
Sentence Simplification with Transformer-XL and
Paraphrase Rules

Fei Fang1 & Matthew Stevens2
Stanford University
Stanford, CA 94305

1feifang@stanford.edu, 2mcs0042@stanford.edu

Abstract

Neural sentence simplification is an emerging technology which aims to automati-
cally simplify a sentence with complex syntax and/or diction while preserving its
meaning. Most of the existing work on neural sentence simplification has modeled
the task as monolingual machine translation (MT), and has investigated applica-
tions of architectures such as RNN- or Transformer-based seq2seq encoder-decoder
networks. In this project, we explore a new model by adapting Transformer-XL, the
cutting-edge architecture for language modeling (LM), to sentence simplification.
In addition, we propose and investigate two original approaches to incorporate the
Simple Paraphrase Database (PPDB), a large database of reduction rules for words
and phrases. The character-level Transformer-XL model achieved performance
close to SOTA. Though our experiments using the SimplePPDB variants do not
achieve desirable results, they reveal important insight regarding the integration of
accurate paraphrase rules into neural models. This project is the first known appli-
cation of Transformer-XL to a non-LM task, as well as the first known sentence
simplification model that can use character embeddings.

1 Introduction

Given a sentence with complex syntax and/or diction as input, a sentence simplification model aims
to output a sentence that is easier to comprehend and yet preserves the semantics of the input. This
technology helps readers process and retain information more efficiently. Furthermore, it is especially
useful to children, nonnative readers, as well as those with reading disabilities such as dyslexia [5].
Since simplification can be thought of as monolingual translation, neural sentence simplification has
been studied with the same architectures that are applied to standard interlingual neural machine
translation (NMT): seq2seq architectures involving RNNs or Transformers [6, 8, 9]. These models
were trained on a large parallel corpus of complex-simple sentence pairs in English.

Aside from neural methods, many statistical methods have also been applied to sentence simplifi-
cation. Relative to neural methods, statistical methods require significantly more extensive feature
engineering [9]. However, even though neural architectures have shown promising results for in-
terlingual MT, when it comes to sentence simplification, neural models have rarely outperformed
statistical models [6, 8, 9]. We conjecture that this is due to the fact that unlike in interlingual MT, in
sentence simplification, most tokens of the simplified sentences are copied over from the originals [8].
As a result, a standard supervised-learning encoder-decoder model becomes “too” good at pointing
to parts in the source sentences and then copying them over to the predictions, instead of making
significant simplifying changes. In comparison, statistical rule-based systems consistently perform
simplifying changes. To combine the strengths of both neural and statistical methods, it is worth
exploring hybrid models that are based on neural networks and yet still make use of paraphrase rules
[9].



In this project, we explore a potential improvement to existing neural models for sentence simpli-
fication. We adapted Transformer-XL, a novel architecture that had not been applied to sentence
simplification before, to our task at hand. Transformer-XL is a variant of the Transformer architecture
that incorporates a recurrence mechanism. In comparison with the vanilla Transformer, Transformer-
XL is able to learn temporal dependencies beyond a fixed-length context, and aims to outperform
Transformer on language modeling (LM) [1]. Indeed, it has demonstrated stronger performance on
LM than RNNs and Transformers, thanks to its ability to learn longer dependencies. Since the lack
of ability to learn long dependencies is a common shortcoming of both RNNs and Transformers,
we decided to explore the application of Transformer-XL architecture to sentence simplification. In
fact, our model is the first to apply the Transformer-XL architecture to a task other than language
modeling.

In an effort to build a hybrid neural-statistical sentence simplification model, we further investigate two
approaches to integrate the Simple Paraphrase Database (PPDB) into our neural model. SimplePPDB
is a collection of approximately 4.5 million reduction rules of words and phrases in English, and
there has been effort done on integrating these reduction rules into the loss function of a neural
model [9]. Inspired by previous work, we explore the application of SimplePPDB to neural sentence
simplification tasks via two integrations: a loss function using the paraphrase rules, and a “weighting”
system that assigns a “confidence score” to each gold label, which then in turn goes into the
computation of losses.

The character-level Transformer-XL model achieved a SARI score of 27.39. While neither the
word-level model nor the SimplePPDB-integrated variants performed well, our experiments with the
latter variants reveal important insight discussed in the Analysis section.

2 Related work

In the past few years, deep learning (DL) techniques, especially sequence-to-sequence architectures
such as RNNs and LSTMs, have led the progress in natural language processing (NLP), including
machine translation. In particular, these architectures have also been applied to intralingual translation,
such as paraphrase and text simplification. The first and most straightforward DL-based approach to
sentence simplification is supervised learning: take a simplified parallel corpus (e.g. semantically
aligned sentences from the normal English Wikipedia and the Simple English Wikipedia), and train
a seq2seq encoder-decoder model (often with LSTM layers) on the corpus [8]. It was shown that
although the baseline could generate fluent sentences, it often fails to simplify the complex sentences
[8]. This baseline model was then refined by adding in a reinforcement learning (RL) component,
where the REINFORCE algorithm uses the output of the baseline model as input [8]. Another
approach to refine the baseline was to adapt the Neural Semantic Encoder [3], an encoder architecture
with augmented memory, to the encoder component of the LSTM-based encoder-decoder model, so
that the model could learn longer dependencies [6].

Since it has been observed that neural models still have not outperformed statistical, rule-based
models on sentence simplification, a recent study proposed a neural-based model that integrates
simplifying paraphrase rules from the SimplePPDB [9]. The neural component of this model is based
on the Transformer, a multi-layer, multi-head attention-based encoder-decoder. It was claimed that
the integration of SimplePPDB ensured that infrequent simplifying paraphrases, which are often
ignored by neural models, are still applied [9]. In particular, the SimplePPDB [4] was integrated into
the loss function. The SimplePPDB database includes approximately 4.5 million simplifying rules r,
each of which is given a “simplification” score wr between 0.0 and 1.0, with high scores assigned to
simplifications which are simpler compared to their target sentences. Given a sentence I containing a
word or phrase A which can be simplified to a using a reduction rule r in the SimplePPDB and a
corresponding prediction I ′, the authors’ loss function Lcritic is defined as

Lcritic(I
′) =

{
−wr logP (a|I) if model generates A
wr logP (A|I) if model generates a.

(1)

Informally, the loss function rewards the model for applying reductions in the SimplePPDB, and
penalizes the model for not doing so, in proportion to the simplification scores for each reduction rule.
We have several concerns regarding the specification of this loss function; because the function is
essentially defined by example, it is unclear what score will be applied if a word or phrase has multiple

2



Figure 1: An illustrated diagram of the Transformer-XL training and evaluation phases. Each
segment/subsequence is a layer in the Transformer-XL. In the training phase, the gray box indicates
the previous subsequence, while the filled blue and orange dots make up the current subsequence.
Source: [1].

simplifications in the PPDB, or how simplifiable phrases which overlap with other simplifiable phrases
are handled by the function. To the best of our knowledge, the Lcritic loss function is not implemented
in the publicly released codebase and all attempts to contact the authors to clarify the situation were
unsuccessful.

It was claimed that the Transformer-SimplePPDB model achieved state of the art results among all
existing models.1 However, as mentioned earlier, the paper failed to elucidate important aspects of
the implementation of the integration of the SimplePPDB into the loss function. Furthermore, there
was no qualitative analysis on example outputs in the paper. In addition, we failed to reproduce the
results of that study from the public repository.

Inspired by the proposal of the neural-statistical model [9], in our project, we conducted an in-
vestigative project on different approaches to build a hybrid neural-statistical model. Since the
Transformer-XL is an extension of the Transformer, we believe that the neural component could
benefit from the deployment of Transformer-XL. In addition, we investigated and implemented two
new approaches to integrate the SimplePPDB into our loss function.

3 Approach

3.1 Main approaches

3.1.1 Transformer-XL

The basic neural-based model in our project is based on the Transformer-XL architecture. The
Transformer-XL is an architecture proposed for language modelling. Given a sequence of characters
x1, x2, . . . , xn, the goal of the Transformer-XL is to predict the following character, xn+1. Similar
to the vanilla transformer, when the context is long, the Transformer-XL splits a sequence into
subsequences, uses the attention framework of the Transformer on each subsequence. Yet instead of
fragmenting the context like the vanilla Transformer, the Transformer-XL incorporates a recurrence
mechanism to learn dependencies across subsequences.

The recurrence mechanism enables the learning of dependencies beyond fixed-length context by using
information from previous subsequences. Like in the vanilla Transformer, when a subsequence is
processed in Transformer-XL, each hidden layer in the current subsequence receives the output of the
previous hidden layer in the same subsequence as input (represented by the gray arrows in Figure 1).
Yet unlike in the vanilla Transformer, in Transformer-XL, each hidden layer in the current subsequence
also receives the output of the previous hidden layer in the previous subsequence as input (represented
by the green arrow in Figure 1). The latter mechanism thus links consecutive subsequences to
each other, and as Figure 1(b) shows, in evaluation/prediction phase, the dependencies that the
Transformer-XL can learn and use actually extend beyond any two consecutive segments.

Since Transformer-XL is proposed for LM, we took steps to adapt it to sentence simplification.
More specifically, the goal of our model is as follows. The model is first given a complex sentence

1On one metric (SARI) and on one test set (WikiSmall-AMT). See details in 4.1 Datasets and 4.2 Evaluation
Metric.

3



Figure 2: A visual description of ModificationLoss.

Figure 3: A visual description of ConfidenceLoss.

I = (x1, x2, . . . , xn) as input, where for each i ∈ {1, 2, . . . , n}, xi is the ith token in the complex
sentence, and n is the length of the complex sentence I . Then, the model outputs a simple sentence
O = (y1, y2, . . . , ym), where for each j ∈ {1, 2, . . . ,m}, yj is the jth token in the simple sentence,
and m is the length of the simple sentence O. The model is trained to minimize the negative
log-likelihood loss of the simple sentence O,

Lnll = − log p(O|I, θ),

where θ represents the current parameters in the model.

To our knowledge, this is the first known adaptation of the Transformer-XL to a non-LM task.

3.1.2 Incorporation of SimplePPDB

The extension of our model makes use of the SimplePPDB, a large database of simplifying paraphrases
for words and phrases. The current iteration of SimplePPDB is derived from the second iteration
of the (general purpose) Paraphrase Database (PPDB) and consists of a subset of approximately 4.5
million reduction rules, selected automatically using a multi-class logistic regression classifier trained
to identify rules which output a phrase simpler than the input phrase. Each simplification rule in the
database is accompanied by a decimal “quality” score between 1.0 and 5.0 indicating the quality of
the paraphrase (i.e. how well the paraphrase preserves the meaning of the original phrase) and a
decimal “simplicity” score between 0.0 and 1.0 equal to the regression classifier’s confidence score
for the phrase in question (paraphrases with confidence score less than 0 are of course not included in
the database). Note that these paraphrases were generated automatically, not by humans [7].

We investigate two original methods for integrating SimplePPDB reduction rules into our model.

First, we construct a loss function, ModificationLoss, inspired by the Lcritic loss function in Zhao et
al. [9]. ModificationLoss takes as input a prediction ŷ and replaces all words in Simple PPDB with
the one-word simplification scoring highest in terms of quality, producing a sentence ŷ′. The final
loss value is CosineDistance(ŷ, ŷ′). In essence, this loss function penalizes predictions which can be
simplified extensively using the SimplePPDB and rewards those that cannot. When integrating with
Transformer-XL, the loss is a weighted sum of ModificationLoss and negative log-likelihood loss.

Second, we devise a method of “weighting” loss values between predictions and targets as follows.
Let ŷ be a prediction, y be the corresponding target, and n be the number of words in y. Let s be
the number of words in y which have simplifications in the SimplePPDB. Then, the final loss value
between ŷ and y is

ConfidenceLoss(ŷ, y) = NLL(ŷ, y) ·
(
1− s

n

)
· c

for 0 < c < 1 a hyperparameter set to 1
5 in our tests. Informally, if the target y corresponding to a

prediction ŷ can be extensively simplified using the SimplePPDB, we decrease the loss between y
and ŷ by a multiplicative factor if a large number of words in the target sentence can be simplified
using SimplePPDB, indicating that the target sentence provided in the corpus is possibly of poor

4



quality and the model should be less eager to decrease the distance between ŷ and y. We refer to this
loss function as ConfidenceLoss.

3.2 Baseline

Our baseline is the performance of an attention-based encoder-decoder model with LSTM layers
(EncDecA). The implementation, results, and outputs of this system are provided by Zhang and
Lapata, 2017 [8].

3.3 Implementation details

Our model was implemented in PyTorch. The neural architecture of our model is adapted from the
original repository of Transformer-XL [2], which implements word and character language modeling
using the Transformer-XL architecture. Because the original Tranformer-XL codebase is intended for
language modeling tasks and supports only a small collection of corpora, a number of significant
modifications were necessary in order to enable the Transformer-XL model to train for our non-LM
task.

Note that because Transformer-XL is intended for language modeling, the native preprocessing step
involves loading input sentences from a single folder of files and producing output sentences by
shifting the input sentences one token (character or word level) to the right. On the other hand,
sentence simplification tasks require that complex sentences and their simplified counterparts, which
oftentimes differ in length, to be loaded separately. As such, we implemented a data loading module
which loads complex and simple sentences from separate filepaths, constructs token embeddings
(character-level or word-level, per request), pads sentences to a user-defined length, and tokenizes
sentences. Since the implementation of the Transformer-XL requires that both source and target
tensors are of shape (batch_size, sequence_length), we then constructed a batch iterator for
each of source and target, where each batch contains the tokenized and padded sentences in the
required shape. In addition, we modified the Transformer-XL architecture so that it takes in an index
for the pad token and knows to not assign attention to any pad token.

For our SimplePPDB-dependent variants, we also loaded the SimplePPDB database along with
complex and simple sentences, and used SimplePPDB entries in the construction of token embed-
dings. We then constructed a dictionary which maps a complex word or phrase to its entry in the
SimplePPDB, and used the dictionary to construct a custom PyTorch loss function, which implements
ModificationLoss, and a utility which computes the multiplicative factor used in the implementation
of ConfidenceLoss.

4 Experiments

4.1 Datasets

For training, we used the WikiLarge dataset, constructed by Zhang and Lapata, 2017. This is the
largest parallel Wikipedia corpus, containing over 296k normal-simple sentence pairs [8]. For
development and test, we used the same dev and test sets as in previous work [8], created by Xu et al.,
2016 [7]. The sources of dev and test data come from the WikiSmall-AMT dataset. The WikiSmall-
AMT dataset consists of 2,359 original sentences taken from WikiSmall, a parallel Wikipedia corpus,
each with 8 reference simplifications, collected from Amazon Mechanical Turk workers. The 2,359
examples have been split into 2,000 for dev and 359 for testing [8].

When training on word-level embeddings, in order to reduce the vocabulary size, we followed
the preprocessing scheme of previous work [8, 9], and replaced proper nouns of people’s names,
locations, and organizations with tokens in the format of PN@n, where PN∈ {PERSON, LOCATION,
ORGANIZATION} is the category of the proper noun, and n denotes the nth distinct proper noun of
a given category in a given sentence.

We followed the same train-dev-test split as baseline and SOTA models [8].

5



4.2 Evaluation metrics

SARI The System Output Against References and Against the Input Sentence (SARI) metric is a
novel metric proposed by Xu et al. [7] in 2016 specifically for the evaluation of text simplification
models. The SARI metric evaluates a simplification based on three criterion: addition, under which a
simplification is rewarded for including a word not present in the unsimplified sentence, but present
in human reference sentences; keeping, under which a simplification is rewarded for retaining a word
which is also retained in reference sentences; and deletion, under which a simplification is rewarded
for erasing a reward which is also erased in the reference sentences. Note that SARI has been shown to
outperform BLEU in both quantitative and qualitative tests [7]. To ensure consistency of computation
of SARI with respect to existing work on sentence simplification, we use the implementation of SARI
provided by the authors of SARI [7].

It should be noted that, strictly speaking, the SARI metric functions by comparing outputs with
target and reference sentences at the word level. Thus, it is not entirely appropriate for evaluating
character-level models. We address this concern in the Analysis section.

4.3 Experimental details and results

4.3.1 Transformer-XL

Character-level We performed a randomized grid search to find the optimal hyperparameters for
our model. Hyperparameters tuned include the number of layers, model dimension, number of
attention heads, the attention head dimension, and the batch size. Given the restrictions of computing
power, the best-performing model has 2 layers, where the dimension of each layer is 64. Each
layer has 8 attention heads, each of dimension 8. The positionwise feed-forward layer has an inner
dimension of 4096. The batch size was 32, and the length of each example was capped at 128. The
model was trained with a learning rate of 0.001, with a decay rate of 0.5, and a dropout rate of
0.05. The training deployed an NVIDIA Tesla M60 GPU with 56GB of memory, and completed in
approximately 3 hours.

Upon convergence, the model achieved a val loss of 2.26 and perplexity 9.597, and a test loss of 2.26
and perplexity 9.605. The set of test predictions achieves a SARI score of 27.39.This result is close
to our expectations. As we can see in Table 1, we outperformed the baseline by a huge margin, and
achieved a SARI score close to SOTA.

Word-level When we trained the model on word-level embeddings on the entire training set, we
observed that both the train loss and val loss would fluctuate substantially. We thus began our
debugging process by trying to overfit on a small dataset. While our word-level model successfully
overfit on a small set of four sentences, it failed to overfit to a sample of 100 sentences, despite
extensive hyperparameter tuning and debugging with tensor shape and value checks. We offer
possible explanations for the failure of our word-level model in the following section.

4.3.2 Transformer-XL with SimplePPDB Integrations

When we trained the Transformer-XL model with either of the two approaches to integrate the
SimplePPDB on the entire training set, we observed that both the train loss and val loss would
fluctuate or increase. To debug the model, we tried to overfit on a small daaset by training and
testing both loss methods on a small set of four complex-simple pairs, at both the character and word

Table 1: Automatic SARI Evaluation on the WikiSmall-AMT dataset. Source of results of baseline
and SOTA: [8].

6



Figure 4: Scatterplot of complex sentence length (in characters) against prediction SARI score

levels. As expected, our model successfully overfit. We then tried to overfit on a larger dataset of 100
complex-simple pairs. Unfortunately, despite extensive experimentation with hyperparameters, all
models either exhibited worse performance relative to the pure Transformer-XL architecture, or did
not converge at all, with the best performing models performing approximately 10% worse compared
to pure Transformer-XL. As such, we did not evaluate the SimplePPDB variants using SARI. We
offer possible explanations for the failure of our SimplePPDB variants in the following section.

5 Analysis

Given that the WikiSmall-AMT Dataset has a substantial number of references, we performed our
analysis on outputs for a portion of this dataset. In particular, we would like to analyze the strengths,
weaknesses, and potential of the multiple variants of sentence simplification systems we have proposed
in this project.

5.1 Correlation between SARI and sentence length

We produced a scatterplot of the lengths of the complex sentences against the SARI scores that their
corresponding predictions yield. We observe a weak negative correlation between the two. Relative
to sentence lengths against BLEU in MT, this correlation is extremely subtle. We conjecture that
this is because a significant portion of the tokens in the target sentences are copied over from their
source counterparts. And as a result, even if the model had only learned the identity mapping, the
predictions would not yield an extremely low SARI score.

5.2 Character-level Transformer-XL

The use of the SARI metric As mentioned above, SARI is a word-level metric and is thus not
entirely appropriate for evaluating character-level models. In particular, an output sentence produced
by a character-level model which makes a single character error and a character-level model which
outputs an entirely erroneous word may be penalized by the same amount.

Evidence of this instability can be seen in our test predictions: consider the prediction "The book
, Political Economy , was publise", whose corresponding source sentence is "The book , Political
Economy , was published in 1985 , but had limited classroom adoption .", which receives a SARI
score of 32.82. While the word "published" is in 7 of 8 reference sentences, the word "publise"
is in none of them. As such, the prediction does not receive a reward for retaining "published".
However, if the word "publise" is corrected to "published", an edit requiring only two insertions, the
prediction receives the significantly higher SARI score of 34.89, an increase of more than two full
points. Note, however, that a misspelled word does not always negatively affect the SARI score. If
all references had decided to delete the word "publish" instead of retaining it, the SARI score of the
above prediction would be artificially high, rather than artificially low.

While this, in general, means that character-level and word-level models cannot be compared accord-
ing to SARI, we can estimate the effect that minor misspellings have on the overall SARI score by

7



preprocessing predictions with a spellchecker before computing the SARI value. We perform this
computation using PyEnchant by replacing all words which are not in the English dictionary by the
first suggestion offered by the library; modified predictions receive a collective SARI score of 25.59,
lower than the original SARI score. This is likely due in part to a reduction in the deletion component
of the SARI score, as PyEnchant restores words deleted in references previously considered to have
been deleted in the predictions. However, some of this discrepancy may be due to the presence of
proper nouns in the corpus.

Incomplete sentence endings We note that many predictions made by the character-level model
are often exceptionally short compared to both the source and target sentences. The mean and median
line lengths among predictions were 51.43 characters and 51 characters, respectively, while the mean
and median line lengths among the source sentences were 125.2 characters and 119 characters, and
the mean and median line lengths among target sentences were 117.00 characters and 109 characters.

This suggests that many of the predictions produced by the model end inappropriately early, and the
direct inspection of specific examples confirms this result. Indeed, we observe that the model predicts

• “His real date of birth was never recorded , b t it”, while the target sentence was “Since his
actual date of birth was not recorded , it is believed to be between 1935-1939 .”,

• “This quantitative measure indicates how much of a particuar”, while the target sentence
was “This quantitative measure indicates how much of a drug or other substance is needed
to inhibit a biological process by half .”, and

• “The string can vibrate in different modes just as a”, while the target sentence was “The
string can vibrate in different modes just as a guitar string can produce different notes , and
every mode appears as a different particle : electron , photon , gluon , etc. .”.

That is, sentences are often initially coherent for the first 45-50 characters, at which point they quickly
become nonsensical and stop.

This is likely due to the fact that prediction sentences are constructed in a character-by-character
fashion based on characters which have already been predicted; once a small number of faulty
character predictions are made, the errors “snowball” at which point the predicted sentence begins to
become nonsensical. We observe that as a language model, character-level Transformer-XL at its
inception was evaluated on an output sequence of 1

4 the length of the target sequence in the training
set. Note that source and target sentences often contain pad tokens near the end of the sentence, and
thus we expect that our model tends to predict that pad tokens follow pad tokens. Since pad tokens
are removed before predictions are output, this means that sentences often stop soon after a pad token
is erroneously inserted when the sentence begins to become incoherent. Therefore, it is possible that
with character-level embeddings, the current Transformer-XL cannot make good predictions that are
as long as targets in the training samples. If so, the model architecture of Transformer-XL would
need some significant changes in order to be appropriate for this task.

5.3 Word-level Transformer-XL

The current implementation of Transformer-XL requires a 2-dimensional tensor of shape
(batch_size, sequence_length). Therefore, when it comes to giving word embeddings to
each token, we were forced to either assign an index to each unique token, or revamp the existing
implementation such that it can take in a 3D tensor where each word is embedded using a dense
representation (e.g., GLoVe, word2vec). We decided upon the former given the consideration of time
limits. However, this means that essentially, one-hot embeddings were used for our word-level model,
which hinders effective learning. This is our conjecture for the significant fluctuations of training loss
and val loss during the training of our word-level model. Given more time, we would look into how
to modify the implementation of the model such that it would allow dense vector representations of
words.

5.4 SimplePPDB integrations

As mentioned above, neither SimplePPDB integration performed well enough for testing on the full
WikiLarge set. We offer possible explanations for the failure of both integrations.

8



5.4.1 ModificationLoss

Poor SimplePPDB reduction rules As mentioned above, the SimplePPDB is an automatically
generated paraphrase database, and prediction rules were not devised by human writers. While efforts
are made to ensure that simplification rules in the database a) preserve grammaticality and meaning,
i.e. simple phrases are “drop-in replacements” for their unsimplified counterparts; and b) are actually
simplifications, numerous errors exist in the SimplePPDB.

A significant number of reduction rules fail to satisfy b). For example, the SimplePPDB maps “limit
values” to “restriction” and “limitation” to “qualifier,” while in both of those cases, the former phrase
is arguably a simplification of the latter.

However, a far larger number of reduction rules seem to fail to satisfy a, i.e. reductions commonly
fail to preserve grammaticality. For example, the SimplePPDB replaces

• “unemployed” with “lose their job,” even though the former is an adjective and the latter is
a verb phrase;

• “parlamentarian” with ”all meps,” even though the former is a singular noun and the latter is
a collective noun;

• “statistician” with “statistics,” even though those two words do not refer to the same idea;

• “nowhere” with “go anywhere,” even though the former is a pronoun/adverb (i.e., same
lexical category as “anywhere”), the latter is a verb with an adverb, and meaning is not
preserved by the reduction (the reduction is also arguably not a simplification).

In principle, these issues might be remedied using Uniform Cost Search to ensure that reductions are
applied in such a way that they preserve meaning and grammaticality, as well as produce a simpler
sentence; however, this solution is computationally infeasible for medium or large datasets. Thus, an
improvement on the original SimplePPDB itself is likely necessary to address these shortcomings.

Unstable gradient descent Note that the final ModificationLoss value is the cosine distance
between a batch tensor of unmodified predictions and a batch tensor of predictions modified using the
SimplePPDB. While the modified batch tensor is computed from the original batch tensor, the function
mapping the unmodified tensor to the modified one is not differentiable, or even continuous. As such,
the modified batch tensor is essentially treated as a constant in the backpropagation calculation, on
the false but simplifying assumption that the modified tensor will usually remain constant in a small
neighborhood around a given point. One possible explanation for the failure of ModificationLoss
is that this assumption is an impractical one; that is, treating the modified batch tensor introduces
enough noise into the gradient descent process so as to render it ineffective.

5.4.2 ConfidenceLoss

Informally, ConfidenceLoss reduces the loss between a prediction and target if that target contains
many words which can be simplified using the PPDB. This may be problematic for small datasets.
If a particular pattern appears in a large number of source sentences, this method may effectively
prevent the model from learning to map the pattern to a poor target pattern. For small datasets, where
many patterns appear infrequently for no other reason than the size of the dataset, this approach may
prevent the model from learning to effectively map the pattern to anything. Testing on far larger
datasets is likely necessary to determine if this is the sole reason for the poor performance of the
models trained with ConfidenceLoss; if it is, then results should significantly improve.

We conjecture that one way to counter this tendency for small datasets (and possibly improve the
performance of the entire model) might be to modify the ConfidenceLoss function such that instead
of reducing the loss for a predicted sentence x if its corresponding target x̃ contains many words
which are simplifiable by the SimplePPDB, the function reduces the effect of the sentence on the
loss of its batch. That is, where ` is the loss of the batch B 3 x (recall that the loss of the batch is
the mean of the negative log likelihoods for each predicted character accross the sentence batch), we
multiply the column vector by a scalar such that the loss `′ of the resulting batch is closer to the loss
of the batch B − {x}, by a factor depending on how many words in x̃ can be simplified using the
SimplePPDB. Given more time, we would have implemented this new loss function.

9



6 Conclusion

We implemented a Transformer-XL-based model for sentence simplification and investigated two
methods of integrating paraphrase rules. To our knowledge, this is the first application of the
Transformer-XL architecture to a non-LM task, as well as the first study on character-level sentence
simplification. We find that Transformer-XL’s exceptional ability to perform language modeling on
character level has led us to successfully build a character-level model for sentence simplification, with
a straightforward encoding and decoding framework. This suggests that with some more sophisticated
adaptation of Transformer-XL, the architecture has tremendous potential in tasks including but not
limited to sentence simplification. Future avenues of research include improving the SimplePPDB for
use in real-world sentence simplification tasks and exploring the efficacy of weighting losses based
on target sentence quality using larger datasets. We also look forward to seeing BERT-XL, where the
representations from BERT are trained on Transformer-XL, and can facilitate a wide range of tasks
in NLP.

7 Additional Information

We would like to thank our mentor, Abi, for her remarkable patience and guidance regarding the
direction of this project.

We would like to acknowledge Nishith Khandwala for his invaluable advice regarding the efficient
implementation of this project.

References
[1] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.

Transformer-xl: Attentive language models beyond a fixed-length context. CoRR, abs/1901.02860, 2019.

[2] kimiyoung. transformer-xl. https://github.com/kimiyoung/transformer-xl, 2019.

[3] Tsendsuren Munkhdalai and Hong Yu. Neural semantic encoders. CoRR, abs/1607.04315, 2016.

[4] Ellie Pavlick and Chris Callison-Burch. Simple PPDB: A paraphrase database for simplification. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August
7-12, 2016, Berlin, Germany, Volume 2: Short Papers, 2016.

[5] Luz Rello, Clara Bayarri, Azuki Gorriz, Ricardo A. Baeza-Yates, Saurabh Gupta, Gaurang Kanvinde,
Horacio Saggion, Stefan Bott, Roberto Carlini, and Vasile Topac. Dyswebxia 2.0!: more accessible text for
people with dyslexia. In W4A, 2013.

[6] Tu Vu, Baotian Hu, Tsendsuren Munkhdalai, and Hong Yu. Sentence simplification with memory-augmented
neural networks. CoRR, abs/1804.07445, 2018.

[7] Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. Optimizing statistical
machine translation for text simplification. Transactions of the Association for Computational Linguistics,
4:401–415, 2016.

[8] Xingxing Zhang and Mirella Lapata. Sentence simplification with deep reinforcement learning. CoRR,
abs/1703.10931, 2017.

[9] Sanqiang Zhao, Rui Meng, Daqing He, Andi Saptono, and Bambang Parmanto. Integrating transformer and
paraphrase rules for sentence simplification. CoRR, abs/1810.11193, 2018.

10

https://github.com/kimiyoung/transformer-xl

	Introduction
	Related work
	Approach
	Main approaches
	Transformer-XL
	Incorporation of SimplePPDB

	Baseline
	Implementation details

	Experiments
	Datasets
	Evaluation metrics
	Experimental details and results
	Transformer-XL
	Transformer-XL with SimplePPDB Integrations


	Analysis
	Correlation between SARI and sentence length
	Character-level Transformer-XL
	Word-level Transformer-XL
	SimplePPDB integrations
	ModificationLoss
	ConfidenceLoss


	Conclusion
	Additional Information

