
Ryan QA

Ryan Rice
ryanrice@stanford.edu

Abstract

Open domain question answering is a field of natural language processing in
which great strides are currently being made. The release of the SQuAD dataset
kicked off a transformation within the field as it provided, for the first time, a large
amount of high quality data. More recently, Google has developed and released
a pre-trained language model, BERT, that can be extended to a variety of NLP
tasks. Open domain question answering models have greatly improved in accuracy
upon adopting BERT, and current state-of-the-art models fine-tune and extend this
language representation model in their implementations. Therefore, I seek to train
an effective question answering system by doing the same. The final proposed
model is a weighted ensemble network consisting of individual networks that
have been trained using a variety hyperparameters and architectures. This model
achieves scores of 74.472 EM and 77.129 F1 on the test dataset.

1 Introduction

In the context of this report, open domain question answering refers to the answering of, or identifying
as unanswerable, questions based on a context passage in which the subject of these question-context
pairing inputs is not pre-specified. This task is difficult for two reasons. The first is that the questions
are open domain. The lack of subject requires models to understand language more generally as a
means of parsing out the relationships between questions and their contexts in order to find answers.
This portion of the task was the focus of the SQuAD 1.1 dataset, and over time, models achieved
very high performance on this with Google’s BERT eventually surpassing human performance.
This success sparked an update to the dataset in which questions were added that could not be
answered based on their given contexts. The is the second difficulty – the potential for questions to
be unanswerable. For the SQuAD 2.0 dataset, models must now develop a deeper understanding of
how or if the question and context relate.

Extensions of BERT – as opposed to the plain fine-tuning that is state-of-the-art for SQuAD 1.1 –
are making progress although the task is far from solved. Models, in general, are biased towards
not answering questions due to the construction of the dataset – about half of the questions cannot
be answered – and this tendency hurts performance. In order to cope with these shortcomings in
single models, an ensemble network in which the individual components are trained with different
architectures was used. This allows the overall network to capture the union of answered questions
and mitigate the bias towards marking questions unanswerable. The ensemble network outperforms
its individual components, and further analysis of accuracy and which examples benefit from this
architecture can be found in the Analysis section.



2 Related Work

There have been a variety of approaches to question answering since the initial release of the SQuAD
dataset; however, the SQuAD 2.0 dataset has almost exclusively seen models architected as an
extension of Google’s BERT.

At its core, BERT is a language model that it is architected using bidirectional Transformers. It can
be fine-tuned to a variety of NLP tasks by adding and training additional layers. At the time of its
release, it achieved state-of-the-art results on eleven NLP tasks, so its capabilities extend far beyond
question answering. The model described throughout this paper takes advantage of these great results
and fine-tunes BERT in its implementation.

Another approach that very loosely inspired the attention architecture described later in the paper
is the Dynamic Coattention Network Xiong at al., 2017 [6]. This network pre-dates BERT and
was developed by Salesforce Research. At the time of its release, it achieved state-of-the-art for
question answering. An important piece of its architecture is its coattention encoder. The encoder
uses attention to compute an affinity matrix for representing the context passage and the question in
relation to one another. While not the same implementation, the attention architecture used is inspired
by this coattention encoder.

3 Approach

The final network is a weighted ensemble consisting of four separately trained networks. Each of
these networks utilizes Google’s BERT as the underlying language representation model, and details
of this language model’s architecture can be found in Devlin et al., 2018 [4]. Additionally, each of
the contributing networks is trained using different hyperparameters and, in some cases, architectures.
This approach allows for the overall model to better capture different features of language and succeed
on different types of questions.

3.1 Architecture

All single models are trained by fine-tuning the base BERT model to the SQuAD 2.0 dataset using
Google’s Tensorflow implementation [1]. HuggingFace’s PyTorch implementation was initially
fine-tuned as well for comparison although the results were not as good [2].

Two primary architectures are utilized in the final network. The first architecture is a vanilla fine-
tuning of the base BERT model that makes use of a single linear layer, in addition to BERT, for
predicting the start and end tokens. The second architecture utilizes multiplicative attention by adding
a linear layer to BERT that generates start token predictions and an intermediate end token state. The
start token predictions are then multiplied element-wise to the end state to generate the end token
predictions based on the start token predictions.

The first architecture is modeled by Figure 1. The question and context passage are concatenated and
fed into the pre-trained BERT language model to obtain a final hidden state, Hfinal ∈ Rh×l where h
is the number of hidden units and l is the maximum sequence length. The output of BERT is then
passed through a single linear layer, W ∈ R2×h, such that

L = HfinalW + b = [Lstart;Lend] ∈ R2×l

2



Question Passage

BERT

Start & End Tokens

S S S SS S S S SS

E E E EE E E E EE

↑

↑

Figure 1: Vanilla Architecture

A softmax is then computed over L to find the most probable start and end tokens. The constraint
that the end token must appear after the start token is added to generate logical outputs.

The second architecture is modeled by Figure 2. As before, the question and context passage are
concatenated and fed into BERT to obtain the final hidden state, Hfinal ∈ Rh×l where h is the
number of hidden units and l is the maximum sequence length. This is then also passed through a
single linear layer, W ∈ R2×h, such that

L = HfinalW + b = [Lstart;Lend] ∈ R2×l

3



Question Passage

BERT

Start & End Tokens

S

E

S

S S SS S S S SS

E E EE E E E EE

↑

↑

↑

↑

*

Figure 2: Attention Architecture

Attention is then applied between the start token predictions and the intermediate end token predictions
to obtain the final end token predictions.

Lfinal = [Lstart;Lstart ∗ Lend] ∈ R2×l

Finally a softmax is then computed over Lfinal to find the most probable start and end tokens. Again,
the constraint that the end token must appear after the start token is added to generate logical outputs.

Single models based on these architectures are then combined to form an ensemble network. The five
best predictions from each model, along with their probabilities, are used. Each single model is given
a weight to scale its probabilities relative to the other networks. The final output is the prediction
with the highest cumulative probability. More concretely, four single models – three vanilla and one
attention model – are used with two of the vanilla models having a weight of 2 while the third vanilla
and the attention model have weights of 1. Details about the hyperparameters used to train each of
these single models as well as how the weights were reached can be found in the Experiments section.

3.2 Baseline

The baseline model used is a BiDAF whose implementation is provided by Chris Chute [3]. Details
of this model’s architecture can be found in Seo et al., 2016 [5]. The model was trained for 11 epochs
and achieved an EM score of 55.806 and an F1 score of 58.797.

4



4 Experiments

Experimentation consisted of training single models with various hyperparameters and architectures
and comparing these single models for performance. Additionally, a variety of ensemble networks,
consisting of different combinations of these single models, were also compared. In the ensemble
networks, the weights for each single model were adjusted as a final hyperparameter.

4.1 Data

The SQuAD 2.0 dataset was used to train the model. It consists of a context and question that are
concatenated and converted to word embeddings before being fed into the model. The labels are
answer spans from the context. The data split is as follows: 129,941 training examples, 6078 dev
examples, and 5915 test examples.

4.2 Evaluation Methods

The experimental models were primarily evaluated using EM and F1 scores, and these metrics are
fairly standard to question answering. In addition to these automated scores, manual error analysis
was key in understanding the shortcoming of the model. Specifically, the weights for the ensemble
network were derived by analyzing the comparative failures of the single models.

4.3 Details

Experimentation included the testing of implementation, number of epochs, batch size, learning rate,
and max sequence length. The first stage of experiments saw comparisons between implementations
and the results are described in Table 1 with the Tensorflow implementation performing the best.

Based on these results, all further models were trained in Tensorflow. The next phase of experimenta-
tion included tuning the number of training epochs and analyzing the performance of the attention
mechanism. The results of these experiments are outlined in Table 2, and neither variable was found
to have a significant impact on the performance of the model.

Given that the performance was approximately the same with respect to both number of epochs and
architecture, the vanilla model with 2 training epochs was used in the final experiments as it was
the fastest to train. The final, and most important, hyperparameters that were tuned were maximum
sequence length and ensemble weights. The results of each are described in Table 3 and Table 4,
respectively.

4.4 Results

Below are the results for different fine-tuning different implementations compared with the perfor-
mance of the baseline. The Tensorflow implementation well exceeds the baseline’s performance
while the HuggingFace implementation falls short.

Table 1

Implementation EM F1
Tensorflow 72.409 75.053
Baseline BiDAF 55.806 58.797
HuggingFace 46.693 47.066

5



Results for different numbers of training epochs and architecture types are below. Performance is
approximately the same across both variables although the vanilla model at 2 epochs trains the fastest.

Table 2

Architecture Epochs EM F1
Vanilla 2 72.409 75.053
Vanilla 3 72.392 75.250
Attention 2 71.520 74.465
Baseline - 55.806 58.797

The hyperparameter with the biggest impact on performance was maximum sequence length. Longer
sequences can perform better as the additional context prevents the model from falsely predicting
no answer as often. This improvement, however, is not a direct extension of the performance of the
smaller sequence length models which is why the weighted ensemble network performs much better.
Further analysis of this phenomenon can be found in the Analysis section.

Table 3

Architecture Max Sequence Length EM F1
Vanilla 128 72.409 75.053
Vanilla 256 72.919 76.300
Vanilla 384 71.405 74.634
Baseline - 55.806 58.797

Finally, the different single models were combined in various configurations to maximize performance.
Results from some of these configurations are below with the full four model ensemble performing the
best. This ensemble weights the single models such that the contributions from each max sequence
length are equal.

Table 4

Architecture (Max Length + Attention/Vanilla) Weights EM F1
128A + 128V 1, 1 73.050 75.853
128A + 128V + 256V 1, 1, 2 74.679 77.304
256V + 384V 1, 1 74.794 77.603
128A + 128V + 256V + 384V 1, 1, 1, 1 75.617 78.114
128A + 128V + 256V + 384V 1, 1, 2, 2 75.716 78.338
Baseline - 55.806 58.797

5 Analysis

The error in the single models that comprise the ensemble network largely lies in a failure to respond
to answerable questions. The networks are biased towards marking questions as unanswerable, but
this is not surprising given that approximately half of the questions are unanswerable. What is
surprising is that the models can fail to answer different questions. This phenomenon allows for the
weighted ensemble to capture the different successes of each of the individual models and ultimately
maximize performance. An example of this is the following question and an excerpt from its context
along with the individual models’ predictions.

Who did Rollo sign the treaty of Saint-Clair-sur-Epte with?

...was established by the treaty of Saint-Clair-sur-Epte between King Charles III of West Francia and
the famed Viking ruler Rollo...

6



Table 4

Architecture (Max Length + Attention/Vanilla) Prediction Probability
128A King Charles III of West Francia 0.462
128V King Charles III of West Francia 0.740
256V King Charles III of West Francia 0.584
384V No Answer 0.932

The ground-truth answer is King Charles III. Three of the four models are close but quite not achieving
exact match accuracy while the 384V model is the only one that fails to answer this question. It is in
this manner that the ensemble network benefits from the variety of single models.

That being said, there still exist answerable questions that none of the single models answer, and
this error perpetuates into the final ensemble which limits performance. An example of this is the
following question and an excerpt from its context along with the individual models’ predictions.

What was the Norman religion?

...descendants of Rollo’s Vikings and their Frankish wives would replace the Norse religion and Old
Norse language with Catholicism (Christianity) and the Gallo-Romance language of the local

people...

Table 4

Architecture (Max Length + Attention/Vanilla) Prediction Probability
128A No Answer 0.746
128V No Answer 0.517
256V No Answer 0.724
384V No Answer 0.830

The ground truth answer is Catholicism but all of the individual models predict no answer such that
the ensemble, incorrectly, also predicts no answer.

6 Conclusion

Ultimately, the most successful model was the ensemble including weights normalizing the contri-
butions of the single models with respect to max sequence length. It was surprising to find that not
only did sequence length have the largest, if not the only, impact on performance, but that larger
sequence lengths are not exclusively better. The merits of the smaller maximum sequences should
not be overlooked, and the ensemble allows both to contribute to an overall system that outperforms
each by itself.

The primary limitation for this work was memory. For the longer sequence lengths, batch size had
to be reduced significantly, perhaps to some performance cost. In all cases, a batch size of 32 –
suggested by Google’s findings for maximizing performance on this task – was not able to be used.
Furthermore, for all experiments the base BERT model was used. Given GPUs with more memory,
the large model could have been experimented with in a timely manner which likely would have
improved performance.

References

[1] URL: https://github.com/google-research/bert.

7

https://github.com/google-research/bert


[2] URL: https://github.com/huggingface/pytorch-pretrained-BERT.
[3] URL: https://github.com/chrischute/squad.
[4] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding. 2018.
[5] Minjoon Seo et al. Bidirectional attention flow for machine comprehension. 2016.
[6] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic Coattention Networks for Question

Answering. 2017.

8

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/chrischute/squad

	Introduction
	Related Work
	Approach
	Architecture
	Baseline

	Experiments
	Data
	Evaluation Methods
	Details
	Results

	Analysis
	Conclusion

