
Featureless Deep Learning Methods for Automated
Key-Term Extraction

Kush Khosla
Department of Mathematics

Stanford University
Stanford, CA 94305

kkhosla@stanford.edu

Robbie Jones
Department of Computer Science

Stanford University
Stanford, CA 94305

rmjones@stanford.edu

Nicholas Bowman
Department of Computer Science

Stanford University
Stanford, CA 94305

nbowman@stanford.edu

Abstract

Domain-specific term extraction is an important task in a number of areas, and
particularly in the realm of knowledge base construction from unstructured text
data. The motivation behind this project is to be able to build an "intelligent"
textbook, where all significant words are hot buttons that take the student first
to a definition and then gives them opportunities to explore connected terms and
concepts. This sort of knowledge base construction is currently done by hand, and
is therefore a costly, time-intensive process. Our goal in this paper is to present a
method for automating the first step in the knowledge base construction process,
by building a classifier to identify from raw textbook text those words that are
important enough to be placed in a post-chapter glossary. We aim to achieve high
precision in glossary term extraction, as generation of incorrect glossary terms
is thought to be disruptive to student learning. To tackle this problem, we try
multiple different architectures of featureless deep learning approaches, including
both supervised and semi-supervised models, and present their results. We utilize
both a convolutional neural network and a standard fully connected neural network,
as well as a semi-supervised co-training pipeline that unifies both of these models.
While both supervised approaches substantially outperform a standard multi-layer
perceptron baseline with hand-engineered features, we find the co-training approach
to be unsuccessful in achieving competitive performance. Evaluations on three
biology textbooks demonstrate that the supervised CNN with contextual word
vectors and dimensionality reduction performs the best on the data-constrained
task of term extraction.

1 Introduction

Term extraction is a broad task within NLP that exists as a subtask of information extraction,
which is the task of automatically extracting structured information from unstructured documents.
Term extraction has a variety of applications to common NLP problems, including document
summarization, machine translation, document identification and semantic similarity evaluation. For
example, term extraction is useful for document summarization, because a concise summary should
make sure to include all of the important terms of the original article. In another example, knowing
the key-terms present within a document allows for easier document identification and efficient

document search and information retrieval. In our case, we are interested in key-term extraction
as applied to the task of automatic glossary creation, inspired by the Inquire intelligent textbook
[3]. Inquire is an online biology textbook that aims to supplement student learning by providing
features such as in-line term definitions, question generation, question answering and more. In order
to complete these tasks, the textbook must have a knowledge base of the information contained in
the book. The first step to the construction of this knowledge base is gathering important technical
terms and their definitions in order to relate them to each other. Once these terms are filtered, their
low ambiguity and high specificity make them particularly useful for supporting the creation of the
domain ontology that underlies all of the interesting features of an intelligent textbook. Right now,
the task of term extraction is a slow, labor-intensive process done entirely by hand by domain experts.
This work aims to automate the process of key-term extraction from textbooks in order to reduce
the amount of human labor needed for ontology building and provide an extensible, generalizable
framework that goes beyond the specific field of biology.

Formally, the task of key-term extraction can be described as follows: given text T from a collection
of documents D, whose vocabulary is V , output a set K ⊆ N(T) that describes the key-terms of
T . In this definition, N(T) is the set of n-grams from T for all n = 1, ..., η (η is a maximum term
length hyperparameter) where an n-gram is defined as a sequence of n consecutive terms that show
up in the initial text. An important note is that the phrase ‘key-term’ is a general way of stating ‘a
term of importance.’ The actual definition of key-term will vary from application to application. In
our case, a key-term is considered to be one that appears in the glossary of the textbook, which serves
as a brief dictionary of significant domain-specific terms.

Book ID |N(T)| |G| % Positive

1 1,569,238 2307 0.15
2 1,612,753 1,744 0.10
3 3,089,173 1,902 0.06

Table 1: Dataset Class Distribution for η = 4

In order to accomplish this task, we use labelled
data to learn a function f : N(T) → {0, 1}
with the goal that f(x) = 1 when x should be
in the glossary, and f(x) = 0 otherwise. In order
to learn this function, the labelled text T should
have examples of both key and non key-terms so
that a model can learn what each looks like. Let
G ⊆ N(T) denote the ‘gold terms’ for the text T :
the glossary terms. Here lies a roadblock when
attempting to solve this problem. In the case of
glossary term extraction, there are many more non key-terms than key-terms (|G| � |N(T)|), which
can be seen in Table 1. This class imbalance makes it difficult for a neural network to learn what a
‘positive’ example looks like because the prior is so heavily weighted in the negative direction. We
are faced with the challenging task of having a relatively minuscule set of labelled positive training
examples, from which the model must learn to generalize.

In order to accomplish this task without relying on hand-engineered feature sets, we choose to
represent our candidate terms using word vectors, which act as the inputs into our deep neural network
classifier. We explore the use of both traditional skip-gram generated word vectors (FastText)[4]
and contextual word embeddings (BERT) [1] for this task and find that contextual word embeddings
provide for better performance in a data-constrained space.

2 Related Work

Traditional approaches to this problem often rely on the training of binary classifiers to identify
whether a candidate term is relevant or not. In such approaches, the models operate on hand-selected
features of the input text, including statistical and linguistic information, like document frequency
and part-of-speech patterns [6]. This exact problem setting was previously attempted by a group of
Stanford students in the machine learning class for their final project [5]. For each of their candidate
terms (which were unigrams, bigrams, and trigrams extracted from the original text), they constructed
a feature set that includes such things as TF-IDF, location in the sentence of first appearance, and
number of occurrences in chapter titles. We use their results as a baseline and motivation, but aim
to move beyond the constraints of hand-engineered features. Specifically, we choose to avoid these
approaches as finding an optimal feature set is a time-consumptive process that also creates the need
for labor-intensive input from domain experts. In addition, we try to develop methods that work well

2

in data-constrained environments, as labelled training data is often unavailable or difficult to obtain
in this domain, due to the inherently difficult nature of the process of key-term extraction for glossary
construction.

In this paper we build off of a co-training approach similar to that presented by Wang et al. [9]. A
noted benefit of using a co-training approach is that it is a semi-supervised method that relies only
on the existence of a small seed set of terms, which allows it to be much less dependent on large
amounts of labelled training data. Co-training involves training two networks at once on the data, each
with a different ‘view’ of the input. This is done with the hope that one network can learn valuable
information that the other might overlook, and then share this insight through labeling examples and
handing them off to the other model. However, results show that this co-training approach is not
needed in this glossary term extraction, and can actually be detrimental to learning.

3 Approach

In this section we will describe our approach to creating models that can automatically determine if a
term is a glossary term. First, we describe the baseline performance achieved on this task by previous
student groups. Second, we explain the neural architectures that were used. Finally, we discuss the
training algorithms implemented to train the different neural architectures explained in the previous
section.

3.1 Baseline

As described in the Related Work section, we will be referring to the work done by last quarter’s
CS229 project group as our baseline model [5]. Specifically we are comparing with their best model,
which was feature-based multi-layer perceptron (MLP). In order to ensure consistency in reported
results and to make sure we are making a fair comparison, we took their provided code base and made
slight modifications to their input processing to make it compatible with the format of data we were
using for our own model. Thus, for all numbers presented later in the Experiments section, we have
run the group’s MLP training and evaluation process while mirroring the same training/evaluation
data splits and feeding in the exact same textbook data into both our pipeline and theirs. For these
reasons, we believe this provides a fair baseline.

3.2 Word Vectors

In our problem, we are working with domain-specific literature, which can pose a problem for pre-
trained word vectors because there is a high likelihood of out of vocabulary (OOV) words. We took
two approaches in generating domain-specific word vectors to use for our task. The first approach
stems from the belief that a model that takes into account subword information would perform well by
extracting prefixes and suffixes that are common in biological literature. For these reasons, we opted
for character-level n-gram embeddings from Facebook’s FastText library[4] which were originally
trained using a skip-gram model on a Wikipedia corpus. Whenever we generate new candidate sets
and seed sets for our experiments, we first run each unigram through the FastText model in order to
obtain their word embeddings and then save them to disk. Our second word vector approach was
motivated by thinking about how we could incorporate contextual information about candidate terms
into our classification process. For this reason, we also chose to generate contextual word embeddings
using BERT [1], which involved running the bert-as-service tool [10] on our whole corpus of
textbook data and generating unique contextual vectors for each unigram and saving them to disk for
later use in experiments.

3.3 Convolutional Neural Network

In order to learn which terms should be included in the glossary, we use a convolutional neural
network as a classifier. A candidate c ∈ C is converted to a 768× 4 representation, where each row
is a word vector for a word in the term. This initial input is first fed through a linear transformation
that acts to reduce dimensionality, reducing the size to 300 × 4. This reduced matrix is then fed
through three different one-dimensional convolution layers. These three layers correspond to looking
at bigrams, trigrams and quadgrams within the term. These outputs are then concatenated together.
After passing through a max-pooling and ReLU layer, the network uses a two dimensional convolution

3

Figure 1: Design for the convolutional neural network. Note: max-pool layers are omitted from the
diagram for simplicity.

layer with 64, 2× 2 filters. After one more max-pool layer, the input is flattened and passed through
a dense layer. From the previous layers, the input is transformed to a 61× 3× 64 tensor, so the fully
connected layer has 11712 nodes, and outputs a single number that represents the probability the
input is a glossary term.

3.4 Fully Connected Neural Network

Figure 2: Fully connected neural network. This diagram in every layer (except the last) has about
1/120th of the actual number of neurons.

In addition to our convolutional neural network, we use a vanilla fully connected neural network.
Just like in the convolutional neural network, the first step is to reduce the dimensionality. The
input has 4(768) = 3072 neurons, while the second has just 4(300) = 1200. The third layer has
1200(5/4) = 1500 neurons, and the fourth layer has 1200(2/3) = 800. Each neuron has a dropout
probability of .5, and is followed by a ReLU. Once again, in the last neuron we pass the signal
through a sigmoid function in order to get the probability that the input is a glossary term.

3.5 Co-Training Algorithm

The co-training algorithm that we implemented matches the algorithm described by Wang et al. in
[9]. Figure 1 in their paper presents the overall architecture of the co-training network and Algorithm
1 in the same paper provides the pseudo-code that we implemented to get our co-training pipeline
running. However, in our implementation of the algorithm, each model has its own set of training

4

data. The most confident predictions from one model are then added to the labelled data for the other
model. This allows the models to share examples about which they are very certain.

Although the authors chose to use a CNN and an LSTM as their two models to get different "views"
of the data, we found an LSTM approach to be ineffective in our problem domain. This is due to the
fact that most glossary terms are 1 to 2 words, with none being longer than 5 words, neutralizing the
effectiveness of the memory and sequence tracking provided by an LSTM. Instead, we choose to
use two previously described models (CNN and fully connected) as the component models of the
co-training pipeline.

4 Experiments

4.1 Datasets and Data Extraction

We evaluate our model on three textbooks. The first two textbooks, on which we did most of our
development work, are open-source biology textbooks curated by the Openstax education initiative
that are titled Biology and Microbiology[8][7]. The Biology textbook contains 392,311 individual
tokens and 2,307 ground truth glossary terms, while the Microbiology textbook contains 403,189
individual tokens and 1,744 ground truth glossary terms. The final textbook, which we held out
evaluation on until the very end of our project to avoid researcher overfitting is the Life textbook
written by Sadava et al. We chose to hold out this textbook until the end because it is the actual
textbook that underlies the previously described Inquire intelligent biology textbook, and glossary
extraction for this textbook was the ultimate task we set out to accomplish. The Life textbook
contains 772,294 individual tokens and 1,902 ground truth glossary terms. Though all three textbooks
we chose to use for evaluation are in the domain of biology, our approach makes no assumptions
about ontological content and thus is extensible to textbooks in any other scientific domain.

In order to extract sentences and gold terms from all three of these textbooks, which were
all originally made available to us in PDF format, we were force to manually copy the text out of
each PDF on a page-by-page basis. This was due to the fact that automated text extraction tools
performed poorly and led to dirty data, with many invalid characters and improperly concatenated
terms. Thus, curating the text corpora that were eventually fed into our models proved to be a
very time-consuming process that consumed many person-hours. However, going forward we plan
to make all of our extracted data available in text format to make future work on this topic more
accessible.

4.2 Preprocessing

We firstly clean the textbook data by removing any existing glossary section from the end of each
chapter. For the remainder of our preprocessing pipeline, we rely on the use of spaCy, a free open-
source library for Natural Language Processing in Python which features tools for POS tagging and
word lemmatization[2]. After extracting the chapter text information from each of the textbooks, we
use the lemmatization capabilities of spaCy to transform each token from the original text into its
associated lemma. In addition, we do this for the glossary terms as well so that there is continuity
during the evaluation process. This standardizes the appearance of each word, converting all tokens
to lower-case, removing plurals, and unifying verb conjugations as well.

We also utilized spaCy as a part of speech (POS) tagger on the textbook sentence data. As part of
of the task, we generate a set of candidates C ⊆ N(T), using regular expressions on the POS tags
generated by spaCy. Enough regular expressions were used with the goal of generating a C with
G ⊆ C. That way, instead of having the neural network read the entire textbook, it must just identify
gold-terms from C. Some examples of regular expressions we built to extract candidates include:

<ADJ>*<NOUN>+
<ADJ>*<PROPN>+<PART>?<PROPN>*
<VERB><NOUN>+

Some examples of extracted candidates are distinct gamete, identical teloblast cell, Van der Waal
interaction, chronic subcutaneous infection and secondary radial symmetry.

5

For Biology, this candidate extraction process retrieved about 60,000 candidates, and contained about
93% of the 2,300 gold terms. Thus, even with candidate extraction, positive examples constitute only
about 4% of all data. Following the candidate generation and lemmatization steps, we implemented
an extensive validation pipeline that ensured that the lemmatization of terms was consistent between
candidates and gold terms, ensuring that we did not run into any out-of-vocabulary issues during
training and testing.

4.3 Experiment Settings

Both the CNN and fully connected network are trained using Stochastic Gradient Descent with
momentum. We use a learning rate α = .01, momentum β = .9 and a batch size of 32. These values
were found to give quick convergence. However, in future work more hyperparameters must be
tested.

For co-training, the seed set uses 30 positive examples and 200 negative examples. In each iteration,
500 terms are evaluated, and the top 5 most confident predictions are added to the labelled data.

We trained our models on a Microsoft Azure N6 VM with 6 vCPUs, 56 GB of memory and an 8 GB
Nvidia Tesla M60 GPU. For our supervised learning experiments, the CNN took anywhere between
10 and 20 minutes for 150 epochs, while the fully connected net took between 30 and 40 minutes for
200 epochs.

4.4 Evaluation Methods

In order to address the difficulty of evaluating the output for a subjective task like glossary-building,
we have chosen to analyze our results using both automatic metrics and more qualitative human-
centered metrics.

4.4.1 Automatic Evaluation

The three automatic metrics that we use to evaluate our progress in solving the stated problem are the
standard metrics of precision, recall, and F1 score. We have specifically chosen not to use a blanket
accuracy metric due to the heavy prevalence of negative tokens in our datasets. For this reason, we
avoid the accuracy metric in evaluating our models and focus on precision, recall, and F1. In the case
of evaluating our co-training results, since we begin with a seed set of gold labelled terms, we must
not consider these terms when calculating our metrics. Given a final labelled set L, a gold set G, and
our seed set S, let X+ denote the values of X which have a positive label associated with them in X .
Then, the definitions of our metrics are as follows:

precision =
|(L+ − S+) ∩ (G+ − S+)|

|L+ − S+|

recall =
|(L+ − S+) ∩ (G+ − S+)|

|G+ − S+|

F1 = 2 · precision · recall
precision + recall

These metrics also apply for evaluation of the fully supervised models, where we consider S+ = ∅.

4.4.2 Human Evaluation

The motivation for using human evaluation stems from the fact that glossary building is often a
subjective task, and textbook writers often significantly diverge in the types of terms that they choose
to include in their glossaries and in their definitions of what constitutes an "important" term. For this
reason, we introduce two human evaluation metrics that reflect on the performance of our model.
The first evaluation metric involves asking an expert human evaluator to inspect the false positive
terms flagged by our model and then make a determination of whether or not these terms should
actually belong in a glossary. The purpose of this evaluation metric is to try to shed some light on
the ambiguity that exists in the task of glossary creation and establish an updated set of precision,
recall, and F1 score values based off of the input of the expert human evaluator. Specifically, we take
any original false positive terms classified by the human expert as actually a good glossary term and

6

relabel them as true positives, and then recalculate all of our automatic terms given these new labels.
The second evaluation metric focuses on getting a human domain expert to comparatively rank the
quality of three groups of glossary terms. To conduct this evaluation, we walk the domain expert
through three rounds, where they are presented 5 terms from each model every round and asked to
rank the three models from highest quality to lowest quality. At the end of 10 rounds, we assign a
score to each model by assigning points for getting ranked first, second, and third in a given round (5,
3, and 1 points respectively) and summing across all rounds. These final scores allow us to quantify
the glossary term quality from a human perspective.

4.5 Results

The automatic metrics (precision, recall, and F1) as well as our performance under human evaluation
are detailed in the tables below. CNN and FC are fully-supervised experiments using the CNN and
fully connected net, respectively. Co-Train uses both the CNN and FC networks in the co-training
algorithm. CNN-B is a CNN that was trained on Biology, but makes predictions on Life. CNN-B
SSL uses this same network in a semi-supervised learning paradigm. Essentially, it is the co-training
algorithm using a single model. The model makes predictions, and adds its most confident predictions
to its data.

Table 2: Automated metrics (left), and metrics after human input (right).
Biology (OpenStax)

Model Precision Recall F1
CNN 0.62 0.32 0.43
FC 0.35 0.22 0.27

Co-Train 0.13 0.44 0.20
Baseline 0.25 0.29 0.26

Microbiology (OpenStax)
Model Precision Recall F1
CNN 0.64 0.23 0.34
FC 0.0 0.0 N/A

Co-Train 0.17 0.41 0.24
Baseline 0.21 0.39 0.27
Biology + Microbiology (OpenStax)
Model Precision Recall F1
CNN 0.61 0.18 0.28
FC 0.0 0.0 N/A

Co-Train 0.15 0.40 0.22
Baseline 0.16 0.19 0.17
Life: The Science of Biology (Sadava)
Model Precision Recall F1
CNN-B 0.27 0.20 0.23

CNN-B SSL 0.1 0.6 0.17
Co-Train 0.08 0.5 0.14
Baseline 0.15 0.46 0.23

False Positive Evaluation (models trained on Biology)
Model New Precision New Recall New F1
CNN 0.8 0.42 0.55
FC 0.69 0.43 0.53

Power Ranking
Textbook Baseline Our Model Glossary
Biology 24 32 34

Microbiology 16 36 38

5 Analysis

Across the board, the CNN performs the best in terms of precision, as well as F1 score. We
hypothesize this is because it is able to leverage the structure embedded within the word vectors more
efficiently than the fully connected network. In fact, in most cases, the fully connected network never
learned what a positive example looks like. In both Microbiolgy and Microbiology + Biology, the
fully connected network never predicts a term as a glossary term. This is most likely due to the small
percentage of positive examples, while Biology had a ratio that was sufficient for learning.
Co-training, however, is on the opposite end of the spectrum. Because the seed set had a higher
positive:negative ratio than the true distribution (for purposes of adequately learning what a positive
example looks like from such small amounts of data), it predicted positive much more often. This
is clear because precision goes down from the CNN, but the recall increases a great deal. It is
worth noting that through the co-training approach, the fully connected network begins to predict
terms as glossary terms. This can be either from the positive terms given to it by the CNN, or the

7

positive:negative ratio in the seed set. More experiments must be conducted to find out what causes
the fully connected net to start predicting glossary terms.
As previously mentioned, most experiments conducted on Life use networks trained elsewhere. This
is to simulate our real use case: using a pre-trained model on a new textbook to automatically extract
the glossary. The decrease in precision from the CNN evaluated on Biology to the CNN evaluated on
Life makes sense because it was trained using different word vectors. However, it is promising to
see a precision of 27%, since this implies that information learned from one textbook still applies to
another.
From a human evaluation perspective, we see promising results in our comparison between our best
model, the baseline, and the actual true glossary terms. The reason we incorporated human evaluation
into this task was because we noticed that our models were producing terms that were being tagged
as false positives but to the human eye looked like valid glossary terms. This included terms like
catabolite activator, epiglottis, and amyloid plaque. Indeed, when we asked experts in the domain
of biology to investigate our false positives and label the ones which they thought belonged in the
glossary, we obtained about a 45% re-labelling rate. This goes to show that our model may actually
be doing a better job of term prediction than the automatically evaluated statistics of precision and
recall can capture. In addition, when evaluating the quality of our model on a power ranking scale
in comparison to the baseline and the true glossary terms, we see in the above results table that our
model is nearly indistinguishable from the true glossary terms model in terms of the quality of terms
that it produces. However, one weakness of our model is that it often hones in on terms that are
too specific to be included in the glossary (including terms like species names and certain DNA
sequences), which is feedback that we received from our expert human evaluators.

6 Conclusion
We have implemented a system for taking large text corpora and extracting their key terms. Although
our domain for this research was biology textbooks and their glossaries, our pipeline can be adapted
for any application where labelled examples of key terms are present.
Our primary bottleneck throughout this work was availability of, and accessibility, to data. Not only
are there very few positive examples of glossary terms for each textbook, making model training
difficult, but simply extracting all of the necessary text data was a very time-consuming process.
Much of our time was spent hand-copying textbook data from PDF files into text files and validating
our preprocessing pipeline on top of this data. Access to structured, parseable textbook data would be
of immense benefit to future iterations of this research.
Because of time constraints, we were also unable to perform as much hyperparameter tuning as we
would have liked. Some of the difficulties we had training the fully connected network in a supervised
manner could have possibly been mitigated with more informed hyperparameter choices. On the
other hand, it is encouraging to see the results we did achieve, especially in the human evaluation
setting, given the limited time we had to tune these models.
There are many potential avenues to pursue regarding next steps: We have seen how co-training
can help a neural network learn a distribution it otherwise might have never learned in a strictly
supervised setting. Given that NLP problems often deal with label-constrained environments, it would
be interesting to continue investigating semi-supervised approaches such as co-training. Regarding
model architectures, there is reason to believe that a character-level recurrent network would have the
potential to effectively learn a distribution for key-terms, especially within scientific literature given
the interesting morphological structures present in scientific terms. Finally, we have not yet seen any
examples of using BERT to extract key-terms. While we did use BERT to generate contextual word
vectors, there is certainly a chance that applying BERT as an end-to-end classification tool would
prove very effective.

7 Acknowledgements
The work accomplished on this project would not have been possible without the generous support
of John Hewitt, who provided suggestions on a number of different subjects, including evaluation
strategies, model improvements, and different loss metrics.

8

8 Additional Information
• Mentor: Our mentor for this project is Dr. Vinay K. Chaudhri, who is a visiting professor

in the theory group of the CS department. Our CS224N staff member is Pratyaksh Sharma.
• External Collaborators: We have been consulting with John Hewitt, who is a current PhD

student in the Stanford NLP department for advice on general NLP model building strategies
and best practices for working on an extensive deep learning project. He has not contributed
any code to the project nor written any part of any of the submitted project documentation,
including this report.

• Sharing Project: We are not sharing this project with any other classes.

9

References
[1] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding”. In: arXiv e-prints, arXiv:1810.04805 (Oct. 2018), arXiv:1810.04805. arXiv:
1810.04805 [cs.CL].

[2] Matthew Honnibal. spaCy: Industrial-Strength Natural Language Processing. Accessed: 2019-
03-16. 2017. URL: https://spacy.io/.

[3] SRI International. Inquire: An Intelligent Textbook. http://inquireproject.com/. Ac-
cessed: 2019-03-16.

[4] Armand Joulin et al. “Bag of Tricks for Efficient Text Classification”. In: arXiv preprint
arXiv:1607.01759 (2016).

[5] Anita Kulkarni and Rachel Smith. “Automated Glossary Construction of a Biology Text-
book”. In: Stanford, California, Nov. 2018. URL: http://web.stanford.edu/~vinayc/
intelligent-life/Fall-2018-CS229-Project.pdf.

[6] Thiago Alexandre Salgueiro Pardo Merley da Silva Conrado and Solange Oliveira Rezende.
“A machine learning approach to automatic term extraction using a rich feature set.” In:
HLT-NAACL. 2013, pp. 16–23.

[7] Nina Parker et al. Microbiology. https://cnx.org/contents/e42bd376-624b-4c0f-
972f-e0c57998e765. Accessed: 2019-03-16. Nov. 2016.

[8] Connie Rye et al. Biology. https://cnx.org/contents/185cbf87-c72e-48f5-b51e-
f14f21b5eabd. Accessed: 2019-03-16. Oct. 2016.

[9] Rui Wang, Wei Liu, and Chris McDonald. “Featureless Domain-Specific Term Extraction
with Minimal Labelled Data”. In: Proceedings of the Australasian Language Technology
Association Workshop 2016. Melbourne, Australia, Dec. 2016, pp. 103–112. URL: http:
//www.aclweb.org/anthology/U16-1011.

[10] Han Xiao. bert-as-service. Accessed: 2019-03-12. 2019. URL: https://github.com/
hanxiao/bert-as-service.

10

http://arxiv.org/abs/1810.04805
https://spacy.io/
http://inquireproject.com/
http://web.stanford.edu/~vinayc/intelligent-life/Fall-2018-CS229-Project.pdf
http://web.stanford.edu/~vinayc/intelligent-life/Fall-2018-CS229-Project.pdf
https://cnx.org/contents/e42bd376-624b-4c0f-972f-e0c57998e765
https://cnx.org/contents/e42bd376-624b-4c0f-972f-e0c57998e765
https://cnx.org/contents/185cbf87-c72e-48f5-b51e-f14f21b5eabd
https://cnx.org/contents/185cbf87-c72e-48f5-b51e-f14f21b5eabd
http://www.aclweb.org/anthology/U16-1011
http://www.aclweb.org/anthology/U16-1011
https://github.com/hanxiao/bert-as-service
https://github.com/hanxiao/bert-as-service

	Introduction
	Related Work
	Approach
	Baseline
	Word Vectors
	Convolutional Neural Network
	Fully Connected Neural Network
	Co-Training Algorithm

	Experiments
	Datasets and Data Extraction
	Preprocessing
	Experiment Settings
	Evaluation Methods
	Automatic Evaluation
	Human Evaluation

	Results

	Analysis
	Conclusion
	Acknowledgements
	Additional Information

