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Abstract

The idea of the project is to have a question answering system which works on
SQuAD. SQuAD is a reading comprehension dataset.The input is a paragraph, and
a question about that paragraph.The goal is to answer the question correctly.This
task provides measure for how well systems can understand text. The paragraphs
in SQuAD are from Wikipedia. The questions and answers were crowdsourced
using Amazon Mechanical Turk. It has about 150k questions and about the half of
questions cannot be answered using the provided paragraph.

1 Introduction

While the amount of knowledge available as linked data grows, so does the need for providing end
users with access to this knowledge. Especially question answering systems are receiving much
interest, as they provide intuitive access to data via natural language and shield end users from
technical aspects related to data modeling, vocabularies and query languages. Question answering
is a good compromise between intuitiveness and expressivity, which has attracted the attention of
researchers from different communities. Machine comprehension (MC), answering a query about
a given context paragraph, requires modeling complex interactions between the context and the
query. Recently, attention mechanisms have been successfully extended to MC. In this project I will
concentrate on reading comprehension and question answering. For majority speakers the goal will
be to answer questions correctly and majority will agree on both provided question and answers and
will wont contain irrelevant information. As a data source I am using Stanford Question Answering
Dataset(SQuAD)[1] version 2. This dataset contain more that 150K+ question-answer taken from
Wikipedia dataset and to answer every question will be a segment of text, or span, from the context
paragraph.Model shell select span or segment of the text to answer to the question. To evaluate the per-
formance of the model F1 and Exact Match (EM) metrics are used. F1 is given by the harmonic mean
of precision and recall and Exact Match measures the exact string match between the predicted answer.

2 Related Work

The leaderboard on the SQuAD website shows many deep learning models created for this dataset.
And many researchers have come up with different architectures. First models for SQuAD 2.0
were evaluated by Rajpurkar et al. These are BiDAF-No-Answer(BNA) model proposed by Levy
et al.(2017) [6], and two versions of the DocumentQA No-Answer (DocQA) model from Clark
and Gardner (2017) [7], namely versions with and without ELMo (Peters et al., 2018) [8]. These
models all learn to predict the probability that a question is unanswerable, in addition to a distribution
over answer choices. From these three the best model DocQA + Elmo, achieves only 66.3 F1
on the test set. Most of the architecture solutions participated in this challenge have ELMo and
BERT architectures. ELMo stands for Embedding from Language Models and BERT stands for
Bidirectional Encoder Representations from Transformers. And the core idea of ELMo and BERT



is to represent a piece of text using word embeddings that depend on the context in which the
word appears in the text. Currently the first place takes BERT+MMFT+ADA(ensemble) created by
Microsoft researchers which has EM=85.082 and F1=87.615 scores.

3 Approach

For the project 3 approaches were taken, Bert, Bidaf, QANet.

3.1. BERT model architecture (which stands for Bidirectional Encoder Representations from
Transformers) [2].

Bert is designed to pre-train deep bidirectional representations by jointly conditioning on both left
and right context in all layers. The pre-trained BERT representations can be fine tuned with just one
additional output layer to create model for question answering system. BERT’s model architecture is
a multi-layer bidirectional Transformer encoder based on the original implementation described
in Vaswani et al.(2017) [3]. BERT is designed to pre-train deep bidirectional representations by
jointly conditioning on both left and right context in all layers. BERT is conceptually simple and
empirically powerful. It obtains new state-of-the-art results on eleven natural language processing
tasks, including pushing the GLUE benchmark to 80.4 % (7.6% absolute improvement), MultiNLI
accuracy to 86.7% (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1
to 93.2 (1.5 absolute improvement), outperforming human performance by 2.0. BERT addresses
the previously mentioned unidirectional constraints by proposing a new pre-training objective: The
“masked language model” (MLM), inspired by the Cloze task (Taylor, 1953). The masked language
model randomly masks some of the tokens from the input, and the objective is to predict the original
vocabulary id of the masked word based only on its context. Unlike left-to-right language model
pre-training, the MLM objective allows the representation to fuse the left and the right context, which
allows to pre-train a deep bidirectional Transformer. In addition to the masked language model,
introduced a “next sentence prediction” task that jointly pre-trains text-pair representations. An
attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function
of the query with the corresponding key. Instead of performing a single attention function with
dmodel-dimensional keys, values and queries, its beneficial to linearly project the queries, keys and
values h times with different, learned linear projections to dk, dk and dv dimensions, respectively. On
each of these projected versions of queries, keys and values then perform the attention function in
parallel, yielding dv-dimensional output values. The encoder contains self-attention layers. In a
self-attention layer all of the keys, values and queries come from the same place, in this case, the
output of the previous layer in the encoder. Each position in the encoder can attend to all positions in
the previous layer of the encoder. The number of layers (i.e., Transformer blocks) as L, the hidden
size as H, and the number of self-attention heads as A. In all cases its set the feed-forward/filter size
to be 4H, i.e., 3072 for the H = 768 and 4096 for the H = 1024.

3.2. Bi-Directional Attention Flow (BIDAF) network[4].

A hierarchical multi-stage architecture for modeling the representations of the context paragraph at
different levels of granularity (Figure 1). BIDAF includes character-level, word-level, and contextual
embeddings, and uses bi-directional attention flow to obtain a query-aware context representation.
Attention mechanism offers following improvements to the previously popular attention paradigms.
First, attention layer is not used to summarize the context paragraph into a fixed-size vector. Instead,
the attention is computed for every time step, and the attended vector at each time step, along with
the representations from previous layers, it is allowed to flow through to the subsequent modeling
layer. This reduces the information loss caused by early summarization. Second, uses a memory-less
attention mechanism. That is, while iteratively computed attention through time as in Bahdanau et
al. (2015), the attention at each time step is a function of only the query and the context paragraph
at the current time step and does not directly depend on the attention at the previous time step. Its
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hypothesize that this simplification leads to the division of labor between the attention layer and the
modeling layer.

The machine comprehension model is a hierarchical multi-stage process and consists of six layers.

Figure 1: BiDAF model.

1. Character Embedding Layer maps each word to a vector space using character-level CNNs.

g = σ(Wghi + bg) ∈ RH

t = ReLU(Wthi + bt) ∈ RH

h′i = g � t+ (1− g)� hi ∈ RH ,

where Wg,Wt ∈ RH×H and bg, bt ∈ RH are learnable parameters (g is for ‘gate’ and t is
for ‘transform’).

2. Word Embedding Layer maps each word to a vector space using a pre-trained word embed-
ding model.

h′i,fwd = LSTM(h′i−1, hi) ∈ RH

h′i,rev = LSTM(h′i+1, hi) ∈ RH

h′i =
[
h′i,fwd;h′i,rev

]
∈ R2H

h′i is of dimension 2H , as it is the concatenation of forward and backward hidden states at
timestep i.

3. Contextual Embedding Layer utilizes contextual cues from surrounding words to refine the
embedding of the words. These first three layers are applied to both the query and context.

4. Attention Flow Layer couples the query and context vectors and produces a set of queryaware
feature vectors for each word in the context. Context-to-Question (C2Q) Attention. Take
the row-wise softmax of S to obtain attention distributions S̄, which used to take weighted
sums of the question hidden states qj , yielding C2Q attention outputs ai.
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S̄i,: = softmax(Si,:) ∈ RM ∀i ∈
{

1, ..., N
}

ai =

M∑
j=1

S̄i,jqj ∈ R2H
∀i ∈

{
1, ..., N

}
,

5. Modeling Layer employs a Recurrent Neural Network to scan the context.

mi,fwd = LSTM(mi−1, gi) ∈ RH

mi,rev = LSTM(mi+1, gi) ∈ RH

mi =
[
mi,fwd;mi,rev

]
∈ R2H

The Modeling layer differs from the Encoder layer in that used a one-layer LSTM in the
Encoder layer, whereas used a two-layer LSTM in the Modeling layer.

6. Output Layer provides an answer to the query.

m′i,fwd = LSTM(m′i−1,mi) ∈ RH

m′i,rev = LSTM(m′i+1,mi) ∈ RH

m′i =
[
m′i,fwd;m′i,rev

]
∈ R2H

To finally produce pstart and pend, the output layer computes

pstart = softmax(Wstart[G;M ]) pend = softmax(Wend[G;M ′]),

where Wstart,Wend ∈ R1×10H are learnable parameters.

Self Attention[13].

Most competitive neural sequence transduction models have an encoder-decoder structure [9,10,11].
Here, the encoder maps an input sequence of symbol representations (x1, ..., xn) to a sequence
of continuous representations z = (z1, ..., zn). Given z, the decoder then generates an output
sequence (y1, ..., ym) of symbols one element at a time. At each step the model is auto-regressive
[12], consuming the previously generated symbols as additional input when generating the next.
The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 2,
respectively.
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Figure 2: Transformer model.

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key. "Scaled Dot-Product Attention" input consists of queries and keys
of dimension dk, and values of dimension dv . Computed the dot products of the query with all keys,
divide each by

√
dk, and apply a softmax function to obtain the weights on the values. Computed the

attention function on a set of queries simultaneously, packed together into a matrix Q. The keys and
values are also packed together into matrices K and V . Computed the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

3.3. QANET: COMBINING LOCAL CONVOLUTION WITH GLOBAL SELF-
ATTENTION FOR READING COMPREHENSION[5].

The high level structure of the model is similar to most existing models that contain five major
components: an embedding layer, an embedding encoder layer, a context-query attention layer, a
model encoder layer and an output layer, as shown in Figure 2. These are the standard building blocks
for most, if not all, existing reading comprehension models. However, the major differences between
the approach and other methods are as follow: For both the embedding and modeling encoders, only
used convolutional and self-attention mechanism, discarding RNNs, which are used by most of the
existing reading comprehension models. As a result, model is much faster, as it can process the input
tokens in parallel. Note that even though self-attention has already been used extensively in Vaswani
et al. (2017a), the combination of convolutions and self-attention is novel, and is significantly better
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Figure 3: An overview of the QANet architecture (left) which has several Encoder Blocks. The same
Encoder Block (right) used throughout the model, only varying the number of convolutional layers
for each block.Also used layernorm and residual connection between every layer in the Encoder
Block. Also shared weights of the context and question encoder, and of the three output encoders.
A positional encoding is added to the input at the beginning of each encoder layer consisting of sin
and cos functions at varying wavelengths, as defined in (Vaswani et al., 2017a). Each sub-layer after
the positional encoding (one of convolution, self-attention, or feed-forward-net) inside the encoder
structure is wrapped inside a residual block.

than self-attention alone and gives 2.7 F1 gain in main experiments. The use of convolutions also
allows to take advantage of common regularization methods in ConvNets such as stochastic depth
(layer dropout) (Huang et al., 2016), which gives an additional gain of 0.2 F1 in the experiments.

In detail, the model consists of the following five layers:

1. Input Embedding Layer.

All the out-of-vocabulary words are mapped to an <UNK> token, whose embedding is trainable with
random initialization. The character embedding is obtained as follows: Each character is represented
as a trainable vector of dimension p2 = 200, meaning each word can be viewed as the concatenation
of the embedding vectors for each of its characters. The length of each word is either truncated
or padded to 16. We take maximum value of each row of this matrix to get a fixed-size vector
representation of each word. Finally, the output of a given word x from this layer is the concatenation
[xw;xc] ∈ Rp1+2 where xw and xc are the word embedding and the convolution output of character
embedding of x respectively.

2. Embedding Encoder Layer. For the self-attention-layer, adopted the multi-head attention mech-
anism defined in (Vaswani et al., 2017a) which, for each position in the input, called the query,
computes a weighted sum of all positions, or keys, in the input based on the similarity between the
query and key as measured by the dot product. The number of heads is 8 throughout all the layers.
Each of these basic operations (conv/self-attention/ffn) is placed inside a residual block, shown
lower-right in Figure 1. For an input x and a given operation f, the output is f(layernorm(x)) + x,
meaning there is a full identity path from the input to output of each block, where layernorm indicates
layer-normalization proposed in (Ba et al., 2016).

3. Context-Query Attention Layer.

The context-to-query attention is constructed as follows: First computer the similarities between each
pair of context and query words, rendering a similarity matrix S ∈ Rn×m. Then normalized each
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row of S by applying the softmax function, getting a matrix S̄. Then the context-to-query attention is
computed as A = S̄·QT ∈ Rn×d. The similarity function used here is the trilinear function (Seo et
al., 2016):

f(q, c) = W0[q, c, q � c]

More concretely, computed the column normalized matrix ¯̄S of S by softmax function, and the
query-to-context attention is B = S̄ · ¯̄ST · CT .

4. Model Encoder Layer.

Similar to Seo et al. (2016), the input of this layer at each position is [c, a, c� a, c� b], where a and
b are respectively a row of attention matrix A and B.

5. Output layer. This layer is task-specific. Each example in SQuAD is labeled with a span in the
context containing the answer. The probabilities of the starting and ending position are modeled as.

p1 = softmax(W1[M0;M1]), p2 = softmax(W2[M0;M2]),

where W1 and W2 are two trainable variables and M0,M1,M2 are respectively the outputs of the
three model encoders, from bottom to top. Finally, the objective function is defined as the negative
sum of the log probabilities of the predicted distributions indexed by true start and end indices,
averaged over all the training examples:

L(θ) = − 1

N

N∑
1

[
log(p1y1

i
) + log(p2y2

i
)
]

4 Experiments

In the first stage I trained the base model for BiDaf and then I added character level embedings to the
BiDaf model, also I did fine tuning of Bert. Results can be seen under the experiment details section.

4.1 Data

For this project the official SQuAD 2.0 dataset will be used [1]. It has three splits: train, dev and test.
The train and dev sets are publicly available and the test set is entirely secret. The data contains the
following splits

• train (129941 examples): from official SQuAD 2.0 training set.
• dev (6078 examples): about half of the official dev set, selected randomly.
• test (5921 examples): the remaining examples from the dev set, plus hand-labeled examples.

For this training has been used the datasets which were generated by squad load script from official
datasets.

4.2 Evaluation method

To evaluate the models two metrics will be used. The EM score, which indicates whether there
is an exact match between the prediction and the ground truth, and the F1 score, which rewards
partial matches between the prediction and the ground truth.Will chose model parameters which are
maximizing the F1 score on the development set.

4.3 Experimental details

• BiDAF baseline training run with. Evaluation steps 50,000, Learning rate. 0.5, L2 weight
decay. 0, Number of epochs for which to train. 30, Probability of zeroing an activation
in dropout layers. 0.2, Name of dev metric to determine best checkpoint. F1, Maximum
number of checkpoints to keep on disk. 5, Maximum gradient norm for gradient clipping.
5.0, Random seed for reproducibility. 224, Decay rate for exponential moving average of
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parameters. 0.999, Maximum length of a predicted answer. 15, Number of sub-processes to
use per data loader. 4, Batch size per GPU. Scales automatically when multiple GPUs are
available. 64, Number of features in encoder hidden layers. 100, Number of examples to
visualize in TensorBoard. 10. Training process took around 8-10 hours.

• BiDAF with char embedings training run with. Evaluation steps 50,000, Learning rate. 0.5,
L2 weight decay. 0, Number of epochs for which to train. 30, Probability of zeroing an
activation in dropout layers. 0.2, Name of dev metric to determine best checkpoint. F1,
Maximum number of checkpoints to keep on disk. 5, Maximum gradient norm for gradient
clipping. 5.0, Random seed for reproducibility. 224, Decay rate for exponential moving
average of parameters. 0.999, Maximum length of a predicted answer. 15, Number of
sub-processes to use per data loader. 4, Batch size per GPU. Scales automatically when
multiple GPUs are available. 64, Number of features in encoder hidden layers. 100, Number
of examples to visualize in TensorBoard. 10. Training process took around 8-10 hours.

• BiDAF with char embedings with self attention training run with. Evaluation steps 50,000,
Learning rate. 0.5, L2 weight decay. 0, Number of epochs for which to train. 30, Probability
of zeroing an activation in dropout layers. 0.2, Name of dev metric to determine best
checkpoint. F1, Maximum number of checkpoints to keep on disk. 5, Maximum gradient
norm for gradient clipping. 5.0, Random seed for reproducibility. 224, Decay rate for
exponential moving average of parameters. 0.999, Maximum length of a predicted answer.
15, Number of sub-processes to use per data loader. 4, Batch size per GPU. 32, Number of
features in encoder hidden layers. 100, Number of examples to visualize in TensorBoard.
10. Training process took around 8-10 hours.

4.4 Results

1. Bidaf baseline.

Name Split Description

EM Dev 57.92
F1 Dev 61.19

(a) EM Score (b) F1 Score

Figure 4: Dev Dataset
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(a) LR (b) NLL

Figure 5: Train Dataset

2. Bidaf with char embedings.

Name Split Description

EM Dev 61.334
F1 Dev 64.822

(a) EM Score (b) F1 Score

Figure 6: Dev Dataset

(a) LR (b) NLL

Figure 7: Train Dataset

2. Bidaf with char embedings with self attention.
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Name Split Description

EM Dev 62.847
F1 Dev 66.267

(a) EM Score (b) F1 Score

Figure 8: Dev Dataset

(a) LR (b) NLL

Figure 9: Train Dataset

3. QANet.

Name Split Description

EM Dev 58.71
F1 Dev 62.97
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(a) EM Score (b) F1 Score

Figure 10: Dev Dataset

(a) LR (b) NLL

Figure 11: Train Dataset

4. Bert.

Name Split Description

EM Dev 72.836
F1 Dev 76.068

5 Result Analysis

I get the following results on my best model F1=64.771, EM=61.302 on test set. I did my analysis
step by step first I run baseline BiDAF model and achieved the following results F1=61.19, EM=57.92
then I tried the following versions.

1. BiDAF with char embedding (F1=64.822, EM=61.334). 2. BiDAF with char embedding and self
attention (best result) (F1=66.267, EM=62.847). 3. BiDAF with char embedding and multi head
attention (not very good results) (F1=61.89, EM=58.78). 4. QANet (F1=62.97, EM=58.71). 5. BERT
(F1=76.068, EM=72.836).

I tried a few versions of multi head attention but not get good results, also I tried QANet with different
params but still didn’t get good results comparing to my best model, also I used BERT model which
of course has better results but BiDAF gave me more place for research so I continued on non PCE
models.
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5.1 Analysis

Adding char embedding gave me about 2.22% improvement above baseline, and adding self attention
gave me about 3.1% improvement over baseline the following parameters were used to train BiDAF
with char embedding and self attention model.

Evaluation steps 50,000, Learning rate. 0.5, L2 weight decay. 0, Number of epochs for which to train.
30, Probability of zeroing an activation in dropout layers. 0.2, Name of dev metric to determine best
checkpoint. F1, Maximum number of checkpoints to keep on disk. 5, Maximum gradient norm for
gradient clipping. 5.0, Random seed for reproducibility. 224, Decay rate for exponential moving
average of parameters. 0.999, Maximum length of a predicted answer. 15, Number of sub-processes
to use per data loader. 4, Batch size per GPU. 32, Number of features in encoder hidden layers. 100,
Number of examples to visualize in TensorBoard. 10.

5.2 Error analysis

I analyzed randomly selected 200 examples from which 78 has errors I categorized the errors.

1. Non precise answer boundaries, about 19% of errors falls into this category here some examples.

These predictions are usually right from human point of view but if we want to predict exactly need
to have a few answers for the question.

2. Syntax ambiguities.

In this example for human is also difficult to define “Where did Molcalm slip away to attack”. And
for model predicted that he slip away in Albany and then led the successful attack ion Oswego. In
this case to avoid ambiguities maybe need to have more clarified Context or add additional input
features to the model that will take account ambiguities.

3. Predicted as N/A.

About 24% predicted as "Not have an answer N/A" but they have answers.

Maybe need to improve "Predicting no-answer" approach to allow low probability spans with some
threshold to participate in answer creation.
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6 Conclusion

For this project I have reimplemented the BiDAF layer adding also self-attention layer. I showed how
important was attention, because its increased scores comparing with baseline.I also trained BERT
and QANET, I didnt have much improvements there because fine tuning process faced with memory
issues, especially increasing batch size immediately giving not enough memory issue in GPU.Overall
I am rather satisfied by the model as it has achieved good results. There are still many improvements
to be made, and I have trained with no such many tuned hyperparameters. My approach was to train
with different models.
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