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Abstract

Generating SQL queries from natural language has long been a popular and useful
task attracting considerable interest. Most of the existing models are based on
Long Short-Term Memory (LSTM) network with various attention mechanisms.
Recently a new neural network architecture called Transformer has been proved to
gain higher accuracy in neural machine translation scenarios. In addition, CNN
has been proved to be efficient for text classification. In this project, we aim to
explore different existing text-to-SQL models and analyze on them, as well as
implement our model using Transformer and CNN. We evaluate how accuracy
would be affected. Our experiments find that introducing syntactical structures of
SQL to neural network can be helpful to text-to-SQL translation. Furthermore, for
aggregator prediction, transformer and CNN encoders for questions could achieve
comparable results to LSTM encoders.

1 Introduction

Generating SQL queries from questions in natural languages to help people easily retrieve data from
databases has long been an interesting while challenging problem. A model on this task shall not
only understand natural language questions but also generate corresponding SQL queries. With the
emergence of various popular "natural language to SQL" datasets, such as WikiSQL [1] and Spider
[2], many teams have contributed to solving this task. Seq2SQL [1] builds the WikiSQL dataset
and proposes a sequence-to-sequence deep learning model on this dataset. They use reinforcement
learning method to resolve order matters in SQL conditions. SQLNet [3] eliminates reinforcement
learning by introducing dependencies on SQL structures and reflecting the dependencies via a
specific attention mechanism. The state-of-the-art model, SyntaxSQLNet [4] is based on SQLNet but
generates a more complex syntax tree which even supports recursive SQL queries. In this project we
first explored and evaluated Seq2SQL and SQLNet on WikiSQL for inspirations on our model.

While most of the existing models are based on long short-term memory (LSTM) model [5], recently
new models have been proposed and proved efficiency in some specific tasks. Transformer [6], a
simple network only based on attention mechanism achieves highest performance in English-to-
German and English-to French tasks. CNN [7] has also been proved to show excellence in text
classification tasks. In this project, we aim to utilize these models on "natural language to SQL"
problem, exploring how they perform in this scenario. With limited time and resources, we only
focus on ‘SELECT’ clause in SQL grammar.

2 Related Work

Synthesizing SQL queries has long been a popular research topic. Seq2SQL [1] has been the first deep
neural network based approach to solve this problem. They constructed WikiSQL, one of the largest
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natural language query to SQL dataset and developed a deep neural network for translation. They
translated SQL based on SQL structures and utilized reinforcement method to predict SQL conditions.
They are the first to decompose SQL queries into different parts and predict each part to narrow the
output space. Our model also utilizes this and predicts each part of SQL independently. Instead
of "sequence-to-sequence" model, SQLNet [3] proposes a "sequence-to-set" model and eliminates
reinforcement learning by constructing dependency relationship on SQL queries and developed a
specific attention mechanism based on this dependency. They improved the prior state-of-the-art by 9
points to 13 points. Our model refers to their work on how they encode natural language questions
together with column names in the WikiSQL dataset.

While most of the models for this task use LSTM network, nowadays, alternative networks are
proposed to be effective and efficient in some specific tasks. Typically, Transformer [6], the first
sequence transduction model based entirely on attention achieves state-of-the-art in both English-
to-German and English-to-French problems as well as shows time efficiency. CNN [7] has been
proved to be effective in text classification tasks. In our work, we introduce these two models on SQL
translation problem. Our baseline model uses sequence-to-sequence neural machine translation with
attention [8]. We simply view SQL as another language and translate English into SQL without any
SQL specific optimization.

3 Approach

3.1 Baseline model

Text-to-SQL can be viewed as a language translation problem, so we implemented a LSTM [5] based
neural machine translation model as our baseline. We implemented a bidirectional LSTM encoder
and a unidirectional LSTM decoder. The model computes multiplicative attention using encoder
hidden states and concatenate attention output with decoder hidden states. Pretrained GloVe [9] word
embeddings is used and set fixed during training process. Note that the model has to deal with many
non-vocabulary tokens (e.g., ID number and email address), the character-level model implemented
by ourselves in assignment 5 is also used, and therefore the model can generate target words when
the original decoder produces unknown token. The character embeddings are trained from scratch.
No table information is used in this model, while the two models (seq2SQL and SQLNet) below
takes table information in addition to the question as inputs.

For this part, we wrote the code ourselves and reused part of our own assignment 5 code.

3.2 Seq2SQL model

Seq2SQL [1] is the first deep neural network based approach to solve text-to-SQL translation problem.
The model consists of three components, corresponding to three parts of a SQL query–aggregation
operator, SELECT column, and WHERE clause. The model first extracts information of table,
question and SQL vocabulary, concatenates them into an input sequence and encodes them by a
two-layer bidirectional LSTM encoder. Then it uses different networks (LSTM + linear + softmax
combination) to predict three different parts, using cross entropy loss for the first two and policy
gradient for the last. It also uses attention as above to improve performance. It uses GloVe word
embeddings and character n-gram embeddings [10] for the task. We fixed the embeddings during
training.

For this part, we used the Seq2SQL source code (https://github.com/xiaojunxu/
SQLNet/blob/master/sqlnet/model/seq2sql.py) but modified it to work with python
3.

3.3 SQLNet model

SQLNet [3] employs a more refined slot filling strategy. It takes advantage of the fact that the queries
in the WikiSQL dataset can all be represented in the form below.

SELECT $AGG $SELECT_COL
WHERE $COND_COL $OP $COND_VAL
(AND $COND_COL $OP $COND_VAL)*
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The model then predicts the column of SELECT clause ($SELECT_COL), the aggregator ($AGG),
number of conditions (number of AND) and column ($COND_COL), operator ($OP) and value
($COND_VAL) for each condition using LSTM models with cross entropy loss. This model also
uses column attention to improve performance. Different predictors may get different columns
when predicting a specific slot and use attention mechanism to process the column information. For
example, the aggregator predictor will get the ground truth $SELECT_COL as input in addition to
the question embedding. The predictor then encodes the column name and applies attention to the
encoded column. The column attention mechanism improved the performance by 3% on both dev set
and test set [3]. The slot filling strategy has been further proved effective by TypeSQL [11].

The main difference between Seq2SQL and SQLNet is the generation of the WHERE clause.
Seq2SQL generates the WHERE clause using a seq2seq strategy, and thus the order of the con-
ditions matters. However, the condition orders of the WHERE clause actually doesn’t matter with
respect to the actual execution. Thus, SQLNet instead first predicts a set of columns and then predicts
the $OP and $COND_VAL separately for the columns, so the order of these conditions doesn’t matter
anymore. Also, seq2SQL doesn’t not provide additional column information to component predictors,
while SQLNet does and apply column attention.

For this part, we used the SQLNet source code (https://github.com/xiaojunxu/
SQLNet/blob/master/sqlnet/model/sqlnet.py) but modified it to work with python
3.

3.4 SQLNet with BERT word embedding

Bidirectional Encoder Representations from Transformers (BERT) [12] has proved to be effective in
various natural language processing tasks. Therefore we decided to run SQLNet with BERT word
embedding to see how a better word embedding affects the model performance. At first we tried to
apply BERT word embeddings at training time but this makes the training extremely low. Therefore
we preprocessed the training set with BERT word embeddings and produced a file recording all
the word embeddings in a npy file. At training time, our model loads the npy file and maintains a
dictionary with words as key and the word embedding array as value. Note that for a token that is
in BERT’s vocabulary, BERT produces a word vector with length 768. For an unseen token, BERT
tokenizes it to tokens in BERT’s vocabulary and provides embeddings on those tokens. For example,
BERT doesn’t have a token for "60-60", so it will tokenize "60-60" to "60", "-", and "60" and produce
three 768 word vectors. In sum, for a unseen word, we took the average of the subtokens’ word vector
to give one word vector representation of the unseen word.

For this part, we used our modified python 3 compatible SQLNet code and BERT embedding
package(https://github.com/imgarylai/BERT-embedding). We changed the extract
vocabulary code to use BERT embedding. Before the decision to use preprocessed word embedding,
we also experimented with running BERT in real time and integrated it into the SQLNet model. We
wrote this part of the code ourselves.

3.5 $AGG and $SELECT_COL predictor

In this paper we explored the usage of transformer and CNN encoders for input questions and we
used the output to predict the $AGG and $SELECT_COL. We used the $AGG and $SELECT_COL
prediction pipeline as in SQLNet.

3.5.1 Transformer encoder

Transformer architecture has been proved effective in translation tasks [6]. The architecture aims
to process sequential data with parallelizable computation methods, and thus uses the attention
mechanism and no LSTM is involved. To inject positional information of the input, positional
embedding is used in transformer. We experimented to use the transformer encoder architecture
shown in figure 1 to replace the LSTM encoders for questions in SQLNet and evaluate its performance.

For this part, we used modules from an existing pytorch implementation (https://github.com/
jadore801120/attention-is-all-you-need-pytorch) but modified it to work with
BERT word embedding. We also wrote code to compute word to index vectors and position vectors
for inputs to the encoder transformer.

3

https://github.com/xiaojunxu/SQLNet/blob/master/sqlnet/model/sqlnet.py
https://github.com/xiaojunxu/SQLNet/blob/master/sqlnet/model/sqlnet.py
 https://github.com/imgarylai/BERT-embedding
https://github.com/jadore801120/attention-is-all-you-need-pytorch
https://github.com/jadore801120/attention-is-all-you-need-pytorch


Figure 1: Transformer encoder structure

3.5.2 CNN encoder

Convolutional Neural Network (CNN) has been proved effective in text classification works [13]. We
observed that the prediction of the aggregator is essentially a text classification task, and we thus
also experimented using the convolutional network described in [13] as encoder, which is shown in
figure 2 for questions for the aggregator prediction task. The basic idea is to process the input with
varying kernel height but constant width as the word embedding length. The resulting tensors are
concatenated and feed to a fully-connected layer to produce prediction score distribution.

Figure 2: CNN encoder structure

For this part, we used modules from an existing pytorch implementation (https:
//github.com/prakashpandey9/Text-Classification-Pytorch/blob/
master/models/CNN.py) but modified it to work with BERT word embedding.

3.5.3 $AGG predictions

Figure 3: $AGG predictor structure.

We view predicting the $AGG slot as a 6-way classification problem. The possible values include
MAX, MIN, COUNT, SUM, AVG and no aggregator. The input question word vector first goes
through one of the three encoders (LSTM, transformer and CNN) to produce a hidden state embedding
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as demonstrated in figure 3. The hidden state is then fed towards a fully-connected layer and a softmax
layer to produce a probability distribution for the six aggregator types.

3.5.4 $SELECT_COL predictions

The $SELECT_COL predictor computes a probability distribution for the given column list. It
assumes that the table is visible to the predictor and we need to make sure the column names are
just correct so they are exposed to the model. It first encodes the question and the column names
to word embeddings. Then the distribution is computed using the following equations. Ecoli and
EQ|coli represent the encoding of the column names and the input question. ua, Uc and Uq represent
trainable matrices and C represents total number of columns from the table associated with the input
question. In this way, the possibility distribution of column to be selected is dependent both on the
column names as well as the natural language question.

Pselcol(i|Q) = softmax(sel)i

seli = (usel
a )T tanh(Usel

c Ecoli + Usel
q EQ|coli),∀i ∈ {1...C}

We don’t explore CNN in $SELECT_COL prediction because unlike $AGG, which has limited
value range, $SELECT_COL can have various values depending on the table. So it’s really not a
classification problem but more like an information retrieval problem. We couldn’t figure out an
appropriate way to integrate column name information into the CNN architecture, so here we only
introduce Transformer architecture.

4 Experiments

4.1 Data

The dataset this project uses is WikiSQL [1]. WikiSQL is a large scale hand-annotated natural
language to SQL dataset. It consists of 80654 SQL queries extracted from 24241 HTML tables from
Wikipedia.

WikiSQL dataset is built upon an assumption that each SQL query is only based on one table. As
a result, each query only consists of SELECT and WHERE clauses. Here we show a typical query
sample below.

Text query:

Which school did Herb Williams go to?

Corresponding SQL query:

SELECT school_name
WHERE student_name = ‘Herb Williams’

4.2 Evaluation method

Two main metrics are used to evaluate accuracy of our generated queries: query-match accuracy and
execution accuracy.

Query-match accuracy: This refers to the percentage of matches between the ground truth queries
and our generated queries. Instead of comparing the strings directly, queries are divided into several
parts: the column in SELECT clause, the aggregator in SELECT clause, and each condition in
‘WHERE’ clause. Particularly, this measurement aims to minimize the negative effect of condition
ordering. For instance, ‘WHERE id = 1 AND course = NLP’ should be equal to ‘WHERE course =
NLP AND id = 1’. We achieve this by transferring the WHERE clause into a set of conditions and
comparing each element in the set.
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Execution accuracy: This refers to the percentage of matched execution results between the ground
truth queries and our generated queries. There may be different SQL queries that both correct for the
same question. Thus we also use this accuracy to measure the correctness of our queries.

To evaluate our transformer encoders and CNN encoder, we evaluated the break down results of
$AGG and $SELECT_COL predictions separately using exact match.

4.3 Experiment details

We used PyTorch [14] to implement this project.

• Word embedding: We used fixed pretrained GloVe word embeddings and BERT word
embeddings.

• Learning rate: We used 10−3 for NMT baseline, 10−3 for Seq2SQL and 10−4 for SQLNet
as in the original code.

• Number of epoch: We set the maximum training epoch as 100.

• Optimization and regularization: We used ADAM [15] to train to regularize.

• Loss functions: For NMT baseline, we used cross entropy loss between predicted result and
ground truth as in assignment 4 and 5. For Seq2SQL and SQLNet, we used their original
loss functions in [1] and [3].

• $AGG and $SELECT_COL prediction: We disabled the training of the WHERE clause
when training aggregator and selection predictor. $AGG and $SELECT_COL were trained
separately.

• Transfromer: We used a hidden size of 512, 3 layers and 4 multi-head attention modules.

• CNN: We used kernel heights of 1 3 5 for the three CNN layers, stride 1, padding 0 and
output channel 64. We used a dropout rate 0.2 for the last linear layer.

4.4 Results

Table 1: Overall test results on the WikiSQL task.
Model Accqm Accex

NMT (GloVe) 29.9% –
Seq2SQL (GloVe) 49.8% 57.9%
SQLNet (GloVe) 58.4% 65.3%
SQLNet (BERT) 61.4% 67.8%

TypeSQL(GloVe) [11] 68% 74.5 %

Accqm and Accex indicate query-match accuracy and execution accuracy respectively.

Table 1 suggests that changing the GloVe word embedding to BERT word embedding improves the
performance of the SQLNet model by 3% in query match accuracy and 2.5% in execution match
accuracy. This matches our expectation since BERT has been proved powerful on many natural
language tasks. However, TypeSQL [11] also used GloVe word embedding and achieved a state-of-
the-art accuracy. This result may indicate that a change in model structure may be more beneficial
than further improving the word embedding.

The average execution accuracy is higher than query-match accuracy by 6 to 7%. This is expected
because different SQL queries could have the same semantic meaning, and thus achieve same
performance in realistic usage. Note that our test results of SQLNet (GloVe) are 3% lower than the
results posted in SQLNet paper [3] because we trained for less epoches due to time limitation and we
didn’t set embeddings as trainable.

The baseline model performs relatively poor on this task because the task requires the model to
perform semantic parsing to the question. The baseline model must learn to capture the structures
of SQL queries itself. In contrast, the designs of Seq2SQL and SQLNet both take advantage of the
structured pattern of SQL queries in WikiSQL dataset and decompose the task into three subtasks.
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The significant performance improvement shows that we should continue to adapt this strategy when
developing our models.

Table 2: Test results on $AGG prediction.
Model train accuracy dev accuracy test accuracy

LSTM encoder 99.2% 89.2 % 90.0%
Transformer encoder 86.9% 86.6% 86.6%

CNN encoder 99.1% 86.4% 85.3%

Table 2 shows that the transformer and CNN encoder performed similarly on this task on the
development data set and the test data set, but they both performed worse than the original LSTM
encoder. However, the transformer performed slightly better than the CNN encoder. Notably, the
LSTM and CNN were able to overfit the training dataset, while the transformer encoder didn’t.

During the training and experiments, we observed that the transformer can be difficult to train. When
we set the hidden size of the transformer to 1024 and 2048, the transformer barely made progress
even on the aggregator prediction task. Only after we set the hidden size of transformer layers to be
512 did the transformer successfully made progress on the aggregator task.

We also tried to apply the transformer encoder to the selection clause prediction task, but the result
isn’t ideal. Table 3 shows that the accuracy of the transformer improved very little, which was from

Table 3: Test results on $SELECT_COL prediction.
Model dev accuracy test accuracy

LSTM encoder 89.6% 88.5%
Transformer encoder 19.6% 18.7%

around 18% to about 19%. The LSTM encoder still performs very well on this task. The transformer
encoder modul structure is the same as the one we used for aggregator prediction. However, the
aggregator transformer encoder was able to produce comparable results, while the transformer encoder
for this task failed to make good progress. This may indicate that the same transformer encoder may
not be able to directly replace bidirectional-LSTMs in different tasks, even if the inputs are similar.
Due to the constraints of credits and time, we expect to do more in-depth study on this topic in the
future.

5 Analysis

We would like to provide error analysis and insight in what errors the transformer encoder is making.

5.1 Column meaning error

Question: "How many tries against were there with 17 losses?"
Columns in table: "Club", "Played", "Drawn", "Lost",
"Points for", "Points against", "Tries for", "Tries against", "Try bonus", "Losing bonus"
Ground truth aggregator: No aggregator
Transformer encoder prediction: COUNT

Question: "What were the number of sales before 1991?"
Columns in table: "Year", "Álbum", "Charts", "Sales", "Certification"
Ground truth aggregator: No aggregator
Transformer encoder prediction: COUNT

The predictor predicted a COUNT aggregator for the above code while the ground truth is that the
query requires no aggregator. The predictor may have learned to produce COUNT aggregator when
there are phrases like "how many" and "the number of". However, in these two examples, the data in
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column "Tries" and "Sales" already contains the total number of tries and the total number sales. This
may indicate that the prediction system lacks understanding of meanings of column names. Column
names like "Tries" and "Sales" implies the data of the column are summed data for a particular row.

5.2 Mix of SUM and COUNT

Question: "How many first games are associated with 5 games played and under 3 games lost?"
Columns in table: "First game", "Played", "Drawn", "Lost", "Percentage"
Ground truth aggregator: SUM
Transformer encoder prediction: COUNT

The predictor predicted COUNT where the ground truth is SUM. SUM and COUNT can be easily
mixed with one another even for humans. Here if we use COUNT, it is counting the total rows that
satisfies the condition instead of the total number of first games as requested in the query. This may
indicate the system hasn’t truly understood the usage of COUNT and SUM.

5.3 Transformer for $SELECT_COL prediction

The $SELECT_COL predictor with transformer performs particularly bad, so the analysis for
particular examples may not make much sense. However, we would like to provide some of our
insights on the training difficulties and the problem with the model.

Question: "What is the rank with 0 bronze?"
Columns in table: "Rank", "Nation", "Gold", "Silver", "Bronze", "Total"
Ground truth column: "Rank"
Ground truth column query: "SELECT sum(bronze) WHERE total GT 27"
Transformer encoder prediction: "Bronze"

Question: "What is the average Bronze for rank 3 and total is more than 8?"
Columns in table: "Rank", "Nation", "Gold", "Silver", "Bronze", "Total"
Ground truth column: "Bronze"
Ground truth column query: "SELECT avg(bronze) WHERE rank EQL 3 AND total GT 8"
Transformer encoder prediction: "Bronze"

Note that in these two examples, the ground truth columns "rank" and "bronze" are both inside the
question. They should both be predicted in the final SQL query, but one in the SELECT clause,
and one in the WHERE clause. This might indicate the transformer encoder lack the capability to
break the question into SELECT clause part and WHERE clause part, while LSTMs can achieve
this. Training transformer in limited time has been difficult to get progress. Even for the transformer
encoder for aggregator, the loss sometimes fail to make progress due to bad initialization.

6 Conclusion

In this paper, we started out seeking improvements of the SQLNet model with different word
embeddings. Our results show that BERT embeddings perform better compared with commonly used
GloVe. We then tried to implement a model that utilizes architectures like Transformer and CNN to
replace LSTM, and our results proved that these architectures can be used to predict the aggregator
clause and get good accuracy. They have the potential to replace LSTM in text classification tasks
like predicting $AGG. However, the transformer encoder was difficult to train when being applied to
$SELECT_COL predictor. We expect to get better results by fine tuning parameters and longer-time
training in the future.
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