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Abstract

Vanishing and exploding gradients have persistently plagued vanilla recurrent
neural networks (RNNs). To rectify these problems, unitary recurrent networks
(uRNNs), which restrict recurrent weight matrices to the space of unitary matrices,
have been suggested due to theoretical bounds on their gradient norms. We prove
certain additional bounds related to gradients norms and implement various forms
of uRNNs. Our models exhibit signs of “long-term memory” on both a concocted
pathological task and language modelling. Our mentor is Michael Hahn.

1 Background and Related Work

The phenomena of vanishing and exploding gradients are closely tied to the eigenvalues of the
recurrent weight matrix W,... in a RNN. |Pascanu et al.|[2012] suggests, denoting A; as the largest
magnitiude of the eigenvalues of W, that \; < = 1s a sufficient condition for vanishing gradients

and that A\; > = 1s a necessary condition for explodlng gradients, where -y is the upper bound on the

magnitude of derlvatlve o’ of the activation function used in the RNN. Letting &, be the hidden state
at time ¢, they observe that
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such that by properties of the Frobenius norm,
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such that the left- hand-s1de tends to zero for large ¢ as yA; < 1. However, this proof is fallacious as
the authors assumed H e TECH > )\ as the Frobenius norm is bounded
below by the operator norm which is then bounded below by A;. That said, their conclusions turn out
to be correct and a revised proof will be provided in Section 2]

In response to these conditions, |Arjovsky et al.[[2015]] proved that unitary matrices preclude exploding
gradients and solved several pathological tasks that require long-term memory. However, their
implementation requires a complex parameterization that does not span the full space of unitary
matrices, as discussed by |Wisdom et al.| [2016]. The latter then achieved state-of-the-art performance
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on various pathological tasks by applying a modified gradient-descent algorithm on the differentiable
manifold of unitary matrices. Our approach will be the most similar to their’s though our update step
that preserves orthogonality will be slightly different.

2 Theoretical Guarantees

In this section, we illustrate the relationship between the eigenvalues of W,... and the phenomena of
vanishing and exploding gradients. We will use the Frobenius norm ||W|| . = /trace(WTW) =

\/2_i.; [W1; and the operator norm ||[W{|, = supjz—1 [|[Wa||, where [Wz]|, is the standard
Vector 2 norm of . In most cases, this distinction is irrelevant and the norm is denoted as ||W]].

The following lemmas will be useful.

Lemma 1. For a given diagonal matrix D and an arbitrary matrix A in C"*", we have
(min | D) A]| = DIJA|| < [[DA]| < DI|A[| = (max | Dis| )| Al

where D and D are the minimum and maximum element-wise norms of D respectively. The proof is
straightforward from the definitions of the Frobenius and operator norms.

Lemma 2. If A € C"*"™ is given by

A =U,DUsD5...U,,D,,

for unitary matrices U; € C™*"™ and diagonal matrices D; € C™"*". Then,

Hnsall [T i < A< [l TT D
i=1

=1

where I, is the identity matrix such that || I, x, || = /7 and || I,xn || = 1.

Proof. Firstly, note that for any unitary matrix U, | AU || = || A|| = ||U A|| for an arbitrary matrix A.
Thus,
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where we have applied Lemma 1 in the third step. Following a similar argument produces a
corresponding lower bound.

2.1 General Bounds for Diagonalizable Matrices

Although the below theorem only holds for diagonalizable W,.., note that it is a representative
analysis of the evolution of RNNs as diagonalizable matrices are dense in C™*™ such that RNNs are
highly likely to encounter diagonalizable matrices during their training.



Theorem 1. Suppose W... € C"*" (and thus W ) is diagonalizable with smallest and largest
eigenvalue norms A and A. Furthermore, assume 3 < |o’(x)| < - is bounded. Then,

awt

AB) | ) < H < O M s

where h is the number of units in each hidden layer.

Proof. Since W}, i 1s diagonalizable, Wi, = UTDU for some unitary U and diagonal D. Thus,

Equat10nl(w1th T . in place of W,...) yields
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after which an application of Lemma 2 gives the result.

Table |1| summarizes the implications of Theorem 1 in different regimes of A3 and \y. If A3 > 1,

Oxt
oxy,

limy o0 ‘ ’ = 400 so the gradient explodes. For most activation functions, 5 = 0 so the lower

bound is, in fact, not particularly edifying. On the other hand, the upper bound shows that if Ay < 1,
Oxt

= 0 so the vanishing gradients problem occurs. Even if we wisely choose Ay > 1,

lim; o0 ‘

Ox

there is still no guarantee that ‘ does not vanish (i.e. the previous statement is not a necessary

condition for vanishing gradients). However, our following approach makes use of both these upper
and lower bounds. To the best of our knowledge, this is the first occasion of a network with a proven
lower bound on the norm of gradients between hidden layers.

Observe that if we require Ay = A3, H o H is confined to be (\y)*~*||I,x1||. To make this

expression independent of ¢ and k such that gradients can neither vanish nor explode, we just need
to ensure X’y = 1. Natural candidates for W,... are then unitary matrices for which A=)=1
Subsequently, we need 5 = v = 1 — a specific example of such an activation function would
be f(x) = |x| but we surmise that the other functions in Table [2| could be effective too (desirable
properties are in bold).

Low./Up. | M\y<1]| M=1 | \y>1 ol A AL
A3 <1 0 0+ 0/ 00 * 2] 1 |1
A8=1 - Constant 00* ReLU 0 1
AB>1 - - 00 Leaky ReLU | [0,1] | 1

Table 1: lim; 4o || 52 Oz || in different regimes of \3 Table 2: Eigenvalues of various activa-

and \y. * indicates the pos51b111ty of the limit occuring. tion functions.

3 Approach

In|Arjovsky et al.| [2015]], the idea of a Unitary Evolution Recurrent Neural Network (uURNN) was
introduced. In a bid to solve the vanishing and exploding gradient problems, the recurrent weight
matrix is constrained to be unitary (or equivalently, assuming all entries are real, orthogonal. We take
a similar approach to|[Wisdom et al.|[2016], except that the orthogonality of the weight matrix will be
preserved by an alternative update rule described in |Plumbley|[2004]:

B+ B+n ((VW J)W,T;( - rec(VWrec']) )

rec

W < exp(B)
where 7 is the step size and exp is the matrix exponentiation defined by
B2 BS
eXpB—I—FB-i-?‘F?‘F



In our implementation, the exp function is computed efficiently via an eigenvalue decomposition. For
an anti-symmetric matrix B (such as the case in the update above), by the complex spectral theorem,
B = U~!'DU for some unitary U and diagonal D. Then,

B2 B3
eXpB:I"FB'F?‘F?-F

U-'D*U U-'D3U

=I+U'DU + + + ..
2! 3!

D? D3
_ —1
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where e? is just the element-wise exponentiation for a diagonal matrix D. Thus, the overall time
complexity of this matrix exponentiation is the time complexity of eigenvalue decompositions
which can be performed efficiently for Hermitian matrices on CUDA (the anti-symmetric B can be
transformed into a Hermitian matrix through multiplication by ¢ after which the eigenvalues can be
retrieved through multiplication by —¢ while the eigenvectors remain the same).

Our implementation of the uRNN is built on top of the existing implementation of RNNs in PyTorch
with the ReLU activation function. The major modifications are the introduction of the parametrization
matrix B, whose gradient at each time step is manually updated as VgJ = Vi JWT — W (Vy J)T.
This allows for easy compatibility with optimizers with adaptive learning rates (such as Adam).

The overall architecture we will be using may be described as follows: the number sequence (resp.
word sequence) is first fed through an embedding layer, then the resulting embeddings are fed into
the RNN (resp. uRNN). The output from the RNN (resp. uRNN) is then passed through a linear
projection layer after which dropout is applied. Finally, loss is calculated by taking the cross-entropy
between the output of the linear projection layer and the ground truth encoded as a one-hot vector.
During the validation and testing stages of the toy experiments, accuracy is also calculated based on
the argmax of the final state.

The baseline we will be comparing against is a vanilla RNN. We will first test the conceptual validity
of uRNN by running comparative experiments on various toy tasks. Subsequently, we will construct
a language model using a uRNN, as well as other variants such as a unitary Gated Recurrent Unit
(uGRU), based largely on the Gated Recurrent Units (GRU) introduced in [Cho et al.|[2014]]. In
particular, given the update rules:

u; = J(Wum(t’l) + U,e® + b.) (update gate)
ry = a(WTx(t_l) +U,e® + b,) (reset gate)
#® = tanh (th(t_l) + Upe® + bh) (generated hidden state)
z® = (1 —-u®)oz® Y 4 u®oz® (new hidden state)

where (*), e(!) denote the hidden state and word embeddings (input) respectively, only the W}
matrix is kept orthogonal for the uGRU.

4 Toy Experiments

4.1 Tasks and Setup

To test the practical validity of our approach, the following toy experiments were devised to test
whether the model performs favourably on long inputs:

I. Given a sequence of N numbers from O to M — 1 inclusive, the task is to recall the first number of
the sequence.

I1. Given a sequence of N numbers from 0 to N — 1 inclusive, the task is to find the k-th largest
number of the sequence.



These tasks were tested against a vanilla RNN model and a uRNN model. Both setups used an Adam
optimizer as well as a Dropout layer. All parameters used were identical (see Table[8) so that we can
get an unbiased comparison between both models. The datasets are randomly generated based on
original code, with the same dataset used by both systems.

4.2 Results and Empirical Observations

Generally, the uRNN system outperformed the vanilla RNN system by a large margin on long inputs
(i.e. N > 50). This fits with our theoretical predictions that a larger number of time steps will have a
correspondingly severe impact on the relative gradients. Despite each batch taking around 2-3 times
longer (where the exponential operations were ran on CPU), the uRNN is often more efficient than
the RNN in terms of training speed.

Loss/ N 20 50 100 || Acc. (%)/ N 20 50 100
RNN 233 | 233 | 2.33 RNN 10.22 10.56 0.936
uRNN | 0.01* | 0.01* | 0.01* uRNN 99.98* | 100.00* | 100.00*

Table 3: Final test losses and accuracy for experiment I. * indicates that training was stopped early
due to loss threshold.
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Figure 1: Loss comparison for experiment [ with M = 10 and N = 100. Test (green) and dev (red)
losses indicated.

For experiment I, the vanilla RNN performed much worse than expected. From the accuracy levels,
we may infer that it fails to solve the problem for even the smallest testing value of N = 20.

Loss/ N | 100 | 200 | 400 || Acc. (%)/ N | 100 200 400
RNN 1.52 | 2.12 | 1.20 RNN 38.12 | 34.15 | 15.23
uRNN | 0.31 | 0.21 | 0.10 uRNN 92.01 | 80.45 | 56.73
Table 4: Final test losses and accuracy for experiment II. Datapoints marked with * indicates that
training was stopped early due to loss threshold being reached.
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Figure 2: Loss comparison for experiment IT (N = 100, k = 10). Test (green) and dev (red) losses
indicated.

For experiment II, the uRNN shows a clear advantage both in training speed and test results, even
though it too starts to falter as IV increases. Interestingly, in this case the RNN is able to make some
significant progress towards solving the problem in the case of N = 100, whereas it made negligible
progress in the previous toy problem (evident because accuracy hovers around 10%, which is the
expected accuracy if the answers were random). The second problem is easier in the sense that the
k-th largest number is expected to be large, hence it suffices for the RNN to simply keep track of the
largeest numbers.

5 Language Modelling Experiment

5.1 Experimental Details

We adapted the word language model from the Pytorch Examples repository| to run our uRNN model
on the Penn Treebank dataset. The parameters used are summarized in Table 0] below, where the
backpropagation length (B PT'T) refers to the maximum number of backward timesteps that gradients
will reach.

Firstly, we experimented with a uRNN which relied on custom implementations of the activation
functions stated in Table 2l After we determined that the uRNN indeed has its merits over the
conventional RNN, we observed that its performance still strayed from the state-of-the-art and thus
decided to adopt a more modern architecture. The ability of the uRNN to preserve "long-term"
information immediately beckons an entity that decides the relevant pieces to store — leading us
to turn to a Gated Recurrent Unit (GRU). We implemented a unitary version of a GRU (termed
uGRU) which employs a unitary recurrent weight matrix while the update and reset matrices are
unconstrained. The tanh activation function was adopted for compatibility with the Pytorch library.

Our baseline was a vanilla RNN for experiments with custom activation functions and a vanilla GRU
for our revised experiment, with identical set-ups.

During the course of training, we realized that our gradients for W.,... sometimes exploded and hence
decided to clip solely the gradient of W,... to a maximum element-wise magnitude of 0.25, while
leaving other parameters untouched.

5.2 Results of Custom Activations

Table[5]depicts the best validation and test perplexities attained by the RNN and uRNN. Surprisingly,
the uRNN is able to outperform the RNN in two cases, despite a restricted search space of recurrent
weight matrices.


https://github.com/pytorch/examples

Model / Activation || ReLU Leaky ReLU (A = 0.5)
RNN 784.53 /77391 | 754.65/705.28 756.48 / 712.88
uRNN 717.12/613.89 | 720.88 / 666.93 869.21/810.21
Table 5: Best validation and test perplexities in language modelling.

Bounds / Activation |z] ReLU Leaky ReLU (A = 0.5)
Lower v100 =10 0 0.5%39 =9.3 x 10710

Upper v/100 =10 | v/200 = 14.14 V200 = 14.14
Table 6: Theoretical predictions of range of gradient norms for different activations. |x| experiment
was conducted with 100 hidden units while ReLU and Leaky ReLLU experiments were conducted
with 200 hidden units. BPTT and thus maximum sequence length were 30 for all experiments.

For the || activation function, the gradients are ensured to be of constant magnitude (see Table E]) for
the uRNN so it is likely able to exceed the performance of the RNN due to better training of parameters.
This advantage is especially salient in this case as the non-monotone property of |x| introduces further
complexities in training. On the other hand, the lower bound (0.5%777 = 9.3 x 10~'°) imposed by
the Leaky ReLU on gradient norms is virtually zero such that the uRNN is still prone to vanishing
gradients. This, coupled with the weaker non-linearity of the Leaky RelLU activation, provides a
possible explanation for its worse performance as the space of possible functions it can represent
is severely restricted. Finally, the strong non-linearity of the ReL.U function enables the uRNN to
outperform the RNN despite a smaller search space, possibly because language modelling inherently
prefers unitary matrices which preserve long-term relationships and because the uRNN gradients still
tend to be larger despite the lack of a guaranteed lower bound.

Figure [4] on the next page depicts the Frobenius norms of the relative gradients between the last
and first hidden layers H gij H across batches in epochs 7 and 100 for our uRNN and vanilla RNN.
F

Overall, the gradient norms of both RNNs, with ReLU and Leaky ReLU activations, decayed with
the number of epochs but the gradient norms of the uRNN were generally two orders of magnitude
larger than those of the vanilla RNN. The |x| activation, on the other hand, indeed fixed the uRNN’s
gradient norm at a constant value.

For the uRNN which was run with ReLU in our experiment, the gradient norm was roughly level for
the early epochs of training as illustrated in Fig. 4a. However, the gradient norm started to fluctuate
around epoch 60 until it eventually decayed to a multitude of small spikes around epoch 100 as shown
in Fig. 4b. A possible explanation for the existence of spikes on an otherwise flat plateau at zero norm
is that towards the later stages of training, most hidden units were “dead” after the ReLU function,
causing most gradients to vanish other than an occasional spike.

For the vanilla RNN, the gradient norms always fluctuated and were generally much smaller than
the gradient norms in the uRNN in the same epoch, suggesting that it is more prone to vanishing
gradients as seen from Figs. 4e and 4f. Similar observations were made for the Leaky ReL.U function.

For the |z| activation function, the gradient norms of the uRNN was level at the predicted value of
10 even at epoch 100, as seen from Fig 4e, with a difference on the order of 10~ probably due to
numerical errors. Meanwhile, the gradients of the vanilla RNN continued to fluctuate. All-in-all, our
empirical results were coherent with our theoretical predictions in Section 2 in all cases. Although
the bounds were most meaningful in the case of |x|, we surmised that a Leaky ReLU with A > 0.95
could be effective too and thus plotted its gradient norms for a small subset of the training data in Fig
4f. As expected, the gradient norm indeed fell within the predicted range demarcated in green.

Finally, we generated random sentences using our trained uRNN through greedy decoding. Most
sentences appear to flow smoothly at first glance but upon closer inspection, one realizes that though
different sub-phrases appear logical in isolation, the sentences are still incoherent as a whole — an
observation that holds for most language models. However, our model is, intriguingly, able to produce
long sentences (Figure 3) which mimic the semantic structure of natural text, suggesting an ability in
identifying long-term relationships in certain limited cases.



this talk would the most important guidelines by now for our benefit capital which makes about N
N of the key machines related a rate for customer democrats morning while the number of shared
ones also with best united states now be counted following midnight night

Figure 3: Example sentence generated by uRNN

5.3 Results of uGRU

Our results for the uGRU experiments are summarized in Table[7} Notably, the uGRU was able to
achieve a test perplexity below 100 despite its additional constraints.

The uGRU performed slightly worse than the GRU with BPTT = 30 but better with BPTT" = 150.
The fact the discrepancy in perplexity for BPTT = 150 outweighs that with BPTT = 30 bears
credence to our hypothesis that the uGRU will be advantageous in tasks that require propagating
gradients over long temporal periods.

Over the course of training, the uGRU was also remarkably only 2ms (1 — 10% depending on batch
size) slower in training speed per batch due to our custom implementation of the otherwise costly
matrix exponential operation in CUDA. This suggests that our approach is scalable and feasible in
more complex set-ups.

Model / BPTT 35 150
GRU 100.80/97.25 | 108.33/105.34
uGRU 101.76/98.05 | 105.05/102.07

Table 7: Best validation and test perplexities in language modelling for GRU and uGRU.

6 Discussion

In this paper, we establish the first instance of a recurrent architecture with a proven lower bound
on gradient norms that has been empirically verified. The restriction of recurrent weight matrices
to unitary matrices not only solves the vanishing and exploding gradient problems but also leads
to improvements in both pathological synthetic tasks and the natural task of language modelling,
despite a smaller search space. This suggests that tasks which depend on long-term contexts are
fundamentally suited to be modelled by unitary recurrent networks.

Moreover, the advantages ascribed by our implementation only come at a negligible decrease in
training speed, meaning that it can be readily deployed in practice.

Finally, we conjecture that the benefits of our unitary models stem from the superior training of
parameters, facilitated by the bounded gradient norms. This can potentially be further leveraged by
introducing more layers before the final recurrent layer or stacking multiple recurrent layers, which
are examples of possible extensions.

7 Conclusion

In conclusion, the restriction of hidden weight matrices in RNNs (and its variants) to orthogonal
matrices seems to solve the vanishing and exploding gradient problems to some extent: this provides
improvements in both the toy cases as well as when applied to a language modelling task. This was
both theoretically established (in section 2) and empirically verified by plots of gradient norms.

7.1 Future Work

In light of the theoretical and empirical bounds for the gradient norm of a uRNN which employs the
|| activation function, we will implement a uRNN with this custom activation function and test it on
the same experiments described above. Furthermore, to compensate for the reduced dimenstionality
of a uRNN and to fully leverage the benefits in training due to the bounded gradient norms, we will
introduce more layers before the final recurrent layer to create the best language model we can before
the final deadline.
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Appendices

Training Parameters

Word embedding size 30 Word embedding size 400

Hidden units 50 Hidden units 200

Optimizer Adam Backpropagation length 50
Learning rate 0.00005 Optimizer Adam
Dropout rate 0.2 Learning rate 0.0001

Training epochs 200 Dropout rate 0.2

Patience 5 Training epochs 300

Batch size 100 Batch size 80

Table 8: Training parameters in toy experiment Table 9: Training parameters in language model
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