
VaLaR NMT: Vastly Lacking Resources
Neural Machine Translation

Minhyung Kang
Stanford University

dankang@stanford.edu

Kais Kudrolli
Stanford University

kudrolli@stanford.edu

Abstract

Neural Machine Translation (NMT) has shown great success recently, outperform-
ing Statistical Machine Translation in most tasks. Yet, it is widely recognized
that for a reasonable performance of NMT massive amounts of parallel data are
required. We focus on extremely low-resource setting, where we are limited to
less than 10k parallel data and no mono-lingual corpora. We look at an Elvish
language Quenya created by the author J. R. R Tolkien. First, we create a character-
decoder-based seq2seq NMT model as a baseline and compare its performance
on various levels of data scarcity. Then, we explore the performance benefit of
transfer learning by training a model on a different language. We also perform an
ablation study to investigate the effect on transfer learning of freezing different
layers. Lastly, we use language models and a noisy dictionary to augment our
training data. Utilizing both transfer learning and data augmentation, we see a 1.5
BLEU score improvement over the baseline.

1 Introduction

With the rise of neural networks, we are seeing great improvements across different natural language
processing tasks, including summarization, question answering, sentiment analysis, and translation.
For example, we have seen remarkable performance boosts in translation quality since Google adopted
an NMT model which learns from millions of examples [3]. It is widely recognized that for any
machine learning algorithm, especially neural network-based approaches, we see better performance
with more data [2]. Still, there are cases when we simply lack data due to high procurement cost or
lack of availability. Hence, there has been great interest in tackling this issue of data scarcity across
different machine learning tasks, including machine translation. However, the level of scarcity differs
across authors: some consider 0.1 million data points scarce while others work with a few thousand
parallel examples but with millions of monolingual examples.

In this work, we seek to address a level of scarcity we describe as ‘vastly lacking resources’. We
choose Quenya, an Elvish Language created by the author J.R.R. Tolkien, and attempt to translate it
to English. While fictional, the language was carefully devised by the author, who cared greatly about
the aesthetics and euphony of its language and grammar. Quenya was constructed as a “Elvenlatin",
phonologically based on Latin with influences from Finnish, Welsh, English, and Greek [8]. However,
since the language is fictional, the amount of Quenya data we can obtain is limited. We work with
less than 10, 000 parallel examples, no monolingual text, and a few thousand-word dictionary.

We first investigate the performance of models across different scarcity levels of data. Then, we
perform transfer learning using a model trained on a Finnish-English data set. We study the effects
of different transfer learning settings on the quality of translation. Finally, we use language models
trained on a large English corpus and a small, noisy Elvish-to-English dictionary to generate new
examples to augment our data.

Preprint. Work in progress.



2 Related Work

One of the most prominent methods to deal with data scarcity in translation is transfer learning, where
one initially uses a “parent” (high-resource) language to train an NMT model, then freezes certain
parameters and tunes the model with a “child” (low-resource) language data set [9]. The intuition
behind this is that the pre-trained model will have learned useful features from the parent language
that are applicable to the child language and only needs to be tuned by the child’s data set. This
fine-tuning can also be seen as a regularization of the pre-trained model so that it can generalize
to the child language. Similarly, sharing information across different languages for which there is
abundant data has proven to be effective. Sharing lexical and sentence-level representations across
multiple source languages into one target language [4] or sharing parameters across different language
pairs in Google NMT [3] are some successful approaches. Some propose learning to translate by
training the model from mono-lingual corpora [5, 6]. As noted previously, our setting is different in
that we assume we lack a mono-lingual corpus. With the recent increased interest in reinforcement
learning, some works pose the low-resource language translation as a meta-learning problem, where
the language pairs are the tasks and the model learns to solve low-resource tasks with experience
from high-resource tasks [10]. There is also a more data-driven rather than model-driven approach:
using language models [11] or back-translation from mono-lingual corpora [1], new sentences can be
generated to augment the small training data with a new, albeit noisy, parallel corpus. In this work,
we utilize the transfer learning scheme and explore the idea of data augmentation.

3 Approach

3.1 Neural Machine Translation

Our main NMT model is a seq2seq network. The encoder portion is a bidirectional LSTM that
takes in embedding vectors of the source sentence (either in Quenya or Finnish, in our case), and
the decoder is a unidirectional LSTM that is trained on embedding vectors from the labeled target
sentence. All embeddings in the model are learned from random initialization. The model uses
multiplicative attention so that at each time step the decoder can choose what context of the encoded
source sentence to "attend" to. The decoder output at each time step is concatenated with the attention
output and passed through a softmax function to produce a probability distribution for the next word
in the target sentence. Finally, the model uses the cross-entropy loss function.

3.2 Character-Based Neural Machine Translation

The base NMT system above is improved with character-based encoding and decoding. The character-
based encoder [15] first looks up an embedding for each character and then combines them into a
word embedding using a CNN followed by a highway network. The character decoder [16] is used
when the word-level decoder produces an out-of-vocabulary word. The decoder output at that time
step is fed into a unidirectional LSTM that uses greedy decoding to predict characters at each time
step. These character-based components are particularly helpful for low-resource NMT as a small
training data set increases the chance the model encounters out-of-vocabulary words. With character
encodings it can still encode an unseen source word and decode an unseen target word.

3.3 Transfer Learning in a Low-Resource Setting

Low Resource We are particularly interested in improving the seq2seq and character-encoding
model described above for low-resource machine translation, that is when we do not have many
parallel examples to train the model on a source language. With very few parallel examples (approxi-
mately 8, 000) and no larger corpus for Quenya-English, it is difficult for our unaltered NMT model
to generalize to unseen text from that language.

Transfer Learning Transfer learning has proved to be effective in various fields [14]. In its most
basic form, we first perform training on a set of tasks T to learn model parameters that minimize
the loss function θ̂ = argmaxθL(XT , YT ; θ). Then, we use θ̂ as the initialization of parameters to
train on another task, T ′. We can adjust training processes as needed (e.g. freezing certain layers’
weights). This framework is beneficial in low-resource cases if T and T ′ share some context and has
been tried several times in low-resource NMT settings [9].

2



Table 1: Data used for experiments

Data Set Source Target Training Validation Testing
Bible Elvish English 7,135 396 396
Misc Elvish English N/A N/A 215

Europarl v8 Finnish English 1M 1,000 3,000
Newstest 2018 Finnish English N/A N/A 3,000

4 Experiments

4.1 Data

All the experiments were carried out on the data sets described in Table 1 and their subsets. We use
the Finnish-English data set because Finnish was one of the languages that inspired the development
of Quenya [8], and it is a larger data set that can be constrained to our desired scarcity and used to
compare our model with available baselines by other authors. We note that (i), (ii) and (iv) are data
sets found online and have not been necessarily verified by a reliable community.

(i) Bible: Our main source of Elvish data is a Quenya translation of the whole New Testament[17].
The Bible has been a consistent source of data in NLP due to its availability in many languages. On
the other hand, it is important to note that this translation is the work of a single person, and the
integrity of work cannot be verified - there are human errors including missing lines and spelling
mistakes.

(ii) Misc: We utilize other Quenya passages found in Tolkein’s books [18]. While these do not
provide a evaluation metric that can be compared with other literature, this data set is mostly used for
analysis of our model’s generalizability by looking at performance on non-biblical text.

(iii) Europarl V8: We use 1 million sentences from the Europarl corpus [12], which are texts from
the proceedings of the European Parliament. We randomly select one million sentences for training
and one thousand sentences for validation.

(iv) Newstest 2018: We use the official test set for WMT 2018 [13] to evaluate the performance of our
Finnish-English NMT model. This comes from a well-established machine translation conference.

(v) Elvish-English dictionary: We found, downloaded, and parsed a Quenya-English dictionary [19]
for use in our data augmentation. This dictionary has about 5000 noisy Elvish-English pairings,
including 2842 and 3466 unique Elvish and English words, respectively.

Data Cleaning (i) was in word documents, with each paragraph of Elvish followed by the corre-
sponding English translation. We used a Python script to parse the document into a parallel corpus
by breaking it up into verses, manually correcting errors when we encounter them, and dividing the
sentences into training and test sets. Due to its small size, (ii) was manually compiled into a parallel
corpus. (iii) and (iv) were both downloaded from WMT 2018 website. A Python script was used
to split (iii) and take out sentences which had characters outside of our predefined set of acceptable
characters. For (iv), a Python script using BeautifulSoup4 was used to parse the SGML file into a flat
text file. For (v), a Python script with BeautifulSoup4 was used to parse the htm file into a dictionary.

4.2 Experimental Setup

For our experiments, we use our char-decoder model from Assignment 5 of the Winter 2019 CS224N
course at Stanford University. The model is trained with an initial learning rate, which is decayed
with a decay rate after our perplexity on validation set does not improve for 5 successive validation
iterations, and we stop training after 5 such decays. The underlying network parameters were uniform
across the experiments with an embedding size of 256 and hidden size of 256. When we did not
specify initialization parameters, they were uniformly initialized as values between [−0.1, 0.1]. For
vocabulary construction, we limit the source vocabulary words to 8, 500 to match that of our Elvish
data, and limit the target vocabulary to 50, 000. A total of 127 characters (alphanumeric, punctuation,
some accented characters) was selected as our universal character set, and any data which contained

3



characters apart from these was discarded. Most experiments were carried out using Microsoft Azure
NV6 Virtual Machine with 6 vCPUs, 56GB RAM, and 1 MC60 GPU.

Table 2: Baseline performance on Elvish

Corpus size BLEU
Bible Misc

7135 44.216 6.659

Table 3: Performance on Finnish by corpus size

Corpus size BLEU
Europarl Newstest

100 0 0
1000 1.274 0
8000 6.769 1.082

100,000 16.723 3.587

For evaluation, we calculate 4-gram BLEU scores on in-context and out-of-context data sets. In-
context texts are test data separated from the corpus on which the model was trained while out-of-
context only shares the same language and is from a different data set. This allows us to evaluate how
well the model captured the training data as well as its generalizability.

4.3 Performance of Models under Low-Resource Constraints

Initial evaluation of model performance for Elvish corpus

To establish baseline performance of our character-encoder model, we train the model on just the
Elvish Bible data set for 30 epochs with learning rate 0.001, decay rate of 0.5, batch size 32, and a
dropout rate of 0.3. As shown in Table 2, the model does very well on the test examples taken out
of the Bible. This is because the Bible is repetitive, often using the same phrases and vocabulary
(See Appendix A, Ex 1). However, on the test set that is a collection of Quenya from other sources,
the model does not perform well, showing that there is not enough data in the Bible training set to
generalize to different text sources. One observation that makes this particularly clear is with names.
The model translates unseen names as Biblical names (See Appendix A, Ex 2).

Comparison of model performance for low-resource languages

To further test our model with low-resource data sets of different levels, we train it on our Finnish
Europarl data set and simulate a low-resource language by constraining the data set to a low number
of examples as done in [9]. Then, we rebuild the vocabulary based on the constrained data set. We try
this at four levels of scarcity: 100, 1000, 8000, and 100,000 (we choose 8000 as opposed to 10, 000
because it is closer to the number of examples in our Elvish data set). We still validate the training on
our validation set of 1000 examples from Europarl, and we also test the data on our second hold out
set from Europarl and test set from Newstest (each of these are 3000 examples). Each experiment is
run with learning rate of 0.001, decay rate of 0.5, dropout rate of 0.3, and batch size 16 for 30 epochs.

From Table 3, we see that 100 and 1000 examples are far too small to make coherent translations on
Newstest. Above that scarcity level, the model is able to translate and improves on both Europarl and
Newstest as the training data increases. The performance of the model on training size 8000 and on
the Europarl test set is comparable to its performance on the Elvish data tested on the Bible hold out.

4.4 Performance of Transfer-Learning Models

The results of transfer learning are in Table 4. For the source model, we trained our char-decoder
network on the Finnish Europarl data set. We used batch size of 16, dropout value of 0.2, and ran
until it early stopped around 10 epochs. Then, we performed transfer learning using batch size
32 and dropout rate of 0.5; note the baseline model was trained using same parameters. We tried
different intializations of vocabulary. We either retained the source or target vocabulary and character
embeddings of the original model (denoted as O in Table 4) while letting it train the word embeddings,
or we used the same initial vocabulary as the baseline model (contains the most frequent words in the
text). It is important to clarify that the source vocabulary here includes character embeddings while
the target vocabulary includes the target input word embeddings and output character embeddings.
We tested the models on in-context text (Bible) and out-of-context text (Misc).

We make a few observations regarding performance and vocabulary initialization. First, as we are
using character-level embeddings in the source, copying over word-level vocabulary does not have
too much effect. However, copying over the target vocabulary has rather arbitrary effects rather than

4



Table 4: Performance of transfer learning models compared with baseline

Model Source Model Source Vocab Target Vocab BLEU
Bible Misc

Transfer-10 Finnish-10 X X 61.401 9.327
Transfer-10-Src Finnish-10 O X 61.129 8.327
Transfer-10-Tgt Finnish-10 X O 60.382 7.872
Transfer-10-Full Finnish-10 O O 60.655 9.128

Baseline N/A N/A N/A 60.108 9.890

Figure 1: Training of base model and Transfer-10-Src over iterations. Training loss (left) and
perplexity (right) BLEU scores for two different test sets

a direct causal relationship. Overall, we observe that transfer learning can boost BLEU scores on
in-context texts while surprisingly hurting performance on out-of-context tasks.

Figure 1 shows the differences in training between baseline model and Transfer-10-Src model. As we
expected, on the left the transfer learning models converges much faster than the base model. On
the right, we see observe better BLEU scores initially with transfer learning, but the baseline model
catches up eventually and even surpasses in out-of-context tasks.

4.5 Ablation Study

We followed the experiment carried out in [9] and performed an ablation study on the Transfer-10-Src
model from Table 4; the result is described in Table 5. We do not experiment with freezing the
attention model, encoder, and word decoder as [9] points out this hurts the performance. We observe
that freezing target input embeddings and char embeddings give us the best training loss and BLEU
score on in-context data set. This may be because the model utilizes the structure of language from
before yet allows modification to fit to our training set. On the other hand, we achieve the highest
out-of-context BLEU score if we freeze the whole char decoder while getting a relatively high training
loss and low performance on the in-context data set. This is expected as we are carrying over and
retaining information from a bigger data set (Europarl). It is worth noting that freezing source char
embedding does not hurt our performance too much, for Finnish and Elvish shared the same set of
alphabets and we do not necessarily lose any information by freezing it.

4.6 Data Augmentation

As in other deep learning settings where there is limited data, we augment our data, i.e. we transform
our existing examples sentence pairs into new sentence pairs to increase the size of our training set.

Candidate Generation For a given English training sentence, we use the method from [11], which
generates replacement candidates for each word in the sentence using two LSTM language models
(LMs), a forward and a backward. The forward LM is passed the normal sentence, and the backward
model is passed the reversed sentence so it learns to predict the sentence backward. The idea is that
at each time step the hidden state of the LSTM encodes the likelihood of each word in the vocabulary
appearing in the context of the rest of the sentence instead of the actual word at that time step.

5



Table 5: Ablation study of transfer learning

Source Char Target Input Char Target Char Loss PPL BLEU
Embedding Embedding Decoder Embedding Train Train Bible Misc

24.99 2.80 61.34 8.94
23.30 2.60 61.47 10.20
23.49 2.62 61.34 9.52
50.92 8.13 60.88 9.48
22.15 2.48 61.78 9.11
44.18 6.14 61.35 10.41
22.49 2.52 61.39 9.58
22.34 2.50 61.13 8.33

Baseline 35.71 4.33 60.11 9.89

Figure 2: How the forward and backward language models are used to generate candidates to replace
the word ‘young’ in the sentence ‘I am young’. The outputs of the LMs are combined into one
candidate list, shown at the top.

Figure 3: Creating new examples with candidates created from language model and English-Elvish
dictionary. We replace ‘stop’ with ‘defeat’ and make the corresponding replacement in Elvish.

Each of our language models is a unidirectional LSTM of hidden size 256 with word embeddings also
of size 256. We drop out on the word embeddings and on the outputs of the LSTM with a dropout
rate of 0.5. Each LSTM is trained using a log softmax loss function all the way back to the word
embeddings on our Europarl English training data.

As shown in Figure 2, we generate replacement candidates by running our transfer learning model’s
training data through the trained forward and the backward LMs. For each time step of the LM, we
choose the k (where k is a hyperparameter) hidden outputs with the highest probabilities, lookup their
corresponding words in the vocabulary, and set those words as the candidates. Then, we take the
union of the candidates from the forward and backward LMs at each time step.

Example Generation Next, we use the candidates generated from previous step and augment our
data. While we now have possible replacements of English words, we do not know 1. which Elvish

6



word correspond to word we want to change in English 2. Elvish translation of new English word
we want to use. In [11], they use a fast-align model [7] to find alignment phrases of parallel-corpus
and make the replacement. However, we take a rather brute-force method using our Elvish-English
dictionary.

Table 6: Data augmentation experimentation results. ‘k’ is the number of candidate words each of the
forward and backward language model can generate for each word in the original sentence.

Augmentation Method k Loss Train PPL Train BLEU
Bible Misc

Dictionary N/A 36.12 9.715 61.37 10.45
Ignore First 6000 100 44.84 5.808 60.31 9.150
Ignore First 6000 + Dictionary 100 40.38 8.084 60.72 8.680
Filtering 5 38.87 4.405 58.67 8.320
Filtering 3 46.52 6.692 61.27 9.289
Filtering 1 47.74 7.131 60.96 9.597
Less Repeat 3 47.95 7.109 61.02 8.797
Less Repeat + Dictionary 3 35.62 8.448 61.10 10.69
Less Repeat + Replace Original 3 48.70 7.516 60.83 9.708
Less Repeat + Replace Original + Dictionary 3 39.65 11.68 61.08 11.38
Baseline 35.71 4.33 60.11 9.89

The process of example generation is described in Figure 3. Given an English sentence, Elvish
sentence, and candidate word substitutions, we make sure we have an entry in our dictionary for the
word in original sentence we want to replace (‘stop’), as well as check we have its corresponding
Elvish word (‘pusta’) in the original sentence. Hence, we identify the alignment of the words to
replace. Then, we iterate through our candidate word substitutions and select replacement English
words we have in our dictionary (‘defeat’). Finally, we can replace the words in English and Elvish
sentences, respectively.

Experiments and Results All of our data augmentation experiments (summarized in Table 6)
involved tuning the pre-trained Finnish model using our best transfer learning method.

Dictionary: As an initial basic augmentation experiment, we simply added the English-Elvish
dictionary into our training set as single-word examples. This unexpectedly was one of the most
effective improvements as our top 3 BLEU scores on Misc involve the dictionary. This may have
helped because there are many words in the test set that are not in the original training set, and now
the model would simply know these words. Similarly, during training the model may have effectively
learned a direct mapping from certain Elvish words to English words, which means there is very little
probability these words would ever be mistranslated.

Ignore First 6000: Additionally, we experimented with limiting the vocabulary to a subset that could
be selected as the top k to promote selection of rarer words not otherwise in our vocabulary. First, we
ignored the first 6000 words in our vocabulary as these came from the New Testament portion of our
data. This hurt our performance even with the addition of the dictionary. It’s likely that using k=100
in these runs created too many repetitive examples that caused the model to overfit to certain sentence
structures and dilute the effects of the improvements. From these results, we concluded lower k’s are
better.

Filtering: We also tried filtering the vocabulary, such that we only selected words that were in our
English-Elvish dictionary and in our vocabulary but not in our New Testament data. We found this
method allows many very common words to be selected over and over again. To limit the number of
times a word is used we kept track of each word’s usage and scaled their probabilities down by this
word count. This still caused performance degradation as there were still repeated sentences with one
or a few words changed.

Less Repeat: Filtering still resulted in repetition because if a word had multiple candidates for
replacement we would create multiple duplicated examples with a single word replaced. We felt
this might be diluting the effectiveness of introducing new words in new contexts. Instead, if we
had multiple candidates for a given word, we would take the word between forward and backward
with the highest probability and just generate one new example with it. In all of our “Filtering” and

7



“Less Repeat” runs, we replace all the words at once and create one additional training example out
of replacements for each word. Again, striking the balance between adding augmented examples
and not repeating examples proved difficult because without the dictionary having fewer examples to
reduce repetition degraded performance.

Replace Original: Finally, we attempted to replace the example sentences from our training set with
the augmented sentences instead of appending them to training set and using both. This proved
effective because even though it didn’t increase the quantity of training examples, it improved the
quality by putting rarer words into the data, thereby helping the model generalize better. Combined
with “Less Repeat” and adding the dictionary, this produced our best Misc BLEU score.

5 Analysis

Translation Quality We see a varying quality of translations with our best model. Example 1 in
Appendix B is a fairly good translation that is almost word for word. “Possess” is perhaps not the
word an English speaker would use even though it is a synonym of “have” but is fairly close. The
model may produce a rarer word than “have” because of our rare word augmentation. Example 2 first
shows that the model struggles with named entities. It also shows that since there is not enough New
Testament training data, some of the translation still reflect the Finnish-English Europarl training.
“German” and “state” are likely words that were learned during the source model training and not
unlearned during target model. Example 3 shows that in some cases the model produces translations
that hardly correlate to the golden translation. We see that the model’s translation does somewhat
posses the list structure of the sentence but doesn’t translate any of the words in the list properly.

Data Augmentation We found that our data augmentation created the most fluent English sentences
when it replaced nouns with nouns. From Example 1 in Appendix C, we see it replaces “peace” with
the equally appropriate “prosperity”. It does an average job with articles, and verbs in Examples 2
and 3, respectively. It replaces the article “the” in Example 2 with “southern”, which makes sense in
the context of city but is not fluent. In Example 3, it replaces a verb with another verb, but here it
does not quite makes sense to “react to the ground”. In Example 4, the augmentation does poorly
with prepositions, replacing “if” with “core”, likely because we are always trying to substitute rare
words and are unlikely to get prepositions as candidates. One limitation is that as we are not fluent in
Elvish, we were not able to validate Elvish word replacement. We assumed that we could replace
Elvish words with their dictionary form; however, due to noun declensions and verb conjugations this
may not have always been exactly correct. We reasoned that because our encoder works at character
level, even an improperly inflected word form would be close enough to be translated.

Evaluation Another crucial component of working with low-resource setting is that we also lack
testing data. That means it is tough to evaluate the performance of our models. As its critical to have
as much data as possible, we couldn’t afford to use many data points for testing. Given such a small
test set (200 sentences), there is an uncertainty with regards to performance of model; is the model
actually performing better/worse, or did it get lucky with the 200 sentences? If an idea is applicable
to another language, we can carry out the experiments in a synthetic low-resource data and test the
result with an abundant test set.

6 Conclusion

To improve the model in the future we could combine the forward and backward language model
in different ways to generate candidates, such as choosing the one with the greatest sum/product of
logits. We could also learn and perform Named Entity Recognition (NER) to handle unknown names
more smoothly (e.g. just pass them to the translation). Lastly, we could utilize better parsing, such as
normalizing cases and stemming.

In this paper, we explored different methods to build an effective NMT model with very limited data.
We trained a model between Finnish and English and performed transfer learning to Elvish-English.
After experimenting with freezing certain parts of layers, we were able to increase the BLEU scores
compared to baseline models. Then, we utilized an online dictionary of Elvish-English and LSTM
language models to generate new examples and added to our training data. We showed that transfer
learning with data augmentation can improve our model performance for low-resource cases.

8



References

[1] Rico Sennrich, Barry Haddow, Alexandra Birch (2016) Improving Neural Machine Translation Models
with Monolingual Data. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics

[2] Chen Sun, Abhinav Shrivastava, Saurabh Singh, Abhinav Gupta (2017) Revisiting Unreasonable Effec-
tiveness of Data in Deep Learning Era. In Proceedings of the 2017 Conference of International Conference
on Computer Vision.

[3] Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, Jeffrey Dean (2016) Google’s
Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. In Transactions of the
Association for Computational Linguistics - Volume 5, Issue 1.

[4] Jiatao Gu, Hany Hassan, Jacob Devlin, Victor O.K Li (2018) Universal Neural Machine Translation for
Extremely Low Resource Languages. In Proceedings of the 2018 Conference of North American Chapter
of the Association for Computational Linguistics: Human Language Technologies.

[5] Mikel Artetxe, Gorka Labaka, Eneko Agirre, Kyunghyun Cho (2018) Unsupervised Neural Machine
Translation. In Proceedings of the Sixth International Conference on Learning Representations.

[6] Guillaume Lample, Alexis Conneau, Ludovic Denoyer, Marc’Aurelio Ranzato (2018) Unsupervised Ma-
chine Translation Using Monolingual Corpora Only. In Proceedings of the Sixth International Conference
on Learning Representations.

[7] Chris Dyer, Victor Chahuneau, Noah A. Smith (2013) A simple, fast, and effective reparameterization of
ibm model 2. In Proceedings of the 2013 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.

[8] Carpenter, Humphrey; Tolkien, Christopher, eds. (1981) The Letters of J. R. R. Tolkien. London: George
Allen & Unwin. ISBN 978-0-04-826005-5. No 144.

[9] Zoph, B, Barret Zoph, Deniz Yuret, Jonathan May, Kevin Knight (2016) Transfer Learning for Low-
Resource Neural Machine Translation In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing.

[10] Jiatao Gu, Yong Wang, Yun Chen, Kyunghyun Cho, Victor O.K. Li (2018) Meta-Learning for Low-
Resource Neural Machine Translation. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing.

[11] Marzieh Fadaee, Arianna Bisazza, Christof Monz (2017) Data Augmentation for Low-Resource Neural
Machine Translation. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics.

[12] Philipp Koehn (2005) Europarl: A Parallel Corpus for Statistical Machine Translation. In Proceedings of
the tenth Machine Translation Summit.

[13] Ondřej Bojar, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Philipp
Koehn, and Christof Monz (2018) Findings of the 2018 Conference on Machine Translation (WMT18).
In Proceedings of the Third Conference on Machine Translation, Volume 2: Shared Task Papers.

[14] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu (2018) A Survey
on Deep Transfer Learning. In Proceedings of the 27th International Conference on Artificial Neural
Networks.

[15] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush (2018) Character-Aware Neural
Language Models. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.

[16] Minh-Thang Luong, Christopher D. Manning (2016) Achieving Open Vocabulary Neural Machine
Translation with Hybrid Word-Character Models. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics.

[17] The New Testament in Neo-Quenya. https://folk.uib.no/hnohf/nqnt.htm. Accessed February,
2019.

[18] Texts in Quenya. https://en.wikibooks.org/wiki/Quenya/Texts_in_Quenya. Accessed Febru-
ary, 2019.

[19] Quenya-to-English wordlist. https://folk.uib.no/hnohf/quen-eng.htm. Accessed 2019 March.

9

https://folk.uib.no/hnohf/nqnt.htm
https://en.wikibooks.org/wiki/Quenya/Texts_in_Quenya
https://folk.uib.no/hnohf/quen-eng.htm


A Examples of char-level decoder on Bible

Example 1 - Repetition in the Bible

Train set example:
And Jesus said to them: "The friends of the bridegroom surely cannot have grief while the bridegroom is with
them?..."
Test set example:
And Jesus said to them: "Surely the friends of the bridegroom cannot have a fast while the bridegroom is with
them?..."

Example 2 - Replacing unknown names with Biblical ones

Label sentence:
Farewell - Galadriel’s lament in Lórien
Base model output:
Blessed from Nazareth has prepared in Egypt

B Translation Examples

These examples all come from the Miscellaneous (out-of-context dataset) that is our main benchmark for model
performance.

Example 1 - Good example, close translations

Elvish: Mernelye fire ar harya alcar.
Gold Translation: You wanted to die and have glory.
Our Translation: You wanted to die and possess glory.

Example 2 - OK example, base Europarl training data leaks into Elvish translation

Elvish: A Aina Faire Eru órova omesse.
Gold Translation: O Holy Spirit, God, have mercy on us.
Our Translation: O German Spirit have mercy on a state.

Example 3 - Bad example, little correlation with gold sentence Elvish: Náro pold’, úmea, morn’ ar alta.
Gold Translation: He is strong, evil, and dark.
Our Translation: A man’s street, an abuse, ’favours and unwise.

C Data Augmentation Examples

These examples come out of our best augmentation model: reduced repetition in examples combined with the
Elvish-English dictionary and replacing the original training examples with new ones.

Example 1 - Good replacement of noun

Original: For God’s kingdom is not eating and drinking, but justice and peace and joy by Holy Spirit.
Augment: For God’s kingdom is not eating and drinking, but justice and prosperity and joy by Holy Spirit.
Original: An Eruo aranie ua matie ar sucie, mal failie ar raine ar alasse Aire Feanen.
Augment: An Eruo aranie ua matie ar sucie, mal failie ar aute ar alasse Aire Feanen.

Example 2 - OK replacement of verb

Original: But are not two sparrows sold for a piece of copper? And yet one among them does not fall to the
ground without your Father’s knowledge.
Augment: But are not two sparrows sold for a piece of copper? And yet one among them does not react to the
ground without your Father’s knowledge.
Original: Ma uat filit atta vácine mittan urusteva? Ananta er mici tú ua lanta i talamenna pen Atareldo istya.
Augment: Ma uat filit atta vácine mittan urusteva? Ananta er mici tú ua accar i talamenna pen Atareldo istya.

Example 3 - OK replacement of article

Original: He was a man thrown into prison by reason of an uprising that had happened in the city, and of murder.
Augment: He was a man thrown into prison by reason of an uprising that had happened in southern city, and of
murder.
Original: Sé náne nér hátina mir mando castanen amortiéno ya náne martienwa i ostosse, ar nahtiéno.
Augment: Sé náne nér hátina mir mando castanen amortiéno ya náne martienwa hyarna ostosse, ar nahtiéno.

10



Example 4 - Bad replacement of preposition

Original: We know that the Law is good, if one uses it in a regular manner.
Augment: We know that the Law is good, core one uses it in a regular manner.
Original: Istalve in i Şanye mára ná, qui mo *yuhta sa mi şanya lé.
Augment: Istalve in i Şanye mára ná, ende mo *yuhta sa mi şanya lé.

11


	Introduction
	Related Work
	Approach
	Neural Machine Translation
	Character-Based Neural Machine Translation
	Transfer Learning in a Low-Resource Setting

	Experiments
	Data
	Experimental Setup
	Performance of Models under Low-Resource Constraints
	Performance of Transfer-Learning Models
	Ablation Study
	Data Augmentation

	Analysis
	Conclusion
	Examples of char-level decoder on Bible
	Translation Examples
	Data Augmentation Examples

