
Towards Better Character-based Word Vectors

Luoshu Wang
luoshu@stanford.edu

Abstract

Morphemes have proven to be important in understanding the meanings of words
in many languages, e.g., English. They are also popular in the world of learning
word representation. Here are some issues in current approaches. Character-based
word vectors, such as [1], implicitly assume that the every morpheme is equally
important regardless of the context, but, in reality, that is not the case. An effective
way to identify which subwords are the most relevant remains to be found.

In this study, we propose a new model that represents words by only using the sum
of important subwords. (1) We first design an unsupervised word segmentation
model to split words into morphemes by combining byte-pair-encoding(BPE)
method and word weights. We also propose a new method called byte-pair-
search(BPS) to enrich subword information. (2) We propose representing words by
only using the sum of these segmented morphemes, instead of all ngrams. (3) Fi-
nally, we conduct an extensive experimental study to demonstrate the effectiveness
and efficiency of our approach, using wikipedia data.

1 Introduction

Word representation has drawn a lot of attention in the NLP community. It has been the key component
of many NLP tasks, such as language modeling, machine translation, text classification and sentiment
analysis. In recent years, a lot of work [2] [9] has been done to update word vectors by combining
context information. However, more exploration is needed to improve word representation using its
internal structure.

Some prior work has proven subword units are helpful for word representation. The FastText method
[1] extends the skipgram and negative sampling method [6] and proposes representing words by
taking into account their ngrams. The FastText method implicitly assumes that every morpheme is
equally important regardless of the context, but, in reality, that’s not the case. [11] propose to use
byte-pair-encoding in extracting important subword information, which has proven to be a successful
attempt in neural machine translation.

In this study, we first extend the work of [1] and adopt an unsupervised word segmentation model
to split words into morphemes by combining byte-pair-encoding(BPE) method and word weights.
We also propose a new method called byte-pair-search(BPS) to enrich subword information. We
think BPE might lose the important morphemes since it only chooses one most frequent pair in
every iteration even there are multiple candidates, and the merge order might influence the final word
segmentation results. Next we feed our Subword Model back to the general models. We inherited the
skipgram model and negative sampling method as our general model framework. For speeding up
building the models, we also propose a subword logistic regression model to quick fit our subword
model to pretrained word vectors. Finally, we evaluate our model on human similarity judgment
tasks, using FastText model as the baseline. We also analyzed the impact of word weight, vocab size,
Begin-Of-Word and End-Of-Word in word representation.

2 Related Work

Distributed word representation has been widely studied. In 2013, [6] introduced the word2vec
method which allows to train word embedding through shallow neural network using word co-
occurrence information. In 2014, GloVe model [8] was proposed to leverage statistical information
from both global matrix factorization and local context window. In 2018, BERT [2] and ELMo [9]
used context information to update original word vector and got exceptional results.

Besides context knowledge, using subword information as NLP feature has also been recently
investigated. In 2013, [7] added knowledge-based morphological features to word representation.
In 2014, [10] proposed jointly learning subword units and word to enrich word representation. In
2016, [1] extended the work of word2vec [6] and proposed the FastText method, which representing
word using a bag of ngrams. [12] proposed wordpiece model and used byte-pair-encoding method [11]
to deal with rare words in neural machine translation. In 2018, the BERT model [2] inherited the
usage of wordpiece model. In our model, we also extend the work of byte-pair-encoding, but the
major difference is that [12] [2] focus on word piece representation and our model focus on word
representation itself.

3 Approach

Our data-driven model learns word representations while taking into account morphology. In this
section, we first present the basic concepts that are defined and used in our model. Then we present
our Subword Model and introduce how to segment words using byte-pair-encoding method and
word weight assumption. Next we talk about how to represent words by only using the segmented
subwords. Finally, we show the general training models.

3.1 Subword Model

We first present the key characteristics of our Subword Model.

Word weight. In the input representation of our model, every word w has its own weight weight(w),
which indicates the importance of each word across all words in vocabulary. We propose to represent
word weight associating its actual frequency in articles, say:

weight(w) = freq(word)α (1)

α is a hyperparameter, we recommend to use value between [0.75, 1], which performs best in the
experiments.

Byte-pair-encoding (BPE). When looking at words and their word weights, we can adopt the
byte-pair-encoding methods to segment words, which is similar to the usage in [11] to deal with rare
words in Neural Machine Translation.

Byte-pair-search (BPS). We extend the work of BPE, and propose a new model called Byte-
pair-search to select the most important subwords and enrich the representation. In every iteration
in the BPE approach, BPE chooses the most frequent subword pair and merges them into a new
subword unit. We argue that when two subword pairs havethe same frequency occurrence, the merge
order might influence the final word segmentation results, which might lead to the loss of important
morphemes. In our approach, every time when the model chooses most frequent subword pair, if
there are more than one candidate, we will keep all of them. Our BPS approach can efficiently help
with addressing this issue by going through all the possibilities and returning more relevant subwords.

Subword frequency. BPE chooses the most frequent subword pair in every iteration and merges it
into a new subword unit. Freq(AB) is the frequency of A and B occurring together as a one word unit.
Subword frequency is a key threshold to achieve a balance between keeping high-level words in the
vocabulary and effective splitting.

Example 1: For the word ‘understanding’, in our model we will split the word into

understanding: understand ing

2

If we use a lower word frequency threshold, we might split ‘understanding’ into ‘under’, ‘stand’
and ‘ing’, or even lower-level n-grams ‘st’ and ‘and’, which does not take ‘understand’ as a whole
subword. If we use a higher word frequency threshold, we might leave most words unsegmented.

BOW and EOW. Begin-Of-Word(BOW) and End-Of-Word(EOW) play an important role in word
representation, and we study their impact in our model. We use ‘<’ as the identifier for the BOW
and use ‘>’ as the identifier of EOW, since there is no word that has both ‘<’ and ‘>’ in its origin
vocabulary.

Example 2: <cleanup> is a word with BOW and EOW.

Words with BOW and EOW have some interesting patterns.

Fact 1: Freq(<word>) always equals 1 if there is no other word that contains <word>.

Fact 2: All words are split into two or more subwords in the final step if learning BPE using
subword frequency cutoff is larger than 1 and there is no other word that contains <word>.

Intuitively, Fact 1 and Fact 2 tell us if we want to use word representation with both BOW and EOW,
we had better add origin <word> back to vocabulary. Otherwise, we will lose the insight of taking
<word> as a whole.

If representing input words without BOW and EOW or only having BOW or EOW, the model could
benefit from taking its original word as a subword of other words naturally and learn one word prefixes
or suffixes as subwords of another word, which is especially useful for long word representation. We
prefer using this approach in our model.

Word Segmentation Model. We then present the word segmentation model for both common
words and out-of-vocabulary words. We can learn the most frequent subword pairs using BPE or BPS
method from a dictionary, e.g., wikipedia articles, and then sort these subword pairs by frequency.
This pre-training method allows us to segment words using large dictionary information, instead of
depending on training data, which might be small. While getting common words segmentation results
in BPE, we are also able to segment Out-of-vocabulary words efficiently as described in following
algorithm. We set up minimum word frequency threshold to control how deep we would like to
segment words.

def oov_word_segment (word , m o s t _ f r e q _ p a i r s , m in_ f r equency) :
word_segmen t_ res = l i s t (word)
f o r m o s t _ f r e q _ p a i r in m o s t _ f r e q _ p a i r s :

i f (m o s t _ f r e q _ p a i r . f r e q u e n c y < min_ f r equency) :
break

I f t h e r e i s merge c a n d i d a t e .
i f (c o n t a i n s _ p a i r (word_segment_res , m o s t _ f r e q _ p a i r)) :

Merge two subwords , e . g . , abcd −> AEd
upda te_word_segment (word_segment_res , m o s t _ f r e q _ p a i r)

re turn word_segmen t_ res

3.2 Representing words by segmented subwords

After getting segmented subwords, we can represent words by only using the segmented results. The
traditional character-based word vectors, such as [1], attempts to represent words by ngrams.

Example 3: Take the word <where> and n = 3 as an example. The word will be represented by the
sum of ngrams in the FastText model: <wh, whe, her, ere, re> and the special sequence <where>.

However, in this case, we think some subwords, e.g., her, is useless in representing <where>. Since
the subword is irrelevant to the original word while taking into account human knowledge. We only
want to represent words using meaningful ngrams.

3

Model We propose a model that represents words only using the segmented subwords. Given a
dictionary of segmented subwords S and a word W, we will represent a word by the sum of the vector
representations of its segmented subwords built in section 1.1. The scoring function is:

s(w, c) =
∑
s∈S

zTs vc (2)

Example 4: Using the word ‘precise’ as an example, the segmented subword will be prec and ise.
We propose to present this word as

s(‘precise’) = s(‘prec’) + s(‘ise’)

3.3 General Model

After obtaining word segmentation information, we can feed the subword model back to FastText [1]
embedding learning framework, which was built on the top of skip-gram model and negative sampling
methods [6]. We need to modify the ngrams representation part and OOV word segmentation to serve
our subword models.

Another way to learn word representation is using subword segmentation results to fit with a pretrained
original vector using a simple logistic regression model. This approach can help accelerate the speed
of building word vectors. The loss function would be:

loss = sum(embeddings(subwords))− embedding(word) (3)

Example 5: word could be segmented to three subwords: A, B, C . We will have a loss function:

loss = embedding(A) + embedding(B) + embedding(C) - pretrained embedding(word)

We can train model, minimize the loss and then obtain the character-based word vectors.

4 Experiments

4.1 Baseline

In this study, we compare our model to the C++ implementaion of skipgram models from FastText
package [1].

4.2 Data

We build vocabulary using both enwik9 dataset and Wiki latest pages articles. We train embeddings
in enwik9 data. For comparison to prior work [1], we also use Matt Mahoney’s pre-processing perl
script to shuffle the data. We use the WordSim353 dataset introduced by [3] and the Rare Word
dataset introduced by [5] to do human similarity model evaluation. For comparison to previous
work [4], our model can be evaluated in text classification tasks as well. We also evaluate in text
classification tasks using 8 datasets and evaluation protocol of [13].

4.3 Experimental setup

To compare with [1], we adopt the same experimental setup as baseline. The word vectors have
dimension 300, and we randomly sample 5 negatives for each positive example. The learning rate is
0.05 for skip-gram model and epoch is 5. Only the words that appear at least 5 times in the training
set will be kept in the word dictionary. The evaluation model is set up in C++. The human similarity
judgement taks are conducted with BPE-based Subword Model.

4.4 Results

Human similarity judgment tasks We evaluate our BPE-based model on the word similarity
tasks, by computing Spearman’s rank correlation coefficient between human judgment and the cosine

4

similarity between the vector representations. We use both WordSim353 dataset and Rare Word
dataset.

From the Table 1, our model outperforms FastText in WordSim353 task and less effective in Rare
Word task. The reason behind is that there is more common words in WordSim353 dataset, where our
model might be benefited from the morphological decomposition of words. The loss in the Rare Word
dataset might come from BPE can only split word to non-duplicated subwords, so if the segmentation
is imperfect, it might lose important information. BPS method might help with this case.

Table 1: Human Similarity Judgment

Model WS353 Rare Word
FastText (enwik9 as dictionary) 74 45
Our Model (enwik9 as dictionary) 76 41

Effect of Dictionary Size We build word segmentation dictionary from both enwik9 dataset(713M,
21K words after filtering) and Wiki latest pages articles(22G, 1.7M words after filtering). From the
experiments, even using enwik9 as dictionary, our model is able to segment all OOV words efficiently
and get the similar performance as super large dictionary.

Table 2: Dictionary Size / Human Similarity Judgment

Model WS353 Rare Word
Our Model (enwik9 as dictionary) 76 41
Our Model (Wiki latest pages articles as dictionary) 76 41

4.5 Qualitative analysis

Word segmentation results We report sample BPE-based word segmentation results in Table3,
which are randomly selected. From the results, we are able to capture the correct morphemes within
one word. Our models outperforms FastText when the morpheme is a long subword, e.g. ‘transfer’,
which is hard to capture by FastText model since by default FastText only catch ngrams with length
range [3, 6].

Table 3: Word segmentation result / Same morpheme

Word Segmentation results
transferring transfer ring
transferable transfer able
transference transfer ence
transferred transfer red
deliveryman delivery man
extraordinarius extra ordin ar ius
dissociatives dis soci atives
childishness child ish ness
farmerville farmer ville

Compare BPS and BPE When we study the impact of BPS and BPE, we find BPS can help enrich
our vocabulary. Use ‘low 5, lower 2, newest 6, widest 3’ as an input example and set the subword
frequency as 5. Table 4 is the vocaulary generated by BPE and BPS method. We have implemented
the basic version of BPS and plan to add optimization methods to speed up the pre-training. Please
refer future work section for more details.

5 Conclusion and Future Work

Conclusion This project is attempt to build a word representation models using subword infor-
mation. We first develop a subword segmentation model, which is an extension work to byte pair

5

Table 4: Vocabulary from BPE and BPS

BPE BPS
s t st 9 es t est 9
e st est 9 e st est 9
o w ow 7 s t st 9
l ow low 7 l o lo 7
w est west 6 o w ow 7
n e ne 6 lo w low 7
ne west newest 6 new est newest 6
N/A e west ewest 6
N/A ne w new 6
N/A e w ew 6
N/A w est west 6
N/A n e ne 6
N/A ew est ewest 6
N/A ne west newest 6
N/A n ew new 6

encoding. And then we propose to represent word by only using these segmented results. We feed
them back to the general training framework and get the word embedding. We evaluate our word
vector and it outperforms FastText baseline in WordSim353 dataset in the Human Similarity Judgment
tasks. Our model allows training embedding very fast, which is around 2x faster than baseline in
enwik9 dataset while capturing morphones within one word effectively.

Future work In the next a few weeks, we are going to implement an efficient version of byte-
pair-search(BPS) to select the most important subwords and enrich the representation. We can add
optimization methods such as multithreading and removing duplication to speed up the pre-training
process. We will also run word embedding training in larger wikipedia dataset rather than enwik9 to
analyze the model performance.

Acknowledgments

Huge thanks to Peng Qi for the mentorship on this project!

References
[1] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors

with subword information. CoRR, abs/1607.04606, 2016.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2018.

[3] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman,
and Eytan Ruppin. Placing search in context: The concept revisited. ACM Transactions on
information systems, 20(1):116–131, 2002.

[4] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for
efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

[5] Thang Luong, Richard Socher, and Christopher Manning. Better word representations with
recursive neural networks for morphology. In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, pages 104–113, 2013.

[6] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

6

[7] Amr El-Desoky Mousa, Hong-Kwang Jeff Kuo, Lidia Mangu, and Hagen Soltau. Morpheme-
based feature-rich language models using deep neural networks for lvcsr of egyptian arabic.
In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages
8435–8439. IEEE, 2013.

[8] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[9] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Ken-
ton Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365, 2018.

[10] Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-Yan Liu. Co-learning of word representations
and morpheme representations. In Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers, pages 141–150, 2014.

[11] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. CoRR, abs/1508.07909, 2015.

[12] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine
translation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

[13] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In Advances in neural information processing systems, pages 649–657, 2015.

7

	Introduction
	Related Work
	Approach
	Subword Model
	Representing words by segmented subwords
	General Model

	Experiments
	Baseline
	Data
	Experimental setup
	Results
	Qualitative analysis

	Conclusion and Future Work

