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ABSTRACT

The task of transferring style involves taking one sequence of text of a certain linguistic style
and outputting the same content of text but in a given different style [[1]]. Recently, the proposed
adversarially regularised autoencoder (ARAE) uses the latent space to generate natural outputs. The
latent representation can then be trained to transfer style from unaligned text [2, [3]. In this work,
we aim to improve upon Zhao et al’s ARAE architecture to improve unsupervised stylistic transfer
that can work robustly on longer sequences of words, such as documents and with less distinct style
features such as formality. We introduce modifications upon the ARAE architecture e.g. hidden layer
size, weight initialization and introduce a CNN based alternative for the GAN module. The efficacy
of said modifications have been tested and evaluated using both automatic and human evaluation
metrics

1 Introduction

Language style is a component of written text that varies commonly with the context, audience, and purpose of said text.
Language style transfer is the task of imposing a target style to the content of a source sentence. In most cases, style is
an abstract notion reflected in variation in word choice, sentence and paragraph structure, and punctuation that is not
easily identifiable or isolated from the semantic content. Style transfer requires the disentanglement of representations
of attributes e.g. negative/positive sentiment, plaintext/ciphertext orthography from the underlying semantic content.
Breakthroughs in style transfer would have important implications for natural language processing supertasks such
as natural language generation and language modeling as style is a metafeature of a language and would indicate a
certain proficiency of natural language processing ability. While there are advances in style transfer in other domains
such as computer vision, textual style transfer faces challenges such as the lack of parallel data and reliable evaluation
metrics. Stylistic-semantic decomposition in computer vision can be achieved through convolutional neural networks
due to the hierarchical invariance and abstraction of smaller visual details in higher layers of the CNN. However, textual
information does not afford the same continuity observed in images, and there seems not be a characteristic scale where
the style information of text is explicit. In other words, there is no specific level such as character, word, sentence, or
passage level where the style can be solely observed: style occurs in any of those scales. To complicate the matter more,
style is a subjective and abstract component of text that is even difficult to evaluate by human standard.

Most textual style transfer models utilizes Ad-hoc defined style classes such as sentiment [4], formality, etc.
The style is enforced by a binary sentiment/style classifier trained on the corpus of different style or sentiment. The
text style is called ad-hoc, since here the notion of the style is rigorously reverse-engineered out of a given training
dataset. The problem set up in this form of Ad-hoc style classes are clear and the datasets are generated based on human
evaluation which makes the style transfer tasks trained on this sort of tasks especially useful: style transfer success is
easily measurable by the percentage of correctly classified sentences by the binary classifier. This will be the class of
style transfer problem that we will tackle in this project [4].
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Alternatively, style transfer task has been in the past reduced into an analogous neural machine translation
(NMT) task. However, this practice has been majorly hindered by the lack of nonparallelized datasets [4]]. To work
around this deficient, researchers found work-arounds using generative adversarial networks (GAN) or zero-shot NMT
by creating latent representation of the text that correspond separately to the style and semantic content of n some
latent representations that would correspond to stylistics and semantics separately. This can be done in several ways:
a. aligning word and sentence embedding such that the embedding state-space can be segmented into the semantic
and stylistic sections, b. using double transfer (there-and-back) as a way of regulating the quality to the style transfer,
¢. training a stylistic discriminator as a part of the GAN. We will be taking approach c in the post NMT methods of
transferring while utilizing Ad-hoc defined style classes, formality of lanaguge.

We aim to create an unsupervised stylistic transfer architecture for language style that can function robustly on
varied inputs and longer sentence length. We will primarily leverage an encoder-decoder architecture for the latent
representation of style and content of the sentences that will be jointly trained with a Generative Adversarial Network for
the unsupervised text generation. We aim to construct a robust unsupervised style transfer architecture by combining the
strength of various state-of-the-art architectures to allow the transfer source content with arbitrary styles into sentences
of target style. Our generated sentences will be evaluated with metrics defined below. We hope for improvements in
performance compared to other available architectures.

2 Related work

Previous attempts at language stylistic transfer relied on parallel pool of data such as sequence-to-sequence neural
network models and rule-based manipulation [S]]. Unlike style transfer on images where parallel data can be easily
established, large scale parallel data are not available in most cases, while other methods allowed stylistic transfers
on non-parallel data by reframing the stylistic transfer as a neural machine translation task [6]. Recent attempts of
style transfer instead approach the task by learning a latent representation from the text to disentangle the content from
the source style and recombine the latent representation of the content with some representation of the target to then
generate a corresponding sentence. Unsupervised frameworks such as generative adversarial models provide the current
state of the art performance for style transfer on natural language.

Our main inspiration is an architecture titled "Adversarially Regularized Autoencoder” (henceforth ARAE)
by Zhao and colleagues. ARAE draws on deep latent variable models such as variational autoencoder and GAN
which has shown promising result in learning smooth representation on high dimensional continuous data such as
images. These latent representation allows smooth transformation in the latent space to allow complex modification
of images. However, unlike image based latent representation, text sequences contain discrete structures which make
the optimization of continuous latent representation difficult [2]. ARAE makes the latent representation robust on
textual sequence input as it is formalized under the Wasserstein autoencoder (WAE) framework (Tolstikhin et al., 2018),
which can be robustly extended to latent variable models with discrete output. Zhao and colleagues demonstrated
that autoencoder cross-entropy loss upper-bounds the total variational distance between the model/data distributions.
Importantly, this model is able to adapt to unaligned transfer. Unaligned transfer is the case where the model needs
to change an attribute of a discrete input but does not have aligned examples, which includes tasks like changing
the topic/style of a sentence [2]. ARAE architecture has shown promising results on short sentences but has short
coming with more complex document. It has produced results with high sentiment transfer but relatively poor BLEU
score evaluation. The paper has shown that unaligned textual transfer and textual generation can be achieved through
manipulation of latent variable space derived from discrete structures. It is also question raising whether sentiment
transfer can be considered style transfer as sentiment is more closely related to the semantic content of the textual
sequence than the abstract sense of textual style. Our project will be addressing the issue of stylistic transfer on
non-sentiment data such as language formality and register which is less closely tied with the semantic content of the
sentence.

3 Approach

3.1 Architectures in Question

We compared a few approaches to style transfer on textual sequences: First, we will be treating the style transfer task
as a neural machine translation task. We have implemented two different approaches of neural machine translation
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Figure 1: ARAE Architecture for Style Transfer

style transfer model based on architectures that we have previously examined in class, namely Seq2seq with GloVe
embedding and Seq2Seq with character-level word embedding.

The base architecture of our model is inspired by Zhao et al. 2018 paper "Adversarially Regularized Autoencoder"
[2]]. We use the adversarially regularized autoencoder to create a smooth hidden encoding for discrete sequences such
as text. The goal of the ARAE is to provide smoother hidden encoding for the latent representation of the style of the
text and the content. This baseline architecture can be divided into three components: the training the encoder-decoder
with reconstruction loss, training the critic w that discriminates between what data is real or generated and the attribute
classifier that classifies whether the transferred data is of the desired target style, and lastly training the joint adversarial
training of the encoder and generator from the GAN. In short, the autoencoder encoder creates a latent representation
of a sentence of a given style while decoder portion of the autoencoder can decode such latent representation into a
sentence of the same content of the target style. This process is regularized the presence of a GAN and style classifier to
determine the ad-hoc style transfer success which will be formality in our case.

When choosing the prior distribution P, the choice has a large impact on the model’s performance. While it
may be simplest to use a fixed prior distribution, it can be too constrained. Instead, the ARAE can use a learned prior
parameterised through a generator model, similar to learned priors in variational autoencoders.

More specifically, the encoder and decoder of the autoencoder utilized seq2seq model to map the text data x to
latent space z. For the encoder, the text is first send through an embedding layer, and then LSTM layer where z is the last
state of the LSTM output. The decoder takes in the latent representation z , and re-embed it in an embedding layer before
sending through the embedded output through another LSTM layer. In this case, we train the two separate decoder
LSTMs, one for formal style, p(z|z,y = 1), and one for informal style p(x|z,y = 0) and incorporate adversarial
training of the encoder to remove sentiment information from the prior. The decoder outputs the conditional probability
distribution p(x|z) based on the specified style. The discrete distribution is estimated over the softmax of the projected
latent variable z for each individual vocab. The reconstructive loss is calculated between the original sentence and the
reconstructed sentence.

In the GAN-based regularization for the autoencoder, the latent representational output from the autoencoder
and the simulated latent representation sampled from Gaussian distribution, s ~ A/(0,1) are passed into the
discriminator. The loss from the discriminator is backpropagated through the autoencoder. The style classifier uses a
MLP architecture, and the probability distribution p,, (y|z) is estimated for the text transfer where y represents the
style label of the text. We do so by incurring a cost that is based on p, (1 — y|z) by inversing the style label based
on the style transfer. The decoder is also trained adversarially using this distribution. The generator, discriminator
of the GAN and also the style classifier uses MLP with fully connected layers, dropouts, and nonlinearity between layers.
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We formalize the full loss objective as :

0 Lice(6,9) + AVW (Po, Py) = A Lo (6, 0)

where Lyec(¢, 1)) is the reconstructive loss of the autoencoder, W is the Wasserstein distance between P and P,
which are the distribution from a discrete encoder model, that is, enc¢(m) and P, is the prior distribution for GAN
respectively. L is the classification loss for the transferred sentences.

3.2 Original Components

While understanding the ARAE architecture, we noted that the Generator and Discriminator which regulates the
autoencoder training is created based on a Multilayer Perceptron model. We hoped to improve upon these architecutre
as GAN play an important role in regulating the training of the autoeconoder and allowing style transfer. Instead of
MLP architecture, we were able to isolate the GANs module of the ARAE and replaced it with our original component
involving two 1-dimensional convolutional neural networks for the encoder and decoder. The motivation behind using
a CNN architecture is to optimize the generation and discrimination of latent space in the GAN so that it can best
match the actual probability distribution. Most of the recent applications of GANs involve modeling images, while
we are using a GAN as part of the architecture to model language. In Piotr Bojanowski’s 2017 paper on optimizing
the latent space of generative networks, he shows that autoencoders where both the encoder and decoder are deep
convnets can be as successful as GANs but require less complicated training [[7]. Another advantage of convolutional
model is that fewer trainable parameters are needed and long range dependencies in the data can be uncovered with
properly selected filter sizes. We decided to incorporate a CNN to apply the framework of having both the generator
and discriminator parametrized as deep convnets to attempt to improve upon the existing ARAE architecture, extending
the combination of deep convnets beyond autoencoders. Additionally, we expect the CNNs will be able to learn local
features on top of the word embeddings, as described in Yoon Kim’s work with CNNs for sentence classification [§]].
The Gaussain prior which is sampled to generate the fake latent variable space now passes through 3 convolutional
layers. To complement the gaussian nature of the data, we have also altered the activation function from a leaky Relu to
a more robust Gaussian Error linear unit (GeLu) which helped with the problem of vanishing gradient and signal loss
[9]]. The specific hyperparameters for our models are given in Appendix B.

4 Experimentation

4.1 Dataset

We trained and tested our model on Yahoo Answers for Formality Corpus, a non-sentimental dataset with distinctive
vernacular and syntax.

The GYAFC dataset is the largest dataset for one specific stylistic transfer, and consists of a corpus of infor-
mal/formal sentence pairs. The data come from Yahoo Answers, which are a large source of informal sentences. For
each informal sentence in the corpus, there are 4 human-generated formal counterparts to the sentence, so this dataset
provides a large corpus of aligned data that can be used for automatic evaluation metrics like BLEU. The GYAFC
dataset fits the qualification of ad-hoc defined style classes as the style is enforced by a binary classifier and human
oracle at the creation of the dataset. The notion of style or formality is reverse engineered based on Yahoo Answers
using Amazon Mechanical Turk [1]]. We have specifically selected the domain, Family Relations.

4.2 Evaluation Metrics

Altogether, we used a combination of human evaluation, still considered to be the gold standard, as well as automatic
evaluation strategies including BLEU score and a classifier score.

4.2.1 Human Evaluation

In human evaluation, we will focus on three standards taken from Singh & Palod’s 2018 paper and commonly used for
style transfer task evaluation [3[]:

1. Soundness (textual entailment between input and generated texts)
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2. Coherence (comprehensibility, lack of grammatical errors)
3. Effectiveness (similarity of style of the generated texts and the desired style)

We created a Google form with a random sample of 10 generated sentences (5 from each style) for each model. Human
responders evaluated each of these sentences and rated them on a scale from 1-5 on the axes of coherence, formality
(our chosen style), and soundness. Formality is a measure of transfer strength, that is, how successfully the generated
text embodies the target style. Additionally, for evaluating soundness of content, we are trying to evaluate whether
the semantic meaning of the generated sentences can remain the same despite the style changing. Soundness acts as
a measure of content preservation, since the goal is to change the style of a sentence without altering its underlying
meaning. [10]

4.2.2 Machine Evaluation

In machine evaluation, we will evaluate

1. Soundness of content by using a case-insensitive BLEU metric.

2. Perplexity based on the language model

3. Effectiveness of style transfer by using a pre-trained style classifier
4. Style Transfer Effectiveness with respect to a style classifier

We will not address coherence in our machine evaluation, deferring to the standard of using human evaluation for
this metric. We can use our test set to find a final percentage accuracy for machine evaluation of soundness and of
effectiveness. [60]

We adjusted evaluation metrics for different cases of transfer - for example focusing more on human or
machine evaluation in machine translation due to differences in level of sentiment transfer (e.g. - Positive/ Negative,
formal/informal) and for non-sentimental style transfer (e.g - colloquial English to literary Shakespearean jargon) due
to difficulties such as transference of meaning between different styles.

BLEU is a common automatic evaluation metric used for machine translation tasks. In the case of measuring
style transfer, we can use BLEU to compare the generated text in the target style to several "gold" reference style
examples. This is only possible with datasets like the GYAFC which include 4 informal references for each original
formal sentence, and vice versa. Perplexity can be used for style transfer tasks by more narrowly defining what words
belong or do not belong in a certain style. A lower perplexity would indicate less randomness, and thus a more specific
definition of what the target style is.

The effective of style transfer is measured by a style classifier co-trained with the training data to classify the
latent representation of a formal sentences to an in formal sentence. The accuracy as outputed by this style classifier
when applied to transferred sentece give us a metric of how effective the style transfer has taken place. (See Figure 3).

4.3 Experimental details

The first experiment involved changing the encoder to use a 1 dimensional convolutional neural network. The
configuration of the Conv model in this case involves swapping out the multilayer perceptrons (MLP) instead for CNNs
in the encoder and decoder. The motivation for this experiment is to observe whether a convolutional neural network
would be able to better isolate features of linguistics style. In this experiment, we tested the Conv model compared to
the MLP model.

Since the baseline and Conv 1D model did not seem to be learning adequately after 25 epochs, we decided
to perform an experiment to increase the size of the latent space, which is where the model performs manipulations
to change the output. The motivation for this experiment is that having a larger latent space will allow the model to
perform more complex manipulations to the output. By increasing the latent space dimension to 256 (up from 128), and
training for 50 epochs, we observed that it was able to continue learning until the 50th epoch and continue reducing the
perplexity. Compared to the baseline model run on the GYAFC dataset, the large latent model experiment achieves a
lower perplexity and higher accuracy:

The experiment of increasing the latent space was able to reduce perplexity, but still did not achieve as high of
an accuracy as the baseline model was able to on the Yelp data. Additionally, the generated output could be improved,
as we will discuss in the Analysis section.
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Figure 3: Comparison of accuracy of three models during ARAE training

Thus, the next experiment involved incorporating GloVe embeddings [11]]. The motivation behind this experiment
was that incorporating pre-trained data could improve the learning of semantic. In previous experiments, generated
output seemed to show a change in the semantic meaning, not just in style. We hope that incorporating a pretrained
embedding could help to better disentangle style and semantics at the decoding phase.This will be discussed further in
the Analysis section. GloVe embeddings first introduced as fixed word embeddings used in the autoencoder and then as
weight initialization for the encoder layer that is trainable by the data. The performance of the results will be discussed
in later section of the paper.

The next experiment was to test a leaky rectified linear unit (ReLU) versus a Gaussian Error Linear Unit (GELU)
activation function. To testing, we subsampled a 10,000 sentence subset of our dataset (for experimentation, not
accuracy, full model currently training). The original discriminator uses a MLP model with a leaky ReLU activation. In
our experiment, we tested multiple architectures swapping the model and activation to use the Conv model from the first
experiment in combination with the GELU activation. In total, we tried 4 different combinations of a CNN with GELU
activation, MLP with GELU activation, CNN with ReLU, and the original MLP with ReLU. We also experimented
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Automatic Evaluation*

Baseline on GYAFC | Large Latent Space | CNN and GELU (10k)
Corpus BLEU Decoder 1 Source 84.9 72.4 68.5
Corpus BLEU Decoder 1 Target 1.02 2.32 1.66
Corpus BLEU Decoder 2 Source 67.3 64.9 60.8
Corpus BLEU Decoder 2 Target 3.04 2.08 2.05
Accuracy 0.703 0.773 0.229
Perplexity 18.53 9.65 164.3

Table 1: Style transfer automatic evaluation: Evaluation of the experimentalal models on the 10k subsampled dataset.

Human Evaluation

Baseline on GYAFC | Large Latent Space | CNN and GELU (10k)
Soundness 1.771 2.036 2.010
Decoder 1 Coherence 3.365 2.900 4.670
Decoder 2 Coherence 3.482 2.612 2.670
Decoder 1 Formality 2.841 2.771 3.450
Decoder 2 Formality 2.329 1.894 2.560

Table 2: Style transfer evaluation by humans. Soundness is how similar the two sentences of different styles were rated,
coherence is how understandable and grammatical the sentences were, and formality is a measure of effectiveness.

with alternating Conv and RELU and changing the Conv architecture size to 3-3-3. The training curves for these can be
found in Appendix B.

Additionally, we performed experiments to compare the task of style transfer and machine translation. Using
a word-based neural machine translation model using RNNs, we treated the source style as the source language and
the target style as the target language. Additionally, we experimented with the character-based convolutional encoder
for neural machine translation. Because there is less aligned data in the GYAFC dataset than for English/Spanish
translations, it took around 4-6 hours to train these models.

4.4 Results

As seen in Tablem we evaluated the baseline ARAE architecture on Yelp data, the baseline ARAE on GYAFC data, and
large latent space experiment on GYAFC data, and word-based RNN NMT and character-based convolutional NMT
on GYAFC data. We trained the models with two separate decoders, Decoder 1 for formal style p(x|z,y = 1) and
Decoder 2 for informal style p(x|z,y = 2).

In Table g we have results in terms of soundness, coherence, and effectiveness. For each model (baseline and
large latent space) ran on the GYAFC dataset, we randomly sampled 5 generated sentences from each decoder. There
were 5 sentences from Decoder 1 (formal) and 5 sentences from Decoder 2 (informal), each from the two models, for
a total of 20 sentences. We crowdsourced responses from a Google form sent to 18-22 year-old college students at
Stanford and to individuals in this group’s social networks, and received 35 responses. We asked responders to evaluate
each sentence for coherence on a scale from 1-5, 5 being the most coherent. To gauge soundness, we showed responders
two sentences (1 formal, 1 informal) from the same model, and asked them to rate how similar in meaning the two
sentences were, disregarding style. To gauge effectiveness, we asked responders to rate sentences for formality, one a
scale from 1-5, 5 being the most formal. In the case of Decoder 1, a high formality score of 5 indicates that the model
generated sentences in the correct formal style. In the case of Decoder 2, a low formality score of 1 shows the model
generated sentences in the correct informal style. Randomly sampled sentences are shown in Appendix A.

After this experimentation, we trained our final 3-layer convolutional model with GELU activation on the full
Yahoo Formality dataset. Over 15 epochs, our accuracy increased almost consistently from .159 to 0.643 and our
perplexity dropped from 296.13 to 9.065. Due to slowness of training, we were not able to train for the entire targeted
25 or 50 epochs, but expect higher accuracy, given rate of growth.
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5 Analysis

A notable feature of the baseline model is that it was only able to perform well on short sentences which is to be
expected as the dataset that the baseline model was tuned for are based on shorter, sentiment based sentences extracted
base on Yelp Reviews [2]]. Another concern that was raised in the reduced performance of the baseline model on the
GYAFC is that unlike sentiment, formality is less closely related to the semantic content of the sentence. By transferring
sentiment from positive to negative, semantic content of the sentence as to be altered as words can be replaced with
their antonyms and sentences can be logically negated with the inclusion of words such as "not." As we have seen
previously in class, a word-vector representation of the word can be clearly manipulated to reflect its antonym. This
operation becomes less clear when we walk about formality of a word or a sentence’s embedding.

We began to see improvement in performance once we increase the hidden latent variable space as the sentences
from GYAFC dataset are generally longer and more complex compared to the Yelp dataset used in the ARAE paper.
Additionally, the CNN and GELU model is rated highly in terms of coherence for formal styles, but less so for informal
styles. A feature of the large latent space variation of the model is that it can generate longer sentences with higher
coherence. The most coherent sentence (rated by humans) generated in the formal style by the large latent space model
had a score of 4.121, and this sentence was "i always gave up and i am still able to meet my boyfriend." with a length of
13 words. In comparison, the baseline model’s most coherent formal sentence had a score of 4.938 and this sentence
was "i am talking about him.", which is only 5 words long.

It is also not the case that the longer the sentence the less coherent the generated text becomes. Looking at the
large latent space model’s least coherent sentence with a rating of 1.061, "you can do not have it only anyone.", it is has
8 words and is shorter than its most coherent sentence. Compared to the baseline model, however, the baseline’s least
coherent formal sentence is also the longest sentence it generated — "when you are in love with him if you do not like her
then you will find out if you are in love with him." — with a score of 2.281 and length of 25 words.

Although the large latent space model did not perform as well as the baseline on automatic evaluation metrics,
scoring lower on BLEU on 3 out of 4 areas and having a slightly lower accuracy, the large latent space model performs
better in terms of achieving informal style transfer and soundness. Additionally, the large latent space model achieves a
lower perplexity in the automatic evaluation. The structure of this model may have allowed for a better soundness score
in part due to the nature of style transfer as a task. Unlike machine translation or sentiment transfer, which are tasks that
change language at a word or phrasal level, style transfer is a suprasegmental feature that sits on top of the syntactic and
semantic features of a given chunk of language. Hence, the task of separating out the "style" of a piece of text is not as
isolated as the task of separating out the sentiment of a word from the larger phrase. The larger latent space allows for
more complex transformations on the output while still remaining in the data space/manifold, and it is possible that the
larger dimensions facilitate a more flexible transformation of the output text.

Another reason that the large latent space model did not perform well in terms of coherence is the presence
of many <unk> tokens. Due to the nature of the Yahoo Answers dataset and the nature of an "informal" style, the
vocabulary included many misspellings of the same word, strange entries like "..." and "......" that were disambiguated.
When the vocabulary was trimmed, many of these rare vocabulary entries were left out. Some human feedback
mentioned the lack of punctuation in the model’s generated text, which could also have resulted from the dataset. One
way to have addressed this issue would be to implement a spellchecker using edit distance to calculate the nearest word
to an <unk> token.

With respect to the results when using GloVe as weight initialization for word embedding, while the training
transfer accuracy is steadily increasing (Figure 4), the testing style transfer accuracy stayed relatively stagnant with
final style transfer accuracy of .194 at epoch 25. The trainable weight initialization of GloVe seems to be significantly
overfitting on the train data. The pretrained initialization seems to be suboptimal for our use case. We also ran into
problem with large number of <unk> as our vocabulary, especially that of the informal classes did not conform with
that of the Glove Embeddings. The random, low variance initliazation for parameters yielded higher accuracy in terms
of style transfer

To summarize, the main challenges that we have faced can be due to symbolic information loss during the
encoding, decoding, and the generation of the sentences. These challenges are not unlike the ones that previous
architectures using LSTM and CNN for text generation [12]. One problem with applying GAN to text is that the
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gradients from the discriminator cannot effectively back-propagate through discrete variables. We attempted to combat
this problem with the inclusion of GeLu unit.

6 Conclusion

Through our experimentation, we found that the ARAE architecture which is trained for sentiment transfer does not
effectively generalize to the transfer of other type of language style such as formality. In an attempt to make this model
more robust and generalizable in longer textual sequences with less distinct style features than sentiment, we suggest
the use of a larger latent space, and incorporating GloVe embeddings, to improve upon the adversarially regularized
autoencoder (ARAE) architecture for style transfer.

The addition of a latent space with higher dimensionality, as well as the use of pre-trained data, has the potential
to improve upon style transfer by achieving more style transfer without changing the semantic meaning, as well as
achieving a wider range of styles including the "informal" style. The limitations of our work, and for style transfer
in general, include the lack of aligned data and the vague, ill-defined nature of linguistic style. Our model was not
well-equipped to handle <unk> tokens, and lacked sufficient data which may have allowed us to produce more coherent
text in different styles.

For future work in this area, it would be worth exploring the combination of rule-based and statistical approaches,
incorporating other NLP tasks such as a spell checker, or handling <unk> tokens by using a character-based embedding.
Our model in its current state does not learn explicitly a latent representation of the language style. In the future, it
would be interesting to compare methods that deliberately extract a style embedding the sentence to our model that
does not explicitly extract this information but instead utilizes the style decoder as a way of transferring style.

7 Additional Information

Mentor: Chris Manning
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Appendix A

A GYAFC Style Transfer Sentences

Baseline Model-generated

Noise to Informal Noise to Formal

when you are in love with him if you do not like her | well if you are ready and you will be happy

then you will find out if you are in love with him. then you will get out with him and you are going to be happy.
yes, if you are still interested in. yes yes you are so much fun.

that depends on their own way. its always fun of their own way.

if you are not interested then then yes. but you are not as as you are.

i am talking about him. go out with her all you like.

Large Latent Space Model-generated

Noise to Informal Noise to Formal

you can do not have it only anyone. you can do it only for it as long time.

you should tell him the truth of a boyfriend. | so get him back on a man!

even a friend may not go out with him, sounds like trying to never give him some

and it’s not working out myself. one and talk about it

i always gave up and i am still able to i always found it and i am willing to work for my bf

meet my boyfriend.

i feel that if i was a man who has the i don’t really know that my guy might
most romantic feelings for you. be the kid of my dreams is to me.
Appendix B

B Experimental Details

Experiment combining MLP with GELU:

10
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Learning Curves (MLP with GELU) Learning Curves (MLP with GELU)
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(a) Perplexity of MLP and GELU model (b) Accuracy of MLP and GELU model

Experiment combining CNN with leaky ReL.U:

Learning Curves (CNN with ReLU) Learning Curves (CNN with ReLU)
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(a) Perplexity of CNN and ReLLU model (b) Accuracy of CNN and ReLU model

Autoencoder: Seq2Seq2Decoder had embedding size of 30004, with 256 hidden layers:

e Embedding decoder 1 and decoder 2 both have embedding size of 30004, with 256 hidden layers
e Encoder is an LSTM with 256 hidden layers
e Decoder 1 and Decoder 2 are LSTMs with 256 hidden layers

GAN generator: MLP for the generator:

e Uses ReLU activation between each linear layer
e The first linear layer has 32 input features and 256 output features

e The second and third linear layers have 256 input features and 256 output features
GAN discriminator: The CNN for discriminator

e Uses a three 1-dimensional convnets with 256 hidden layers
e GeLU uses dropout with p = 0.3

e Uses a linear layer at the end with 7936 input features and 1 output feature

Classifier: The MLP for classifier

11
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e Uses a three linear layers with 256 input features and the first two have 256 output features

e Uses ReLU bewteen the layers

12



Robust Unsupervised Style Transfer Architecture for
Complex Discrete Structures

Project Addendum
Cairo Mo, Cherie Xu, Alice Yang

Below is an addendum to our final project report. At the time of our submission, we
have a few models that have not finished training but have completed in time for the
presentation. The results are promising in terms of improvement in automatic evaluation.
We thought it would be interesting to share these further findings.

Abstract

The task of transferring style involves taking one sequence of text of a certain
linguistic style and outputting the same content of text but in a given different style .
Recently, the proposed adversarially regularised auto-encoder (ARAE) uses the latent
space to generate natural outputs. The latent representation can then be trained to
transfer style from unaligned text . In this work, we aim to improve upon Zhao et al’s
ARAE architecture to improve unsupervised stylistic transfer that can work robustly
on longer sequences of words, such as documents and with less distinct style features
such as formality. We introduce modifications upon the ARAE architecture e.g. hidden
layer size, weight initialization and introduce a CNN based alternative for the GAN
module. The efficacy of said modifications have been tested and evaluated using both
automatic and human evaluation metrics

1 Model Description

1.1 Convolutional Networks for Discriminator in ARAE

This is a component of the architecture that is mentioned in our full report. However, we
were only able to test this model on a subsample of 10k data points which proves to be not
enough signal for the GAN to generate varying sentences.

This model is an update on the ARAE model as we replaced the discriminator in
the GAN portion of the ARAE which uses two layers MLP to discriminate simulated
data versus real data with a CNN based architecture. The GAN discriminator acts like a
regulariser and adversarially trains the Autoencoder’s encoder by minimizing the loss

function —% 1 logpu (1 —y) |z(i)> , where z is encoded latent representation and y(?)
is the class label of the sentence. The CNN architecture is as follows:



GAN Discriminator:
CNN_D(
(convl): Convild(1l, 256, kernel_size=(3,), stride=(1,))
(bnl): BatchNorm1d (254, eps=1e-05, momentum=0.1, affine=True)
(conv2): Conv1d (256, 256, kernel_size=(5,), stride=(2,), padding=(1,))
(bn2) : BatchNorm1d (126, eps=1e-05, momentum=0.1, affine=True)
(conv3): Conv1d(256, 1, kernel_size=(3,), stride=(1,))
(bn3) : BatchNorm1d (124, eps=1e-05, momentum=0.1, affine=True)
(gelu): GeLUQ)
(fc): Linear(in_features=7936, out_features=1, bias=True)

)

We first feed the latent representation of the real sentences and the latent representation
generated from the Gaussian prior into the convolutional layera with kernel size 3, 5, and
3 respectively. Between layers, we employ batch normalization. One update upon the
previous model is that we utilizes a GeLu activation function (Gaussian Error Linear Error
Unit) in between unit. This model is trained on the full dataset for 25 epoches.

1.2 Convolutional Networks + Fully Connected Layer for Discrimina-
tor in ARAE

This Discriminator bears striking similarity to the aforementioned CNN-Discriminator.
One modification has been made to this model, at the end of all convolution layers, we
concatenate the input into the discriminator with the convolutional output, in an effort to
preserve the syntactical information contained within the latent representation which can
be lost during the convolution operations. The model summary is as follows:

GAN Discriminator:

CNN_D(
(convl): Convid(1l, 256, kernel_size=(3,), stride=(1,), padding=(1,))
(bnl): BatchNorm1d (256, eps=1e-05, momentum=0.1, affine=True)
(conv2): Conv1d (256, 256, kernel_size=(5,), stride=(1,), padding=(2,))
(bn2) : BatchNorm1d (256, eps=1e-05, momentum=0.1, affine=True)
(conv3): Conv1d (256, 1, kernel_size=(3,), stride=(1,), padding=(1,))
(bn3) : BatchNorm1d (256, eps=1e-05, momentum=0.1, affine=True)
(geluw): GELUQ)
(fc): Linear(in_features=32768, out_features=1, bias=True)

)

Note the last fully connected layer is much larger than the previously mentioned model as
we concatenate the input to the convolutional output.



Automatic Evaluation*
Baseline | Large Latent Space | CNN & GELU | CNN & GELU & FC
Accuracy | 0.423 0.572 0.697 0.698
Perplexity | 18.53 9.65 6.79 6.66

Table 1: Style Transfer Automatic Evaluation: Style transfer test accuracy and perplexity
of model trained on the full dataset

2 Results

See Table 1 for the breakdown of automatic evaluation metrics on the Full GYAFC Family
Relations dataset in terms of style transfer success rate and style classification perplexity.
Perplexity here is defined as the exponential cross entropy loss of the style classification.

Both Convnet based models showed significant improvement from the Large Latent
variation of the ARAE. Both has shown higher success rate in Style Transfer. The CNN-
GAN models seem to perform almost as well as the ARAE model on the sentiment transfer
task (success rate 73.3%). However, the sentiment corpus that the model was trained on
was on average shorter than the formality corpus sentences. Given that formality is a
harder to disentangle form of language style prima facie, we were happy to have make the
ARAE architecture more robust on more complex style passages.

In terms of Perplexity and Style Transfer accuracy, we see a steady improvement across
epochs. Although we had to terminate the experiment at 25 epochs due to time constraint,
it seems that the model is still improving.

3 Analysis

The main distinguishing features between the two CNN discriminator, even though
the two have performed similarly on style transfer accuracy, is the quality of the gener-
ated/transferred sentences. The following sentences are randomly selected from the Style
transfer output:

Comparison of CNN based Discriminator

IF ? F || Without FC With Fully connected layer

IF they know the best people will tell him that he needs to understand why,
to like me or having fun guys be you like him and many more that he likes
F aware of you are. you, but that you are more likely <unk>

F but i mean, i dont know IF you when you are married, it is worth the wait.
to have the answer and i can keep

IF everything i don’t know of you.

IF i just make that age to do the you should make sure alot of <unk>

to answer or the real deal , why maybe he just gets that from the world

FF not love her last day




It seems that with CNN with fully connected layer was able to generate longer sentences
that have higher grammatically upon examination. With the addition of the fully connected
layer, the sentences have became more syntactically coherent, closer to minimal pairs
of actual grammatical sentences. It is interesting to see convolution of on the latent
representation of a sentence is able to affect the syntax of the sentence. One of our worries
for applying convolutions is the interpretability of the latent representation and whether if
there is any spacial mapping within the latent representation where the convolutions are
able to extract long range dependencies with respect to the spacial structures. With our
experiments, we found that it is necessary to have some way to regularize for the original
structure of the sentence. Without the fully connected layer as a way of regularizing for
syntax, a lot generated sentences appeared to be unordered small fragments of sentences
that did make sense independently, but the whole sentence is ungrammatical.

Overall, it seems the addition of the convolutional discriminator did make the style
transfer more robust and better generalized to a more complex set of dataset and notion of
style.
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Figure 1: Comparison of Accuracy of Three Models during ARAE Training
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