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Abstract

The combination of deep learning and large corpuses of text has enabled many
powerful language models to be trained. However, privacy concerns may make
training models directly on all text at a central server undesirable or even impossible.
To maintain user privacy, a central model which can be trained on user data while
keeping such data private and local to the user would be ideal. We have built an
efficient convolutional neural network (CNN) language model which has been
modified to use federated learning and differential privacy during training. The
performance of the federated, private model is comparable to the public, central
model.

Mentor: Michael Hahn

1 Introduction

Privacy leaks are commonplace in today’s connected social media landscape. Consumers have
concerns about social media and other companies’ use of their personal data. Further, directed attacks
on security of user information have been carried out. These factors have lead to increased interest
in training models while guaranteeing user privacy. Even trained models are vulnerable to leaking
private data and have been shown to memorize private data. In light of these factors, users may
choose to keep their data private, or platforms may prevent access to user-level data. To maintain user
privacy, a central model which can be trained on user data while keeping such data private and local
to the user would be ideal.

Language models have been trained for many purposes in natural language processing, including
machine translation. These models depend on the availability of a large, representative corpus of text,
and, in particular, a model that learns the structure and is predictive of text-based personal user data
requires training with vast amounts of sensitive text data.

In the past, RNN and LSTM language models have been state of the art. More recently, transformer
and CNN architectures have been of interest for performance and efficiency. The computations
performed by CNN architecture lend well to to parallelization, and since CNN models are commonly
used in vision tasks, mobile devices have optimized GPUs and even specialized hardware to efficiently
train and run CNN models.

We build and train a language model that federates training and ensures user privacy. We compare the
performance of this model with non-private and centrally trained equivalents. The private, federated
language model performs comparably to non-private federated equivalents.



1.1 Motivation

2 Related Work

2.1 CNNs for NLP

CNN models have achieved excellent performance in image and vision tasks over the last decade.
CNN models include convolution layers which extract features from the data and are easily paral-
lelized on a GPU due to their local repeated computations. The efficiency of CNN models has led to
interest in training natural language tasks on such architectures. Kim [2014] achieved excellent results
on sentence classification benchmarks using a CNN. A character-level CNN model by Conneau
et al. [2016] achieved state of the art on classification tasks. Their model is comparable to a deep
CNN traditionally used in vision and includes convolutional blocks with shortcuts that allow input
to bypass convolutions. Shortcuts or gating improve performance and are key elements of CNN
language models.

Dauphin et al. [2016] introduce a CNN language model which provides the basis for the CNN
language model in this work. Their model achieved competitive results on the WikiText-103 and
Google Billion Words benchmarks. The architecture involves stacking gated convolutional blocks,
which benefit from parallel computation. The architecture will be discussed further in Section 3.1.1.

2.2 Federated and Private Learning

In an ideal world, a trained model would learn general patterns in the data without memorizing or
reproducing any particular training example. Protecting individual privacy during training can be
accomplished both by federating the training and modifying the training algorithm to restrict the
amount of information stored in the model from each individual training example.

Federation, or federated learning, means that the model is sent to multiple clients to be trained rather
than being trained on a central server. The training algorithm FederatedAveraging was introduced
by McMahan et al. [2016] as an efficient protocol for federating learning between multiple clients
and computing a weighted average of model updates.

The goal of training a model privately is to ensure that users’ data is not compromised by access
to the model. Dwork [2011] introduced differential privacy, which is a formalization of a privacy
guarantee. The framework of differential privacy provides a formal privacy guarantee about how
much information from the user training data can be recovered from the parameters of the trained
neural network. Differential privacy is defined in McMahan et al. [2018] as:

Def: Differential Privacy A randomized mechanism M : D → R with a domain D (possible
training datasets) and range R (all possible trained models) satisfies (ε, δ)-differential privacy if for
any two adjacent datasets d, d′ ∈ D and for any subset of outputs S ⊆ R it holds that Pr[M(d) ∈
S] ≤ eε Pr[M(d′) ∈ S] + δ.

In the case of training a model, the training procedure is the mechanism M , and an output is a trained
model. McMahan et al. [2018] defines two datasets d and d′ to be user-adjacent if one of the datasets
can be formed from another by adding the data from one user. The privacy guarantee is a bound on
the probability that a particular user’s data was included in the training of the model. Equivalently,
given two results of a query to the user data resulting in the model, there must be a way to bound the
difference between the models. In this case, we will bound the queries and add noise proportional to
the bound. In their work, McMahan et al. [2018] train a differentially private recurrent neural network
(RNN) language model using long short-term memory (LSTM) and find that their private language
models have similar performance to non-private language models but require more computation to
achieve the equivalent performance.
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Figure 1: Training framework and model architecture.

3 Approach

3.1 Architecture

3.1.1 CNN Language Model

The CNN language model architecture can be seen in Figure 1. The model takes as input a sequence of
words X = x0, ..., xN of length N . The embedding E for the input is looked up with an embedding
layer. The embedding is then passed through a gated convolution block hidden layer. Let m be the
number of input channels and n be the number of output channels to the gated convolution block
hidden layer. Let Z ∈ RN×m be the input to the hidden layer. Let k be the kernel size, and h be the
hidden layer bottleneck size. The hidden layer applies three convolutions to the input:

H1 = (Z ∗W1 + b1) (1)

H2 = (H1 ∗W2 + b1) (2)
H3 = (H2 ∗W3 + b3) (3)

where W1 ∈ R1×m×h and b1 ∈ Rh, W1 ∈ R1×h×h and b2 ∈ Rh, W3 ∈ R1×h×n and b3 ∈ Rn. In
parallel, the hidden layer applies the same operations with different trained weights to the input:

G1 = (Z ∗ V1 + c1) (4)

G2 = (G1 ∗ V2 + c1) (5)
G3 = (G2 ∗ V3 + c3) (6)

where V1 ∈ R1×m×h and c1 ∈ Rh, V1 ∈ R1×h×h and c2 ∈ Rh, V3 ∈ R1×h×n and c3 ∈ Rn. The
output of the block is:

Hl = Z +H3 ⊗ σ(G3) (7)

The function of σ(G3) is to act as a gate for the output, and there is a residual connection.

The input to the convolution is left zero-padded with k − 1 elements to prevent the sequence from
cheating at the task. The layer includes a bottleneck for efficiency, as the convolution is only applied
with the full kernel size in the middle layer of the gated convolution block.

If the input and output layers of the block are not the same size, that is if m 6= n, then a projection
without bias is applied to the residual Z to ensure that the dimensions align.

The CNN model was implemented in PyTorch with reference from and modification of Bressler
[2018], who implemented the model from Dauphin et al. [2016]. Some code to process vocabulary
files from Stanford University CS224N assignments was repurposed.
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3.1.2 Federation Framework

A framework to federate training was built with the ability to send models, parameters, and parameter
deltas between a simulated client and server. The framework implements the training algorithms
described in Section 3.2 and is implemented with Python and PyTorch.

3.2 Algorithms

3.2.1 Federated Averaging

The training process for the CNN model has been modified to use federated learning. Specifically, the
algorithm FederatedAveraging, also known as FedAvg, as introduced by McMahan et al. [2016]
is used. In this algorithm, the training occurs over multiple rounds. During each round, the server
sends its model to a random set of clients of size C. Each client performs training on the model using
its data. The clients send the models back to the server. The server then updates its model parameters
to be an average of each client’s model parameters, weighted by the proportion of examples each
model used for training during the round.

3.2.2 Private Federated Model

Modifications are made to the FedAvg algorithm to achieve additional user-level privacy. The
algorithm DP-FedAvg was described by McMahan et al. [2018] includes four key modifications:

1. Select clients for training independently, leading to randomly sized batches per round
2. Clip each client’s update to the model by L2 norm
3. Average the updates in a way that provides privacy
4. Use Gaussian noise in the final central server’s update at the end of each round

The intuition behind these modifications is that the server will add noise proportional to the norm of
each client’s update in order to bound the contribution of each client to the model.

For simplicity, we assume that each client has an equal number of training examples. The result
is that the model updates from each client should be equally weighted by the server. We have K
total clients, and let C̃ be the expected number of clients per round. We choose C̃ = 100 for our
experiments. During each round, each client is selected for training during that round with probability
q = C̃

K .

The training algorithm, a version of DP-FedAvg with hyperparameters chosen to simplify the calcula-
tions, is shown in Algorithm 1. During each round of training, the server makes a query f(Ctrain) to
a subset size C̃ of clients. The clients each train the model, thereby leaking user information into
each model update. The aggregation of these C̃ model updates are the result of the server’s query.
Each of the model updates is bounded by S with clipping. To ensure privacy in the final model, the

server adds Gaussian noise proportional to S, with σ =
S

C̃
. The noise ensures that the sensitivity is

bounded:
‖f(Ctrain)− f(Ctrain ∪ {k})‖ < S (8)

where k is any other client not in Ctrain. McMahan et al. [2018] show that with appropriate
hyperparameters, DP-FedAvg achieves differential privacy. The parameters (ε, δ) are calculated with
the TensorFlow Privacy library [Google, 2019], as discussed in Section 5.

4 Experiments

4.1 Data

We train the models on a dataset of comments posted on the public social media website Reddit
during December 2018 [Reddit, 2019]. The dataset is hosted by Google BigQuery and was processed
to aggregate comments by the same author into author-specific subsets of the data. Each subset by a
single author is a simulated user-level dataset in the training algorithm, termed client dataset. The
client datasets are lower-cased, tokenized, and clipped to 4000 word tokens each. Datasets with
fewer than 4000 tokens are not used. We use 22,389 client datasets for a total of 89,556,000 word
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Algorithm 1 DP-FedAvg Simplified
Server Training:

for each round t = 1, . . . do
Ctrain ← (sample users with probability q = C̃

K )
for each user k ∈ Ctrain, . . . do

∆t+1
k ← ClientUpdate(k, θt)

∆t+1 ←
∑

k∈Ctrain
∆t+1

k

C̃

σ ← S
C̃

θt+1 ← θt + ∆t+1 +N (0, σ2)

ClientUpdate(k, θ0):
θ → θ0

for each local epoch do
for batch b in batches do

θ ← θ − α∇`(θ; b)
θ ← θ0+ Clip(θ − θ0)

return update ∆k = θ − θ0

Clip(∆):
return ∆ ·min(1, S

‖∆‖ )

tokens. We have assumed that the majority of Reddit comments are written in English, although
some proportion of our dataset may be non-English.

The word embeddings are trained as part of the model, but since the training dataset is private to
the server, the vocabulary for the embeddings must be computed without access to the training data.
We use the vocabulary (but not the trained weights) of the top 10,000 words from GloVe pre-trained
word vectors which have been trained on Wikipedia 2014 and Gigaword 5 datasets [Pennington et al.,
2014].

4.2 Evaluation

The models are evaluated on a language model prediction task. The evaluation dataset is a separate
held out dataset of Reddit comments containing 113,000 word tokens. The metrics used are cross
entropy loss, perplexity, and top-1 accuracy of the prediction. Top-1 accuracy refers to the fraction of
tokens which are accurately predicted by the model as having the highest probability.

4.3 Experimental Details

After hyperparameter tuning, models were trained using combinations of central or federated training,
method of selecting clients to train per round, client update clipping, and server model update noising.
A total of twelve representative models were trained.

For models trained with the FedAvg algorithm, a set of C = 100 randomly chosen clients participated
in training each round. Models trained with the DP-FedAvg training model, an expected client set
size of 100 used. Since each client is chosen to participate in training with probability q, client
training set sizes vary per round. Hyperparameters used were a learning rate of 0.01, minibatch size
of 10, sequence length of 8, convolution kernel size of 4. The embedding is dimension 300 with a
vocabulary size of 10,000. The bottleneck layer in the gated convolution block is 15. There is one
gated convolution block layer. The models trained for 20 rounds. Each client performed one epoch
(E = 1) of training on its dataset if it participated in a round. During training, the models were
evaluated on the held out test set after every communication round in the case of federated training or
after the model trained each set of 100 client datasets in the case of central training.

Values of S = 5, S = 10, and S = 20 were used for the hyperparameter S, the bound for the L2
norm of the client update to the model. Both the L2 norm of the client update and the magnitude of
the noise depend on S.
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Table 1: Round during which best performance in perplexity, loss, and accuracy were achieved.
FedAvg refers to federated training with a constant number of clients per round, DP-FedAvg refers to
federated training with an expected number of clients per round, and Central refers to training a
single model on the server.

Training Privacy Perp Round Loss Round Accuracy Round
DP-FedAvg Clipped, Noised, S=20 42.21 7 3.74 7 0.55 14
Central Non-private 39.13 8 3.67 8 0.63 14
DP-FedAvg Noised, S=20 34.7 5 3.55 5 0.56 8
DP-FedAvg Non-private 25.94 20 3.26 20 0.59 18
DP-FedAvg Clipped, S=5 24.56 20 3.2 20 0.59 20
DP-FedAvg Clipped, Noised, S=5 23.6 20 3.16 20 0.60 20
DP-FedAvg Noised, S=10 22.72 14 3.12 14 0.61 20
DP-FedAvg Noised, S=5 21.12 20 3.05 20 0.60 18
DP-FedAvg Clipped, Noised, S=10 20.13 20 3.0 20 0.62 17
FedAvg Non-private 17.69 20 2.87 20 0.61 16
DP-FedAvg Clipped, S=20 16.41 7 2.8 7 0.64 8
DP-FedAvg Clipped, S=10 14.27 20 2.66 20 0.66 18

Table 2: Values of (ε, δ)-privacy by DP-FedAvg after 20 rounds of training.

ε δ
1.44 10−4

1.7 10−5

1.95 10−6

2.21 10−7

4.4 Results

We evaluate the CNN language model performance when trained centrally. We compare the federated
learning algorithms in terms of the training characteristics and model performance. Finally, we
analyze the effect of the private training hyperparameters. In summary, all models perform reasonably
on the task; the federated models outperform the centrally-trained model; and the private models can
achieve equal performance to the non-private models.

The model training results are shown in Table 1. Accuracies of 0.55 − 0.66 and perplexities of
14.27 − 42.21 were achieved by the models, which is adequate performance. The CNN language
model trained centrally achieved best perplexity of 39.13 on the test set at round 8. Notably, all but
one of the models achieved lower perplexity. The only model which was unable to achieve lower
perplexity was the DP-FedAvg model with clipping and noise with S = 20, the highest amount of
noise added to the model.

As shown in McMahan et al. [2018], the algorithm DP-FedAvg can use the method to compute the
privacy spent in training introduced by Abadi et al. [2016]. The differential privacy parameters (ε, δ)
are calculated based upon the hyperparameters of training and shown in Table 2. Notably, the privacy
indicated by ε is less than 10, indicating a only small loss of privacy for client-level data.

5 Analysis

The federated models achieved similar or superior performance to the unfederated, centrally-trained
model. Figure 2 shows the test accuracy and loss of the training methods during training. The model
trained centrally fit during the first training round, and the performance did not substantially improve
during subsequent rounds, likely due to overfitting the training set. The model trained with FedAvg
which does not add privacy modifications to the training achieves similar accuracy and better loss
and perplexity than the central model, and fits substantially during the first few training rounds.
The averaging of the client models can be understood as a form of regularization that improves the
generalization of the centrally-trained model. The model trained with DP-FedAvg, using variable
sized batches, but no privacy (no clipping or noise) is slower to approach the performance of the
FedAvg model and performs slightly worse. After additional communication rounds, the perplexity
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Figure 2: Accuracy and cross-entropy loss on the test set over 20 rounds of training. Note that perplexity =
exp(loss).

Figure 3: Cross-entropy loss on the test set over 20 rounds of training with varying bound S. Note that
perplexity = exp(loss).

gap is 8.21 between the models may have closed further with extra training. The best-performing
private DP-FedAvg model with clipping and noise outperformed the non-private DP-FedAvg and
converged more quickly. The privacy modifications to the algorithm caused the training to be more
well-behaved and may have acted as regularization as well.

Next, to analyze the impact of the privacy modification to DP-FedAvg, we investigate the behavior of
DP-FedAvg models trained with and without each modification. We compare the models trained with
client updates clipped using bounds S = 5, S = 10, and S = 20. The more aggressive the clipping,
the slower the convergence; however, clipping with S = 20, the loosest bound, may have led to
overfitting, as performance in both accuracy and perplexity decreased after round 10. See Figure 3.

We compare the effects of noise with bounds S = 5, S = 10, and S = 20. Recall that Gaussian noise
is added with σ = S

C = S
100 , leading to noise values of σ = 0.05, σ = 0.1, and σ = 0.2. The models

trained with more noise converged and achieved best performance most quickly. The performance
of the models trained with less noise converged more slowly, but achieved better performance
eventually. The models trained with S = 5 and S = 10 achieved similar performance given that the
S = 10 model had more training time. The noise has a regularization effect on training and aids in
generalization, as seen in Figure 3.

Three models were trained with both client update clipping and Gaussian noise added to the server
update with S = 5, S = 10, and S = 20. While the model with S = 10 converged the most quickly,
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the high amount of noise added to the updates cause the model to stop improving around round 5.
The model with S = 5 converged more quickly than S = 10 in terms of perplexity but achieved
similar performance, as seen in Figure 3.

We compare the effects of the clipping and noise combined compared with either clipping or noise.
Using bound S = 10, the model with clipping only converged the most quickly and achieved the best
performance. The model with noise only did not converge as quickly as the other two models early in
training, but then achieved similar performance as the model with clipping and noise. The model
with clipping and noise achieved similar performance in early rounds of training, but performance
lagged slightly to a final perplexity gap of 5.86 with the model with clipping only.

The centrally trained CNN model did not include regularization or dropout in the architecture or
hyperparameters. It is likely that some form of regularization would improve the performance of the
centrally trained CNN language model, and in practice such regularization would be added to avoid
overfitting on the training set. Each client achieves lower loss on the local model before the model
averaging takes place on the server. We are encouraged that the modifications to the training algorithm
to ensure privacy have the secondary effect of regularization. Models and training algorithms can be
explicitly designed with the regularization of the privacy mechanism in mind.

6 Conclusion

The CNN language model successfully trains with central, federated, and privately federated training.
The differentially private language model achieves superior performance to a naively centrally
trained model. The private, federated language model performs comparably to non-private federated
equivalents, and we see that modifications to training that enable privacy also act as regularization.

6.1 Future Work

In the future, we plan to train a larger model on a larger subset of the data, as the model trained
was smaller than state-of-the-art. We plan to design a model with the privacy guarantee behaving
as regularization and perform model optimization and hyperparameter searching with both the
restrictions and benefits of differential privacy in mind. The
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7 Appendix

7.1 Figures

Figure 4: Perplexity on the test set over 20 rounds of training. The plot compares performance of different
training algorithms.

Figure 5: Accuracy, perplexity, and cross-entropy loss on the test set over 20 rounds of training. The plots
compare performance of models with different amounts of noise.

10



Figure 6: Accuracy, perplexity, and cross-entropy loss on the test set over 20 rounds of training. The plots
compare performance of models with different clipping bounds.

Figure 7: Accuracy, perplexity, and cross-entropy loss on the test set over 20 rounds of training. The plots
compare different privacy modifications for bound S = 10.
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