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Abstract

There has been much progress in recent years in the field of visual question
answering. Many models are running at super-human performance, and progress
appears promising. The MAC network’s compositionality-inspired architecture
[L] has achieved a startling 98.9% accuracy on the CLEVR dataset, which should
indicate that this field is solved. However, recent papers have been shown that
these ’superhuman’ models are not learning as much as we, human operators,
would like. In the case of the MAC network on the CLEVR dataset, MAC is
simply compositionality on CLEVR’s very small answer space. In this paper, we
propose modifications to the MAC network by utilizing scene graphs to avoid this
overfitting so that it can work in a more general setting. We chose the versatile and
real world GQA dataset [2] as a test set to benchmark our results. In this report, to
emphasize Natural Language aspects of machine reasoning, we decided to focus
on operating over the scene graph data of GQA rather than images.

1 Introduction

From concrete concepts like language to more abstract concepts like human reasoning itself, composi-
tionality plays a significant part in the theater of the intelligent man. However, articulating the precise
qualities of compositionalities can be elusive even for humans—much less machines. Nevertheless,
Gottlob Frege, the father of analytic philosophy, begins to do the concept justice. He states "I do not
begin with concepts and put them together to form a thought or judgment; I come by the parts of
a thought by analyzing the thought." His observations hint at the essence of compositionality and
human creativity.

Beginning with the concept of a idea or in our case, a question, we come to some understanding
with which we begin our thoughts. Over time, we can descend from our abstractions and attend to
concrete parts of our thoughts. More concretely, we internalize the largest, most complex structures
to understand the big picture. Then, we decompose the information, at discrete steps, to towards less
complex concepts, which we articulate in an answer. This leads us to believe that compositionality
and relational abstractions are linked in nontrivial ways that deep learning is apt to uncover.

This lead us to using the MAC architecture. This architecture emphasizes decomposition of questions
through discrete attention steps to internalize the reasoning process. However, previous work
involving the MAC architecture has focused on overloading its capacity for compositionality. Despite
achieving 98.9% accuracy on the CLEVR dataset, there is much progress to be made in the area of
extending the model to question-answering spaces with complex of compositionalities as well as
complex answer spaces. These insights inspire this project.

Our contributions involve extending the MAC framework to operate over scene graphs rather over the
raw images. We have decided to use the scene graphs of the GQA dataset.



Figure 1: An example of data in the GQA dataset.
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(a) Original image (b) Nodes pertaining to question

Q: What is on the skateboard in the bottom of the photo?
A: Shoe

Figure[Iis an example of an entry in GQA (only data relevant to answering the particular question
is displayed). Humans follow the process Frege outlined above. They first internalize the image.
Second, they would focus on the most distinctive feature of the image—the boy. Then, they notice the
relationships of the image. We are modeling this process as the mental creation of a "scene graph".

Only after this, do they attend to the question and their knowledge of the scene relations informs
their attentive steps over the question. Having internalized the question, they focus on the concept of
the "skateboard" and retrieve the corresponding node in the knowledge graph. Finally, they traverse
across the graph acording the semantic structure of the sentence finding the answer to be "show".
This reasoning process is the inspiration for our model.

2 Related Work

Much research has emerged recently in using graphs as inputs to models. A couple of particularly
complex network that has emerged including the graph convolutional network [4]], the graph attention
network[7]], and the gated graph sequence neural networks [9]. They make use of the information
propagation throughout the network in order to provide a better representation of the input. However,
rather than adding large networks to the already complex MAC architecture, for this paper, we have
chosen to create more lightweight additions.

Of course, this research is inspired by the original MAC architecture [[1] that has shown to perform
machine reasoning well on the CLEVR dataset [3]], but does not perform well on real world images
via the GQA dataset [2]]. A large influence for real world visual reasoning comes from the creation of
Visual Genome [3]], a dataset that has enabled modeling of interactions and relationships between
objects in an image. The annotations within the Visual Genome dataset is currently the largest dataset
including image descriptions, objects, attributes, relationships, and question answer pairs. In fact, the
GQA dataset is heavily based on the Visual Genome dataset. There are currently no baseline papers
that have tried to perform machine reasoning on the GQA dataset because the GQA dataset is newer.

3 Approach

In order to extend the MAC architecture to the GQA dataset, there are various changes that are
being applied, as described in more detailed below. First, the base MAC architecture is described.
Afterwards, modifications to the MAC architecture is broken down into the control unit and memory
unit.

3.1 Base MAC Architecture

Currently, the base MAC architecture is comprised of a recurrent network of MAC cells, each
containing a control and memory (read/write) unit.



The inputs: The inputs to the model are comprised of Figure 2: MAC Cell
a question and an image. The question is converted to
contextual words and a question representation via a bidi-
rectional LSTM, where the question is transformed into
a positional-aware vector g;, representing the aspects of
the question relevant to the i* reasoning step. The image
is then converted to a knowledge base corresponding to a
14 x 14 x d image region representation tensor.

Figure 3: Control Unit
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The control unit c;: The control unit is responsible for the reasoning operation at timestep ¢,
selectively focusing on some aspect of the question. This is represented by a soft attention-based
weighted average of the question words.

Breakdown of the control unit:

1. Utilize a linear transformation over the concatenation of the previous control with current g;
(question — position-aware vector) (cq;) to incorporate the previous control state.

2. Utilize a linear transformation over the output cg; elementwise multiplied by each question
word, and put through a softmax to yield an attention distribution, and finally sum the words
according to this distribution in order to produce the reasoning operation ¢; represented in
terms of the question words.

The memory unit m;: The memory unit holds intermediate results obtained from the reasoning
process up to timestep ¢« computed recurrently by integrating preceding hidden state m;_; with new
information r; from the image, performing reasoning operation c;. The memory unit is made up of 2
parts: a read and a write unit described briefly below.

Figure 4: Read Unit
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Breakdown of the read unit:

1. The direct interaction between the knowledge-base element %, ,, and previous memory
m;—1 is computed by utilizing a linear layer for both kj, ,, and m;_1, and then element-wise
multiplying them together in order to perform transitive reasoning by considering current
important information with regards to the previous computation steps, yielding I; , ..

2. Utilize a linear layer on the concatenation of I; , ., and kj, ,, to incorporate new information
related to the current reasoning step, yielding I l’ how

3. Retrieve relevant information based on the control unit ¢; and I} , 4 how via element-wise
multiplication, and then running that result through a linear transformatlon In addition,
utilize a softmax over that result producing another attention distribution over the knowledge
base elements, and utilize this attention distribution to compute a weighted average, yielding
;.

Breakdown of the write unit:



Figure 5: Write Unit
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1. Concatenate r; with the previous memory state m;_1 and utilize a linear transformation to
integrate new information into the current memory state m;.

2. Utilize self-attention via a softmax to derive an attention distribution over the previous
reasoning steps, which provides information to the importance of previous timesteps with
regards to the current one.

3. Finally, a memory gate is added in order to allow the model to dynamically adjust the reason-
ing process between the previous memory state m;_; and the current one m/, conditioned
on ¢;. The memory gate allows the cell to skip a reasoning step if necessary, and can pass
previous memory values forward, producing the final state of m;.

3.2 MAC Baselines with Images

CLEVR Dataset baseline: Since this dataset is simpler, the MAC network is able to perform well,
achieving an overall accuracy of 98.9%.

GQA Dataset baselines: Afterwards, the MAC network was applied to the GQA dataset in order
to gather a baseline without any modifications. The GQA dataset was assessed with the same base
MAC network that performed well on the CLEVR dataset. Currently, there is a validation dataset
accuracy of 61.91%, a large drop compared to the CLEVR dataset.

3.3 Finished Modifications

The control unit: In the base MAC architecture, the control unit attends to some part of the question
utilizing a linear transformation that takes into account the overall question and the preceding
reasoning operation. Instead of utilizing a linear transformation, we coded and incorporated an LSTM
to incorporate control information from all previous timesteps. This lead to an improvement in the
CLEVR dataset by 0.2%, but minimal improvements if any in the GQA dataset.

The input: GQA encodes an image as a scene graph containing an image’s objects, attributes, and
relations. This encoding is different than the current image input, which utilizes a 14 x 14 x d tensor
that pertain to various areas of an image. Instead, modifications to extend the MAC architecture to
the GQA dataset includes changing the image input to a node emphasized relationship embedding.

We propose an altered knowledge graph to vector encoding scheme that stresses the nodes relevant to
the compositional structure of MAC. Instead of encoding each image as various area representations,
we utilize a knowledge graph representation where each object k.y;, is represented as a node.

kopj, = |a, attributes(a),rn — b, -],

We will now describe how to obtain this node emphasized relationship embedding. We lookup a node
emphasized relationship embedding for each node representation kqp;, -

emb(kop;;) € R™*%

where 7 is the number of representation values for a particular object node. The embedding is taken
from an unfixed GloVe embedding so that the embeddings can learn to capture the nuances of the
scene graph relations as training progresses.

There were two approaches taken to attend to the image nodes:

1. Flatten: The first naively flattens the object and node representation dimensions so that
the final output is an attention map over R™" values, where m represents the number of
nodes and n represents the number of representation values for a node. There is an issue
with this approach though because this reverses the emphasis on nodes, and instead broadly
represents nodes as a collection of node representation items.



2. Average Pool: The second approach compresses the node representation items down utiliz-
ing an Average Pooling approach on all the embeddings of a particular node representation
emb(kopj,). Average pooling reduces the size of kop;, € R™*? — R<. Utilizing this
approach allows the model to attend to particular node representations correctly. Object
nodes are now the emphasis of image representation rather than various image regions. We
have now converted K}, ,, € Rhxwxd K, € R™*9 where m represents the number of
object nodes in a particular image. This approach was the contributing factor in the large
increase in accuracy for the MAC network on the GQA dataset.

After objects are encoded, we utilize a GRU to attend over the whole scene graph based on training.

3.4 Current Modifications

The input: In order to enable GQA to train end to end from image to output (rather than scene graph
to output), image information needs to be encoded to a scene graph that can be passed into the current
MAC network. We propose a 3 stage process:

1. Object Detection: Faster R-CNN [6] is utilized in order to perform object detection. This
is a necessary step in order for scene-graph-TF [8]] to understand object nodes within an
image.

2. Scene Graph Creation: Scene graphs can be created via scene-graph-TF [8]], which takes
in object detection information from Faster R-CNN (step 1), and generates scene graphs via
iterative message passing.

3. MAC Network: Once scene graphs are generated, the current updated Mac Network can be
utilized to generate question answering on new images.

Preprocessing progress has been made in order to create a new dataset that can be used with Faster
R-CNN for object detection, so that scene-graph-TF can generate scene graphs that can be feed into
the current MAC network.

A visualization of the whole process is as follows:

Figure 6: Newly Proposed GQA End to End Pipeline
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4 Experiments

4.1 Data

CLEVR: The base MAC network [[1] utilizes the CLEVR dataset 3] for the original visual reasoning
challenge. This dataset contains a smaller and finite answer space on which the MAC network
performs well as the state-of-the-art for this particular dataset. The CLEVR dataset is used as a
standard for the possibility of how well the MAC network can perform.

GQA: The GQA dataset [2] contains real world data containing information about compositional
questions over real-world images. Images are associated with a scene graph of the image’s objects,



attributes, and relations. In addition, semantic representations are utilized for both scenes and
questions to address language priors and conditional biases. Questions within the GQA question set
involve multiple reasoning skills, spatial understanding, and multi-step inference which prove more
difficult than other datasets utilized previously. This dataset holds 74939 training scene graphs, as
well as 10696 validation scene graphs.

4.2 Evaluation Method

The GQA system offers a large selection evaluation metrics including: accuracy, consistency, validity,
plausibility, distribution, and grounding scores. These evaluation metrics will be used to evaluate the
system as a whole.

4.3 Experiment Details
Baseline models:

Epochs: 25

Learning Rate: 0.0001
Batch Size: 64
Dropout:

— encoder input (dropout of the rnn inputs to the Question Input Unit): 0.85
— encoder state (dropout of the rnn states of the Question Input Unit): 1.0
— stem (dropout of the Image Input Unit (the stem)): 0.82
— question (dropout on the question vector): 0.92
— memory (dropout on the recurrent memory): 0.85
— read (dropout of the read unit): 0.85
— write (dropout of the write unit): 1.0
— output (dropout of the output unit): 0.85
Train time: 1 day
GPUs: 2 TITAN Xp
CLEVR dataset net length (network length (number of cells)): 16
GQA dataset net length (network length (number of cells)): 4

4.4 Results

Results via accuracies for both the CLEVR and GQA datasets are shown below. There are currently
no test datasets for GQA, so only training and validation accuracies are included in the results.

Table 1: Accuracies for the image-based Datasets

Model CLEVR(Test) | GQA (Val)
MAC Base Architecture | 98.9 61.91

Table 2: Scene Graph Accuracies for MAC + SG Base Model on GQA Dataset

Model (MAC + SG) Train Accuracy | Val Accuracy
Random Images 47.17% 43.90%
Base + Flatten 85.34% 62.90%
Base + Flatten + LSTM 83.13% 62.13%
Base + Avg Pool + GRU 92.17% 83.11%
Base + Avg Pool + GRU + LSTM | 89.56 % 83.19%

4.5 Quantitative Evaluation

In table[I] the high accuracies for the CLEVR dataset is expected because it is a simpler dataset
with a finite number of answers. GQA accuracies are expected as well because it is a more complex
dataset that includes real world images (sidenote: only validation accuracies are currently available
due to the in progress changes to extend the MAC architecture to the GQA dataset).



Figure 7: Accuracies
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Figure 8: Train Loss
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Our best performing model was the Base + Avg Pool + GRU + LSTM. This high performance with
this model aligns with our hypothesis that subdividing the knowledge base up into compression
steps using the GRU final states, context awareness using Avg Pooling layers, and increased control
robustness creates the superior model.

Converting the MAC network to operate on scene graphs enabled the system to have a 21.28%
increase in validation accuracy (83.19%) over the previous model that operated on images (61.91%).
This is a major step towards enabling a better VQA system as a whole on datasets that have real world
images, but is only part of the process. Because we are operating on fully observed scene graphs, it is
expected to have a large increase in accuracies.

S Analysis (Qualitative Evaluation)

The training dataset (74939 scene graphs) was used for training the MAC network. The validation
dataset (10696 scene graphs) is ran through this network in order to gather quantitative results (in the
Results section), as well as qualitative results (shown below).

In the above pie charts, we show the distributions of various question types (query, verify, choose,
logical, compare) and their normalized error rates. There is an overwhelmingly larger percentage of
query questions (e.g. What is in the vase?) which require a free form response. In addition, we find
that query type of questions have the largest error rate (normalized). This seems intuitive because
free form responses are harder to elicit than logical (yes/no type questions).

In addition, there are some query questions that seem very difficult to answer due to the way the
scene graphs are being created.

In figure [T0] the true answer is blue because that is what we as humans perceive, but the system
that created the scene graphs characterized the curtains as being green. There are other variables to
consider now since the MAC network is a submodule of a larger system. It is important to look at
how individual parts of a system contribute to the final outcome. Here, it is clear that there are other
upstream parts of the system that need to be analyzed in depth so that progress can be made to make
the system more robust. Since this bottleneck is part of an upstream submodule that creates the scene



Figure 9: Distibutions based on validation dataset (10696 scene graphs, 10000 questions)
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Figure 10: Wrong answer due to upstream scene graph creation.

Q: What color are the curtains?
Pred: Green, A: Blue

graphs, it is plausible that the MAC network submodule is more accurate and robust than is shown
from the quantitative evaluation due to these inconsistencies.

6 Conclusion

We have introduced changes to the Memory, Attention, and Composition (MAC) network that now
operates on scene graphs in order to perform machine reasoning. By operating on scene graphs,
the MAC network can now perform graphical reasoning on real world examples. We have replaced
the image input in the read unit to encoded knowledge graphs for a particular image. By replacing
images with node emphasized embeddings, individual nodes are attended to rather than image regions.
Limitations to our work include not having a full end to end system, but rather a submodule to a
whole system for visual reasoning. For future work, we want to enable the system to work on new
image input by implementing an image to scene graph system, and then passing the scene graph input
to the current MAC network that operates on scene graphs. By doing so, we will complete an end to
end model that can perform real world visual reasoning and compositional question answering.

Mentor: Sahil (CS224n) Drew Hudson (External)
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