted jointly by inspectors, Czechs, and Germans also suggests similar conclusions."
These two sentences convey nearly identical meanings with the same set of words but broken into a
completely different set of n-grams. Self-attention, however, allows our model to attend to any part
of the sequence and capture the similar semantic meaning, capturing how the words in each sentence
relate to each other other regardless of their relative orderings.

An additional strength, general to all of our neural models due to their use of learned word embeddings,
is that they can easily capture synonyms and give a fair rating to translations that choose different but
synonymous words and phrases.

5.2 Model Comparisons

Vanilla is a simple one layer LSTM network, using the parameters described in section 4.3 and
architecture as described in section 3.1.2, which consistently resulted in the highest correlations,
both pearson and spearman, seen across Tables 2-4, on training data across the three different WMT
datasets that were tested. Comparing this performance to validation and test correlations, it is clear
that Vanilla, being the simplest model tested, strongly overfit to the data and was not able to generalize
elsewhere.

7



To improve upon Vanilla, Stacked2 was implemented, which added a second layer to the basic
LSTM configuration and was implemented according to Table 1. Stacked2 performed similarly to the
vanilla LSTM across datasets, with mixed results on WMT-LARGE. Overall, Stacked2 was one of
the strongest performers on validation performance on WMT-BASE data and WMT-LARGE, with
correlations shown in bold in Table 2 and Table 4. Stacked2 was able to significantly outperform
Vanilla most likely due to its ability to add an extra layer of abstraction. Stacked2 is also, in greater
context of our experiments, a low-complexity model which explains why it would be less likely to
overfit to the datasets.

As a comparison to Stacked2, MLP2 was designed to be a one layer LSTM that feeds into a two layer
MLP, described further in section 3.1.3. MLP2 continued to produce a more generalizable model,
seen in its much lower training performance and similar validation correlations across all datasets
compared to Stacked2. MLP2 outperformed the previous models on all test correlations. MLP2 was
a better generalizer, likely in part due to its integration of dropout between layers for regularization.
However, it is worth noting that an early stopping method was used in training that could lead more
complex models to stop training before fitting more completely.

MLP2 and MLP3, a variation of MLP2 with an extra layer in the MLP (illustrated in Table 1), were
both implemented with inter-sequence attention and self attention to experiment with the benefits of
each kind of attention and model size. Overall, MLP models implemented with self attention saw
lower train correlations compared to those implemented with inter-sequence attention across Tables
2-4, while maintaining similar validation and test correlations. This is most likely an attribute of the
early stopping mechanism used. Changing the MLP to utilize three layers from two layers first tested
showed mixed results, but resulted in the strongest results on WMT+SICK data in combination with
self attention, showing that adding more model flexibility and complexity beyond two layers was
mostly not needed, and might be only useful with more data. On WMT-BASE and WMT+SICK data
self attention performed better than inter-sequence attention, while there were more mixed results in
WMT-LARGE, as both versions were beaten by an MLP with no attention. This suggests that, in our
datasets and parameter settings, self-attention generates a more meaningful semantic encoding of
each sentence by having each sequence attend to itself, and these, more powerful, encodings yield
better performance than the cross-sequence information transfer offered by inter-sequence attention.
Inter-sequence attention, in this context, could be providing more noise than information, particularly
since these datasets are not extremely large, and could require more model tuning to exhibit stronger
performance over models with self attention or without any attention implemented.

Comparing all models, we can conclude that MLP2 outperformed other models on test correlations
for WMT datasets not trained with the additional SICK data, while Self+MLP3 outperformed other
models on test correlations when trained on SICK data. This could be attributed to SICK data
following a different distribution than WMT data sources, and that the simple MLP2 model is not
able to learn the features in this data as well, but its simplicity is rewarded when the training and test
data follow a more similar distribution as seen in Table 2 and Table 4.

6 Conclusion

We see an interesting result that the strengths and weaknesses of n-gram-based metrics and neural
evaluation models are complementary: BLEU performs strongly when reference and translation
have extended segments of near identical phrases, while our neural models are better at extracting
semantics and are invariant to issues like phrase order and synonyms that would confuse a metric
such as BLEU. Additionally, using a two layer Multi-layer Perceptron proved useful in reducing
overfitting in simpler one and two layer LSTM networks and led to some of the highest pearson and
spearman correlations. Self attention led to better input encodings than an LSTM with Multi-layer
Perceptron, posting the highest correlations on WMT+SICK data. Inter-sequence attention also
showed comparable test performance to self-attention, but most likely is lagging due to small dataset
and model sizes. With more data, we would experiment with longer training and deeper networks as,
ultimately, our models were limited by the amount of human rated machine translation data available.
Despite this, our results all outperform NIST and BLEU correlations, showing the promise of neural
network architectures to provide evaluation that measures closer to human judgment, without needing
any external training resources.

8



Additional Information

We are pursuing the custom project and have been assigned Anand Dhoot (anandd@stanford.edu) as
our teaching assistant point of contact. This project is not shared with another class and is unrelated
to any of the listed projects proposed by Stanford AI Labs.

References

[1] Chen, Zhiming, et al. "Improving machine translation quality estimation with neural network
features." Proceedings of the Second Conference on Machine Translation. 2017.

[2] Domhan, Tobias. "How much attention do you need? a granular analysis of neural machine trans-
lation architectures." Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Vol. 1. 2018.

[3] Gupta, Rohit, Constantin Orasan, and Josef van Genabith. "Reval: A simple and effective
machine translation evaluation metric based on recurrent neural networks." Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing. 2015.

[4] Guzmán, Francisco, et al. "Machine translation evaluation with neural networks." Computer
Speech & Language 45 (2017): 180-200.

[5] Kim, Hyun, and Jong-Hyeok Lee. "A recurrent neural networks approach for estimating the
quality of machine translation output." Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016.

[6] Marelli, Marco, et al. "Semeval-2014 task 1: Evaluation of compositional distributional semantic
models on full sentences through semantic relatedness and textual entailment." Proceedings of the
8th international workshop on semantic evaluation (SemEval 2014). 2014.

[7] Mikolov, Tomáš, et al. "Recurrent neural network based language model." Eleventh annual
conference of the international speech communication association. 2010.

[8] Papineni, Kishore, et al. "BLEU: a method for automatic evaluation of machine translation."
Proceedings of the 40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 2002.

[9] Rocktäschel, Tim, et al. "Reasoning about entailment with neural attention." arXiv preprint
arXiv:1509.06664 (2015).

[10] Vaswani, Ashish, et al. "Attention is all you need." Advances in Neural Information Processing
Systems. 2017.

[11] Chen, Qian, et al. "Enhanced LSTM for natural language inference." Proceedings of the
55th annual meeting on association for computational linguistics. Association for Computational
Linguistics, 2017.

[12] Chen, Qian, et al. "Natural language inference with external knowledge." 6th International
Conference on Learning Representations. International Conference on Learning Representations,
2018.

[13] Hochreiter, Sepp, et al. "Long short-term memory." Neural computation Volume 9 Issue 8, 1997.

[14] Tai, Kai Sheng et al. "Improved semantic representations from tree-structured long short-term
memory networks." arXiv preprint arXiv:1503.00075 (2015).

9


	Introduction
	Related Work
	Approach
	Implementations
	NIST and BLEU
	Baseline LSTM
	Multi-Layer Perceptron
	Attention
	Pooling

	Code Base

	Experiments
	Data
	Experimental Details
	Evaluation Method

	Analysis
	Qualitative Analysis
	Model Comparisons

	Conclusion

