
HorrifAI: Using AI to Generate Two-Sentence Horror

Adam Keppler
Department of Computer Science

Stanford University
akeppler@stanford.edu

Jennie Chen
Department of Computer Science

Stanford University
jchen437@stanford.edu

Abstract

Natural language generation is a rapidly evolving field that has already been applied
to various domains, from the practical - like summarization - to the more whimsical
- like recipe creation; however, one area in which research has been fairly limited is
that of horror fiction. In this project, we address the task of generating two-sentence
horror, a form of flash fiction in which a self-contained horror story is told in only
two sentences. Using models from the OpenNMT toolkit [1], we demonstrate the
efficacy of current text generation approaches in a new domain with significant
constraints, such as a distinctive style as well as a full narrative arc in a limited
scope. In addition, we explore a two-pronged approach to the evaluation of our
generated text by addressing language fluency and story cohesiveness separately.
We find that standard Seq2Seq models used as retrieval models manage to achieve
high-levels of readability in terms of grammar and spelling but often struggle with
generating endings that are relevant to the beginning of the story.

1 Introduction

The vast strides that have been made in fiction generation tasks, from story continuation to
image-based story generation are remarkable. However, there has been little work done on the specific
subdomain of horror fiction. Perhaps the only attempt so far is Shelley, the AI built by the MIT Media
Lab to create horror snippets as a continuation of a prompt or random seed [2]; however, no work
has been published on the models behind Shelley and little is known about its design. In this report,
we document an approach to generating two-sentence horror. Two-sentence horror is a form of flash
fiction in which a self-contained horror story is told in only two sentences. This medium provides
several challenges. The generated output must maintain coherency and complete a full narrative arc
with an impactful and often unexpected conclusion in the limited scope of two sentences.

We use a supervised learning approach and define our task as the following: given an initial
sentence, train a model to generate a second sentence that completes the two-sentence horror story
coherently - in a fluent fashion - and cohesively - in such a way that the topic and content of the input
and generated sentence are related. We approach this task by using an NMT style Seq2Seq approach
using the OpenNMT toolkit [1], thus leveraging the techniques used in the better-defined field of
NMT. In keeping with standard seq2seq practice, we initially aimed to train a sequence model, with
high language modeling capabilities. We found that due to our dataset’s limited size, our model is
unable to reach a reasonable level of coherence under conventional methods; however, when allowed
to overfit extensively on the training set, our output becomes much more readable. We therefore
train our models to behave in a manner more akin to retrieval models than to purely generative
models. Despite this, we find that our models are able to generate new creative sentences with
previously unseen n-grams by combining existing n-grams. Our work provides useful insight into the
effectiveness of an NMT-style approach for the relatively new domain of horror text generation.

2 Related Work

Little work has been done on horror-specific fiction generation, or even horror-specific content
generation of any media type. The task of horror-related image generation was tackled by the
MIT Media Lab in 2016 with the Nightmare Machine [3], one of the first applications of AI to the
horror subdomain. More recently, the MIT Media Lab created Shelley [2], described as the "first
collaborative AI Horror Writer". Trained on stories from the subreddit r/nosleep [4], Shelley takes
inspiration from a random seed or from a prompt (often written by various Twitter users) and works
to generate a horror story. Unfortunately, the MIT Media Lab has not released or published many
details about the approaches behind either of their projects.

While the horror domain itself has not been well explored, more work has been done in the
field of fictional story generation. The work of Fan et al. in story generation demonstrates an
approach to generating multi-sentence output given only a simple prompt [5]. Noting that standard
seq2seq models have trouble with creating stories relevant to the prompt, Fan et al. introduce a fusion
mechanism by training a new seq2seq model on top of a second pre-trained model, with the idea
that the first model focuses on language modeling while the second model links generated stories to
the prompt. Due to the length of their stories, Fan et. al use a convolutional architecture to encode
their text; however, as we focus on text of only two sentences, we don’t believe this is necessary
for our work. Fan et Al also highlight the challenges associated with open-ended text evaluation,
acknowledging that many common metrics such as BLEU and ROUGE are not useful for such an
open-ended task. Instead, they pursued an approach using model perplexity to measure language
model quality and prompt ranking accuracy to measure the relevance of the output to the input. While
these metrics proved effective for their task, they do not transfer particularly well to our work.

3 Dataset

We created a script utilizing the API for PushShift.io - a service dedicated to archiving Reddit
[6] - to scrape posts from the subreddit /r/TwoSentenceHorror [7]. We preprocessed our data by
replacing Unicode characters with ASCII, filtering out deleted posts, non-story posts, and stories with
two many or too few sentences. Examples were then split such that the first and second sentences
were in separate files. After preprocessing, our dataset contains roughly 22,000 examples, which we
randomly divided into training, validation, and test sets with a split of 85/7.5/7.5 respectively.

An additional dataset was generated to train a neural classifier for the evaluation of two-sentence
horror story cohesion. We define a sentence pair as cohesive if the second sentence is a valid
continuation of the story arc created by the first sentence; "validity" includes consideration of the
subject, the entities in the story, and the relevance of the second sentence to the first sentence.
The "cohesive" class contains the original 22,000 examples. For the "not cohesive" class, the
second sentences were permuted across examples, creating texts that were grammatically sound but
theoretically not cohesive. This allowed us to produce a balanced dataset with both classes using the
same vocabulary, forcing our classifier to pick up on context rather than word usage. This dataset
contains roughly 44,000 examples and is split like the other dataset.

As a note, we make the assumption that all human-generated two-sentence horror stories are
cohesive. Although this may not be true for all examples, we feel it is a fair assumption to make
given that we lack the resources necessary to filter and hand-label our data.

4 Approach

Our original approach involved the use of a NMT-style seq2seq approach, trained with teacher-
forcing, to learn a language model from our training data and use it to generate output. Using early
stopping, we used the model that gave the lowest perplexity on our validation set. However, upon
inspecting our output, we found that it was largely incoherent, with the model often just generating
the same short phrases over and over within a sentence or generating the same sentence for nearly
all examples. We suspect that these results were due to our small dataset, which only had 22,000
examples, whereas most NMT-style approaches are trained on the order of at least hundreds of
thousands of examples, if not millions of examples [8].

2

Given that our dataset was not sufficiently large to train a fluent language model that had readable
and diverse output, we decided to allow the model to overfit to the training set and behave more
like a retrieval model. By fitting so closely, our seq2seq models learn the exact phrases used in the
training data; at generation, they create output that is a combination of these phrases, sometimes so
effectively as to exactly match a training example. While this approach is likely not as powerful
as traditional generation approaches, it demonstrates another technique for generating readable and
cohesive output with a limited dataset and is overall effective for this specific task. We explored a
variety of architectures and decoding algorithms to identify the optimal configuration for our task.

4.1 Baseline

We created a non-neural retrieval model baseline using Jaccard similarity. Jaccard similarity
is calculated as the ratio of unique overlapping words between the two sentences to the number of
unique words across the two sentences; in more formulaic terms, if A is the set of words in the first
sentence and B is the set of words in the generated sentence, the Jaccard similarity is calculated as

Jaccard =
|A ∩B|
|A ∪B|

where |S| represents the number of elements in set S. Since cohesive stories tend to share entities
across sentences, we believe that good stories should have a high Jaccard similarity. Therefore,
the baseline generates output as follows: for each input sentence, output the second sentence of a
two-sentence horror story in the training data that has the highest Jaccard similarity with the input.

4.2 LSTM

Figure 1: Transformer model architec-
ture; taken from Vaswani et al. [9]

Our first experimental model uses the default con-
figuration of the OpenNMT model [10], a 2-layer unidi-
rectional LSTM encoder and decoder with multiplicative
attention, where both the encoder and the decoder have
500 hidden units. The model uses 500-dimensional word
embeddings, and the LSTM stack uses dropout 0.3.

4.3 Bidirectional LSTM

Our second experimental model is the same as the
previous model, but uses a bidirectional encoder.

4.4 Transformer

Our third model is the OpenNMT implementation
[10] of Vaswani et al.’s Google’s transformer model for
English-German and English-French translation [9]. The
model uses six-layer transformer encoder and decoders,
each with 512 hidden units. The transformers use eight
attention heads with scaled dot-product self attention as
well as a position-wise feed-forward network layer with
2048 units and a dropout probability of 0.1. The model
also uses 512-dimensional word embeddings, with a sinusoidal position encoding added to the word
embeddings to ensure that positional information is available to our non-RNN architecture. All model
parameters use Xavier initialization.

4.5 Decoding Algorithms

We experimented with several different decoding algorithms for each of our models. Our first
approach was random top-k sampling, where at each generation step we perform random sampling
from the k most-likely next tokens; this was performed for k = 3, 5, 8, and 10. With random top-k
sampling, we also experimented with the random sampling temperature, which was used to divide
logits before computing softmax to find token probabilities. Higher temperatures led to smaller logits,
which allowed the decoding algorithm to have more diversity in sampling, but were also likely to

3

produce less coherent outputs with more mistakes. We experimented with temperatures of 0.5, 0.75,
and 1.0. In addition, we experimented with using beam search with beam sizes 3, 5, 8, and 10. Beam
search explores the k most probable translations throughout decoding, where k is the beam size.
Higher beam sizes keep track of more partial translations, and thus tend to produce more coherent
and output at the cost of being more general and likely less relevant.

5 Experiments

5.1 Model Training

For the LSTM and the BiLSTM, the learning rate dynamically adapts over 100,000 training
steps; initially set to 1.0, it begins to decay after the first 50,000 steps at a rate of 0.5 every 10,000
steps. The models were trained using stochastic gradient descent and a negative log likelihood loss
function with batch size 64.

For the transformer model, the learning rate dynamically adapts over 30,000 training steps.
Initially set to 2.0, the model uses the Noam decay method with a warmup of 8,000 steps, which
adapts the learning rate according to the following equation

lr = d−0.5
model ·min(step_num−0.5, step_num · warmup_steps−1.5)

where dmodel is the embedding dimension. The learning rate is increased linearly for the first 8,000
steps; it is then decreased proportional to the inverse square root of the step number. This model
was trained using a negative log likelihood loss function and an Adam optimizer with β1 = 0.9 and
β2 = 0.998. We use dynamic batching with batch size 4096; gradients are computed over 2 batches.

5.2 Quantitative Metrics

5.2.1 Non-neural Metrics for Output Evaluation

For evaluating the coherency of our output, we explored a variety of metrics used in other
text generation research [11]. We calculated the average length of the generated sentence, used
two rule-based grammar checkers - Language Tool [12] and Proselint [13] - to analyze the number
of grammatical errors in our generated output, and explored lexical diversity - calculated as the
number of unique words relative to the total number of words across all generated sentences - to
evaluate writing quality; for all of these metrics we considered only the second sentence of each story.
However, we determined after careful analysis that none of these metrics were especially useful.
Sorting the generated sentences by their score for each metric, we examined the examples with the
best and worst scores and found little correlation between score and either fluency of language or
story cohesion. As a result, we did not utilize any of these metrics in our final evaluation.

One metric that we did find to be useful was Jaccard similarity; on our generated output, we
found that examples with a higher Jaccard similarity were generally more cohesive overall than
stories with a low Jaccard similarity. Given that Jaccard similarity increases when common words are
used across the two sentences, we believe that this makes sense; sentences with the same pronouns,
proper nouns, or nouns are more likely to relate to the same topic or subject.

5.2.2 Neural Cohesion Classifier

We explored two neural classifiers to determine if our generated output was cohesive. An
important element of our domain is ensuring that the first and second sentence are highly cohesive,
and while Jaccard similarity provided us with some insight, we wanted a more powerful and compre-
hensive evaluation system. We feel that cohesion has a high correlation with the overall quality of the
story and that a model able to accurately detect cohesion may serve as a good evaluator of generation
quality. To evaluate the success of our classifiers, we used accuracy as our metric.

We began by exploring a CNN model based on Denny Britz’s implementation [14] of Yoon
Kim’s architecture for sentence classification [15], with modifications to allow for the usage of
pre-trained word embeddings [16]. We trained a CNN classifier on our dataset of "cohesive" and
"not cohesive" examples. The input is a sentence pair which is passed through an embedding layer
with pre-trained 300-dimensional GloVe embeddings trained on the Wikipedia 2014 data [17]. The

4

architecture then uses 3 convolutional layers with filter size 3 and ReLU activation; each one is
followed by a max-pooling layer that condenses the feature map down to a single feature vector.
Finally, the outputs of each max-pooling layer are combined to form a single set of features used in
the softmax layer to predict whether the pair is considered "cohesive" or "not cohesive". To train this
classifier, we used an Adam optimizer with a learning rate of 1e-3, a cross-entropy loss function, and
L2-regularization with λ = 0.1. Unfortunately, our CNN classifier was unable to achieve particularly
effective performance. Although it was able to overfit to the training data, even with regularization the
model only achieved a peak validation accuracy of about 51%, barely better than random guessing.

Figure 2: Modified architec-
ture of our InferSent model

Due to these results, we pivoted away from this model; con-
sidering the similarity between our task of cohesion detection and
the task of natural language inference (NLI), we decided to instead
adapt Facebook’s InferSent model [18] as our classifier. InferSent
uses a self-attentive bidirectional LSTM sentence encoder with max-
pooling to generate sentence embeddings [18]. Relations are then
extracted from these sentence embeddings and fed through 3 fully
connected layers, producing a predicted class. We began by training
the InferSent model on our classification dataset using SGD, which
was able to achieve a peak validation accuracy of about 58%, a
noticeable improvement of our CNN classifier. To further improve
the model performance, we built on our assumption that cohesion
evaluation was closely related to NLI and pre-trained the InferSent model on the SNLI dataset
[19]. We then modified the model architecture by interleaving two dropout layers between the fully
connected layers and introduced L2 regularization with λ = .001; our modified architecture is shown
in Figure 2. With these modifications, we achieved a training accuracy of 78.4% and a validation
accuracy of 70.6%. This final model, which we use as our cohesion classifier for generated output,
achieved 70.1% accuracy on our classification test set.

5.3 Qualitative Metrics

Due to the limitations of our automatic metrics, we created a survey to provide us with further
insight from human evaluation. In our survey, we included 25 samples of two-sentence horror, with 5
samples selected from each of our five "models": human-written, Jaccard-based, LSTM, BiLSTM,
and Transformer. These samples were generated (or in the case of human-written stories, selected)
from our test set. For each category, we chose three samples through random selection. The remaining
two were selected by choosing 10 random samples and selecting what we considered to be the best
one, to demonstrate the higher end of what the models could generate. For each sample, we asked
respondents whether they believed the story to be written by a human or an AI, with a confidence
level from 1 to 5. We also asked respondents to rate the overall readability, cohesion, similarity to
horror, scariness, and general quality of each story on a scale of 1 to 10, with 1 as strongly negative
and 10 as strongly positive. For specific questions asked in the survey, please see Appendix A.

6 Results and Analysis

6.1 Model and Algorithm Selection

6.1.1 Retrieval Model Evaluation

To evaluate our retrieval models, we explored exact match occurrence and n-gram occurrence.
We define exact match occurrence as the number of generated outputs that exactly match a sentence
in the training dataset. Similarly, we define n-gram occurrence to be the percentage of n-grams in the
generated output that appear in the training dataset.

As we deliberately overfit our models to create retrieval models, we used these metrics to find the
stopping point for model training. For each of our models, we used each of our decoding algorithm
variations to generate output. This was done every 2500 steps for the LSTM and BiLSTM models,
and every 500 steps for the transformer model. We then calculated the exact match occurrence and
n-gram occurrence for n ∈ {2, 3, 4, 5, 6} every generated output set. We then chose the combination
with the highest overall exact match occurrence and n-gram occurrences, as we believe that this is a
good indication that the model is doing well at effectively retrieving phrases from the training data.

5

6.1.2 Decoding Algorithm Selection

From our model evaluation, we found that random top-k sampling was often significantly less
readable but had more diverse output, especially with higher temperatures; in comparison, beam
search across all beam sizes gave us output that was both readable and reasonably diverse. We did
not observe any particular improvement in cohesiveness when using random top-k sampling instead
of beam search, but such an improvement may have been lost with the general decrease in readability.
Given our findings that beam search generates significantly more readable output, we opted to use
beam search as our decoding algorithm.

When examining the differences between beam search sizes, we noticed that as the beam size
increased, n-gram and exact match occurrences also increased. In keeping with our belief that an
effective retrieval model would produce the most human-like and readable output, we selected beam
search with size 10 as our standard decoding algorithm as it reliably provided what we considered to
be the most effective retrieval performance.

6.2 Quantitative Results and Analysis

Model Avg.
Jaccard

2-Gram
Occ. %

3-Gram
Occ. %

4-Gram
Occ. %

5-Gram
Occ. %

6-Gram
Occ. %

Exact
Match

%
Cohesive

Human 0.068 76.921 39.79 15.55 6.47 3.31 30 78.76
Jaccard 0.271 100 100 100 100 100 1864 85.78
LSTM 0.052 94.12 71.42 42.78 25.34 16.13 166 61.16

BiLSTM 0.055 95.03 74.71 46.46 27.55 17.46 236 61.00
Trans. 0.046 99.68 96.80 92.94 90.72 89.82 1331 47.16

Table 1: Model performance for automated metrics on test set

Each model was run on the test set to generate output, which was then evaluated by our metrics.
The results indicate that the transformer model has the best performance as a retrieval model; nearly
every 2-gram in its generated output is also present in the training data, and the percentage only drops
slightly for 6-grams, in contrast to the LSTM and BiLSTM model. We can also see that out of 1864
sentences generated by the transformer, 1331 are an exact match to sentences from the training set.
The BiLSTM is slightly better than the LSTM model as seen in Table 1; however, both are far behind
the performance of the transformer. We ignore the occurrence metrics for the human-written text
and the baseline, as by construction all text generated by the Jaccard model comes straight from the
training data, and we use these metrics only to compare the performance of neural generation.

While our neural models heavily overfit to the training dataset, achieving perplexity levels less
than 2 during training, the output from these models still contain previously unseen n-grams. We
explored this behaviour by first verifying that the models achieved a 100% 1-gram occurrence rate
and as such were not creating new words. Upon further exploration, we found that the source of these
new n-grams was the models’ merging of retrieved n-gram phrases in ways not seen in the training
data. The combination of phrases allowed the model to produce previously unseen n-grams while
still retrieving the core parts of its composition from content it was exposed to during training.

Although our transformer model does very well at retrieving text, it performs poorly in terms of
generating second sentences that are cohesive with the input sentences. We can see that only about
47% of the transformer’s generated output was considered cohesive by our InferSent classifier, far
below what we consider to be the standard of nearly 79% on our human-written text. Interestingly,
the Jaccard model outperforms even the human-written stories according to our cohesion classifier,
with just below 86% of generated output considered to be cohesive. The LSTM and BiLSTM hover
in the middle; although they are deemed to generate more cohesive output than the transformer, they
do not reach the cohesion of Jaccard and human-written stories.

These trends are reflected in the average Jaccard similarity across our models; ignoring the
Jaccard model which of course has the highest similarity at 0.271, we can see that the transformer
model has the lowest Jaccard similarity at 0.046, compared to the LSTM and BiLSTM models at
0.052 and 0.055 respectively. We believe that our InferSent classifier may be considering factors

1Italicized figures included for completeness, but not meaningful

6

similar to Jaccard similarity when attempting to detect cohesion; this may account for why the
Jaccard model achieved a cohesion percentage that exceeded even the human-level standard. It is
also possible that the results of our InferSent classifier are mildly skewed, as the model only achieved
a peak test accuracy of approximately 70% on our classification dataset.

6.3 Qualitative Results and Analysis

Model Avg.
Readability

Avg.
Cohesion

Avg. Horror
Rating

Avg.
Scariness

Avg.
Quality

% AI vs.
Human Acc.

Human 8.54 8.59 7.77 7.03 7.69 84.44
Jaccard 7.14 5.73 5.97 4.86 5.71 61.48
LSTM 6.74 5.21 5.10 4.36 5.28 68.15

BiLSTM 6.63 4.43 4.39 3.63 4.63 81.48
Trans. 6.93 5.11 5.10 4.36 5.06 68.88

Table 2: Survey results aggregated over 27 respondents; categories rated 1-10

From the survey results, we can see that unsurprisingly, respondents rated human-written as
the highest in all categories. Jaccard-generated stories follow closely behind, again in all categories;
although we expected this for readability (as the second sentence was taken straight from training
data) and therefore quality (which is of course heavily impacted by whether or not stories are
understandable), it is interesting to see that the simple metric was so successful in generating stories
that readers considered both cohesive and (somewhat) scary. In fact, output from the Jaccard model
was most often confused for human-written text; over the 5 samples included in the survey for the
model, respondents were only 61.48% accurate in guessing that the text was not written by a human,
meaning that nearly 40% of the time the generated output was indistinguishable from human-level
writing.

In contrast, output from the BiLSTM was rated the worst in all categories, including overall
quality, and was easily distinguished as AI-written over 81% of the time. The transformer model
and the LSTM performed similarly in most categories; however, output from the transformer was
generally considered more readable, while output from the LSTM was generally rated to have slightly
higher cohesion and to be of higher overall quality. However, we can see similar trends to what we
saw in our automated metrics, with the Jaccard model excelling, the LSTM giving middle-ground
results, and the transformer model struggling to generate cohesive text.

Although we achieved good results with our models, the gap between model performance and
human performance (as seen in Table 2) indicates that there is still a long way to go, especially in the
categories of cohesion and scariness. Further work with our models may help close to this gap.

For a few examples of our most-effective generated output, please see Table 3. For more
examples, see Appendix B.

7 Conclusion

Text generation is a complex and difficult task; this difficulty is compounded by the lack of a
standard automatic metric. Our work demonstrates that two-sentence horror generation at a near-
human level is possible and provides an avenue for such text generation given a limited dataset. In
the case of two-sentence horror, vocabulary and subject matter is generally limited to a few overall
themes, and as such a retrieval model can often find text with reasonable similarity to the input.

Cohesion between sentences was the most challenging element for all of our models. Although
our neural models had generally high readability, all three struggled to generate a cohesive second
sentence. We believe that if better automatic metrics for cohesion could be developed, our models
could account for this factor while training.

Overall, we were able to successfully generate the second sentence of a two sentence horror
story at a level reasonably similar to human level quality, as demonstrated by the results of our survey.
We also developed a moderately successful classifier for story cohesion using Facebook’s InferSent
model. We believe that our approach of applying an NLI model towards the evaluation of a generative
model provides useful insight into possible future approaches for the evaluation of text generation.

7

Model Example

Jaccard
Other than the Craigslist ad that I answered a few months ago, I’ve never actually seen
or spoke directly to my landlord. But for the last few days, a man I’ve never seen before
has shown up everywhere I go.

LSTM ’Good night beautiful,’ I happily told my wife. The last thing I heard was the
high-pitched scream and a sickening crunch.

BiLSTM My attempts at astral projection finally worked. It’s been over 24 hours now and I don’t
know how to get back into my body.

Trans. She had waited her whole life for her parents to look at her with pride in their eyes.
That pride quickly turned to terror as I saw the oncoming headlights.

Table 3: Examples of generated output

8 Future Work

8.1 Improving InferSent Evaluation

While our modified InferSent Architecture has achieved reasonable performance, we believe
that its accuracy could be improved. An increase in the amount of cohesive two-sentence horror
stories would be extremely useful to improving the classifier’s performance. However, it is unlikely
that a larger dataset for this topic exists, so outside of data augmentation or the use of similar data,
further transfer learning could prove to be useful. Without hyperparameter tuning, transfer learning
accounted for an approximately 8% increase in performance; it is possible that training the model
further on other similar tasks could result in an additional boost.

8.2 Data Modifications

Our biggest challenge for this task was the limited size of our data; to that end, it might be
helpful to explore approaches for expanding our dataset. Subreddits such as /r/nosleep [4] and
/r/creepypasta [20] are also focused on horror fiction, so their posts could be useful as additional
horror-related content pairs. Although these pairs would not be constrained by the limited scope of
two-sentence horror, our models may still benefit from the additional examples. By feeding these
additional pairs into our models, they may better learn what constitutes horror and how different
sentences should be related. Another possibility is to better use our limited data by exploiting the
upvote (or popularity) scores of our examples. By pruning out the lowest-scored examples and
oversampling our highly-scored examples to effectively re-weight our data, our models may be able
to better learn what makes a good story and in turn generate better output.

8.3 Model Modifications

It would be interesting to perform further model modifications to explore their effect on generated
output; for example, experimenting with using GRU gates instead of LSTM gates or investigating
alternate attention types could possibly lead to output that is more cohesive.

Additionally, we believe that pre-training could improve the quality of our models. OpenNMT
offers several pre-trained models; however, when trying to run them we ran into issues regarding
setting mismatch due to models being generated with an earlier version of OpenNMT. We believe
that training a model on a language modeling task before training it on our dataset would improve the
quality of our generative models, as transfer learning may allow the model to compensate for the lack
of data.

8.4 Human Evaluation

While we are very happy to have received many responses to our survey, we were only able to
collect responses for three days due to time constraints; it would be useful to poll an even broader
range of people. Amazon Mechanical Turk or a larger survey time window would be very useful for
expanding the survey response count and giving us more data for analyzing the quality of our models.

8

Mentor

Our mentor for this project is Abigail See. Thanks Abi!

References
[1] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M. Rush. OpenNMT:

Open-source toolkit for neural machine translation. In Proc. ACL, 2017. URL: https://doi.
org/10.18653/v1/P17-4012, doi:10.18653/v1/P17-4012.

[2] MIT Media Lab. Shelley. [Online; accessed 5-March-2019]. URL: http://shelley.ai/.

[3] MIT Media Lab. Nightmare machine. [Online; accessed 5-March-2019]. URL: http://
nightmare.mit.edu/.

[4] Reddit. nosleep. [Online; accessed 5-March-2019]. URL: https://www.reddit.com/r/
nosleep/.

[5] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. CoRR,
abs/1805.04833, 2018. URL: http://arxiv.org/abs/1805.04833, arXiv:1805.04833.

[6] Jason Baumgartner. Reddit statistics - pushshift.io. [Online; accessed 1-March-2019]. URL:
https://pushshift.io/.

[7] Reddit. Two-sentence horror stories: Bite-sized scares. [Online; accessed 3-March-2019]. URL:
https://www.reddit.com/r/TwoSentenceHorror/.

[8] Stanford NLP. The Stanford Natural Language Processing group. [Online; accessed 16-March-
2019]. URL: https://nlp.stanford.edu/projects/nmt/.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017. arXiv:1706.03762.

[10] OpenNMT. Opennmt-py: Open source neural machine translation in pytorch, 2019. URL:
https://github.com/OpenNMT/OpenNMT-py.

[11] Melissa Roemmele, Andrew S. Gordon, and Reid Swanson. Evaluating story generation
systems using automated linguistic analyses. ACM, 2017. URL: http://people.ict.usc.
edu/~roemmele/publications/fiction_generation.pdf.

[12] Steven Myint. language-check: Python wrapper for language tool grammar checker, 2019.
URL: https://github.com/myint/language-check.

[13] Amperser Labs. proselint: A linter for prose, 2018. URL: https://github.com/amperser/
proselint.

[14] Denny Britz. cnn-text-classification-tf: Convolutional neural network for text
classification in tensorflow, 2018. URL: https://github.com/dennybritz/
cnn-text-classification-tf.

[15] Yoon Kim. Convolutional neural networks for sentence classification. Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014. URL:
http://dx.doi.org/10.3115/v1/D14-1181, doi:10.3115/v1/d14-1181.

[16] Cahya Wirawan. Multiclass classification and pre-trained word embedding (word2vec
glove) support and it’s comparison, 2017. URL: https://github.com/dennybritz/
cnn-text-classification-tf/issues/69.

[17] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, 2014. URL: http://www.aclweb.org/anthology/D14-1162.

[18] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data. CoRR,
abs/1705.02364, 2017. URL: http://arxiv.org/abs/1705.02364, arXiv:1705.02364.

9

https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
http://dx.doi.org/10.18653/v1/P17-4012
http://shelley.ai/
http://nightmare.mit.edu/
http://nightmare.mit.edu/
https://www.reddit.com/r/nosleep/
https://www.reddit.com/r/nosleep/
http://arxiv.org/abs/1805.04833
http://arxiv.org/abs/1805.04833
https://pushshift.io/
https://www.reddit.com/r/TwoSentenceHorror/
https://nlp.stanford.edu/projects/nmt/
http://arxiv.org/abs/1706.03762
https://github.com/OpenNMT/OpenNMT-py
http://people.ict.usc.edu/~roemmele/publications/fiction_generation.pdf
http://people.ict.usc.edu/~roemmele/publications/fiction_generation.pdf
https://github.com/myint/language-check
https://github.com/amperser/proselint
https://github.com/amperser/proselint
https://github.com/dennybritz/cnn-text-classification-tf
https://github.com/dennybritz/cnn-text-classification-tf
http://dx.doi.org/10.3115/v1/D14-1181
http://dx.doi.org/10.3115/v1/d14-1181
https://github.com/dennybritz/cnn-text-classification-tf/issues/69
https://github.com/dennybritz/cnn-text-classification-tf/issues/69
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1705.02364

[19] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, 2015.

[20] Reddit. A community for those who love scary stories and the paranormal. [Online; accessed
5-March-2019]. URL: https://www.reddit.com/r/creepypasta/.

10

https://www.reddit.com/r/creepypasta/

Appendix

Appendix A

For our survey, we asked respondents the same set of 7 questions for each of the 25 samples. Below
is a sample page of our survey that shows 1 sample and its associated questions.

11

Appendix B

Here are some additional samples of generated output for each of our models.

Jaccard Model

They told me it was an accident," I reminded myself as i lay bleeding in the bed of the pick up
truck, miles of dark country roads passing us by. Now I sit, alone in the dark, barely aware of
another eternity passing me by.

My wife says we’re going to have a baby tonight, I asked the gender. I would rather have asked
to be buried in a coffin, if I knew I would feel the burning.

What can I say, when my life has been a series of farewells, to my family, friends, and all I hold
dear? This is all I can remember of the last moments of my life and I’m damned to re-live them
over and over and over.

As I fell asleep I felt a cool breeze on my face. That’s when I felt a hand on my back.

Table 4: Output generated with the Jaccard model and beam search with beam size 10

LSTM Model

He was a smart boy, he gloated that he knew everything. But he was the last person he ever
heard.

The voice in my head has finally stopped screaming. I knew the owner of my breathing.

I woke up this morning with a hangover and the quilt my mom made for me covering me. I
realized I’ve been dead.

My dog barks every single night. He’s been dead for 5 years.

Table 5: Output generated with the LSTM model and beam search with beam size 10

BiLSTM Model

I drove as fast as I could to get away from the thing in the woods. I forgot to get out of the
straitjacket, but it wouldn’t budge.

Squiggles turns ten today! I just wish he would quit crying about his wife and kids.

I was just minding my own business and playing my game I got just a week ago. Then I woke up
from the coma.

I was home alone when lightning struck and the power went out. The moaning and banging
didn’t stop.

Table 6: Output generated with the BiLSTM model and beam search with beam size 10

12

Transformer Model

It had been hours since I had lost radio contact and even longer that since I had been sent flying
away from the shuttle. It might have been happier if I hadn’t seen their dead bodies in orbit 11
months ago.

Those bugs didn’t stop chewing away. I tried to scream.

When I was a lad, my father told me that if a man consumes the beating heart of an infant upon
the eve of every solstice, he shall remain young for all eternity. It seems to be a legend that has
dissipated with time, as I have never heard another person speak of it for the past three centuries.

I thought it odd when he said "Got your nose!". "And your teeth.Your eyeballs, your liver, your
intestines."

Table 7: Output generated with the Transformer model and beam search with beam size 10

13

	Introduction
	Related Work
	Dataset
	Approach
	Baseline
	LSTM
	Bidirectional LSTM
	Transformer
	Decoding Algorithms

	Experiments
	Model Training
	Quantitative Metrics
	Non-neural Metrics for Output Evaluation
	Neural Cohesion Classifier

	Qualitative Metrics

	Results and Analysis
	Model and Algorithm Selection
	Retrieval Model Evaluation
	Decoding Algorithm Selection

	Quantitative Results and Analysis
	Qualitative Results and Analysis

	Conclusion
	Future Work
	Improving InferSent Evaluation
	Data Modifications
	Model Modifications
	Human Evaluation

