
Question Answering on SQuAD

Conor McAvity
Department of Computer Science

Stanford University
cmcavity@stanford.edu

Abstract

The Stanford Question Answering Dataset (SQuAD) is a task for machine reading
comprehension. An updated version of the task was recently released, SQuAD 2.0,
which adds unanswerable questions to the original dataset. In this paper, I present
an implementation of the QANet model [6] for SQuAD 2.0. On the hidden test set,
the model obtained an F1 score of 66.9 and an EM score of 63.3.

1 Introduction

Reading comprehension is a popular NLP task which works as follows: a model is presented with a
passage of text and a question about that text, and needs to predict the answer, which is in the form
of a span of words from the text. The Stanford Question Answering Dataset (SQuAD) is a dataset
for reading comprehension released by the Stanford NLP group. The original version, SQuAD 1.1,
contained around 100,000 crowd-sourced questions written about Wikipedia passages [3]. In October
2018, the top model surpassed the human benchmark on the public leaderboard. As a result, an
updated version of the challenge, SQuAD 2.0, was released, which adds 50,000 new questions to the
original dataset [2]. These new questions pose the additional challenge that they are unanswerable,
and are written to resemble answerable questions. In order for a model to perform well on the new
challenge, it must be able to reliably determine from the context when a question has no answer.

In this project, I implement a version of the QANet model, an end-to-end reading compre-
hension model originally written for the SQuAD 1.1 challenge. In contrast to many other similar
reading comprehension systems, QANet does not contain any recurrent layers in its architecture.
Rather, it makes extensive use of self-attention as well as convolutional neural networks.

2 Related Work

There have been a variety of different end-to-end neural network models created for the SQuAD
challenge. The Bidirectional Attention Flow model (BiDAF) was an early successful approach
on the original SQuAD 1.1 dataset. The central contribution of this model is the attention flow
layer, which not only computes attention from the context sequence to the query sequence, but from
query to context as well. More recently, models that use pre-trained contextual embeddings have
proven to perform especially well at the SQuAD challenge. In particular, the Bidirectional Encoder
Representations from Transformers (BERT) model [1], which pre-trains language representations
with a bidirectional Transformer, is a component in all of the top-performing models on the SQuAD
2.0 leaderboard, including the state of the art.



3 Approach

3.1 Baseline model

The baseline model is a version of the BiDAF model, but which omits the character-level embedding
layer used in the original model and only includes a word-level embedding layer. For further details
on the BiDAF model, refer to the paper [4].

3.2 QANet

QANet is an end-to-end model for question answering. Its high level structure is similar to that
of other reading comprehension models of the time, such as BiDAF: it consists of an embedding
layer and an encoding layer applied separately to the context and question sequences, a bidirectional
attention layer between the context and question sequences, a further encoding layer, and a softmax
output layer. The novel feature of this model is that unlike BiDAF, it does not make any use of
recurrent neural networks in its encoding layers. The motivation for this design choice is to allow
the model to better leverage parallelization. Instead of RNNs, its encoding architecture uses CNN
sublayers, as well as a multi-head self-attention sublayer, drawing inspiration from the Transformer
architecture [5]. The paper points out that the combination of CNNs and self-attention should allow
the model to examine both local and global interactions within a sequence of words.

Like BiDAF, the original QANet paper was written for the SQuAD 1.1 dataset, which does not
include examples labelled with "NoAnswer" introduced in SQuAD 2.0. To adapt the model to the
new dataset, an "OOV" token is added to the beginning of each context sequence. A test time, the
model’s output is taken to be "NoAnswer" if it assigns a higher probability for start and end positions
to this "OOV" token than to any other span.

Figure 1: An overview of the QANet architecture

3.2.1 Embedding layer

The embedding layer is similar to its counterpart in the baseline BiDAF model. For each word w
in the context or question sequence, it obtains the embedding by concatenating a 300-dimensional
word-level GloVe embedding and a character-level embedding. In the character-level embedding
layer, a randomly initialized character vector is looked up for each character c in w. A 1-dimensional
convolutional neural network is applied to the resulting matrix, and max-pooling is applied to yield
the embedding. After concatenating the two embeddings for a word, the resulting vector x is passed

2



through a two-layer highway network. To implement this layer, I adapted the baseline embedding
layer for QANet by adding in the character-level embedding layer.

3.2.2 Embedding encoder layer

The encoder layer architecture is one of the main contributions of the QANet paper. It consists of a
sinusoidal positional encoding followed by a stack of Encoder blocks. Like the Transformer encoder,
the Encoder block uses a sublayer of multi-head self-attention followed by a feedforward sublayer [5],
but it also precedes the self-attention sublayer with a variable number of depthwise-separable CNNs.
Within each block, the sublayers are connected by layer norm and residual connections: specifically,
the output of each sublayer is x+ sublayer(layernorm(x)). This encoder is applied to the output of
the embedding layer for both the question and context sequences.

I implemented most of the encoder architecture myself, but for the positional encoding1 and self-
attention sublayer2, I adapted code from open-source PyTorch implementations of the Transformer
architecture.

3.2.3 Bidirectional attention layer

The bidirectional attention layer is the same as its counterpart in the baseline BiDAF model. Briefly,
this layer computes a similarity matrix between pair of elements in the context and question sequences
according to the equation Sij = W [ci; qj ; ci ◦ qj ] for parameter matrix W , where c ◦ q denotes
elementwise product. Then, context-to-query attention is computed using the row-wise softmax of
S, and query-to-context attention is computed using the column-wise softmax of S. The output is a
sequence of representations [c; a; c ◦ a; c ◦ b], where c is the input representation of a context word, a
is a context-to-query output, and b is a query-to-context output.

3.2.4 Model encoder layer

The model encoder layer uses the same encoder architecture as the embedding encoder layer. First, a
projection is taken to reduce the size of the output of the bidrectional attention layer from 4 times
the hidden size down to the hidden size. Then 3 stacked encoder layers are applied to the sequence,
yielding outputs M0,M1 and M2.

3.2.5 Output layer

The output layer is similar to the output layer in the baseline BiDAF model. The 3 outputs of the
model encoder layer are used to compute probability distributions of the start and end positions of the
answer in the context, according to the following equations: pstart = softmax(Wstart[M0;M1]) and
pend = softmax(Wend[M0;M2]), for parameter matrices Wstart and Wend.

3.2.6 Loss function

The loss function is the sum of the negative log likelihood loss for the start and end probability
distributions, averaged over all the examples in a batch. Specifically, the loss for each example
is −(log pstart(i) + log pend(j)), where i and j respectively denote the ground truth start and end
indices.

3.2.7 Predicton

At test time, the predicted span (i, j) is chosen to maximize the probability of the product pstart(i) ·
pend(j), subject to the condition i ≤ j.

1http://nlp.seas.harvard.edu/2018/04/03/attention.html
2https://github.com/jadore801120/attention-is-all-you-need-pytorch/tree/master/transformer

3



4 Experiments

4.1 Dataset

I used the SQuAD 2.0 dataset for training and developing my models. The training set consists of
130,000 examples, and the dev set consists of 6000 examples. The maximum context length was set
to 400 words, the maximum question length set to 50 words, and the maxmimum answer length set
to 30 words. The maximum number of characters kept in a word was set to 16. Histogram of the
original context and question lengths are shown in Figure 2.

0 100 200 300 400 500 600 700 800
Context length

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60
Question length

0

5000

10000

15000

20000

25000

30000

Figure 2: Histograms for context and question lengths

4.2 Evaluation method

The main evaluation metrics are the F1 and EM scores, based on 3 provided reference answers for
each example. The EM (exact match) score is the percentage of test examples for which the model
matches one of the reference translations. The F1 score for a single example is the harmonic mean
of precison and recall when considering the model output and the reference translations as bags of
words, and the final F1 score is the average of the individual scores.

4.3 Implementation details

For the most part, I followed the paper in selecting hyperparameters. I used a hidden size of 128
throughout the model. For the character-embedding layer, I used a kernel size of 5 and 200 output
channels. For the embedding encoder layer I used 1 Encoder block with 4 CNN layers each with
kernel size of 7, and for the model encoder layer, 7 Encoder blocks with 2 CNN layers each. I shared
weights between applications of the embedding encoder layer to the question and context sequences,
and also shared weights between each of the three applications of the model encoding layer. In each
of the self-attention sublayers, I used 8 heads.

Following the paper, I used the Adam optimizer, with learning rate 0.001, β1 = 0.8, β2 = 0.999, and
ε = 10−7. I used an exponential moving average (EMA) of the parameters with value 0.9999. For
regularization, I used L2 weight decay with λ = 3 · 10−7. I also used dropout after every sublayer
with value 0.1, and stochastic depth dropout within each encoding layer, with the probability of a
sublayer l surviving equal to 1 − (l/L)(0.1), L being the total depth. Due to memory constraints,
I used a batch size of 10 instead of 32 as used in the paper. Training time was approximately 90
minutes per epoch.

4.4 Other experiments

I also tried several other ideas that didn’t end up working. One experiment was to increase the number
of Encoder blocks in the model encoder layer from 7 to 9, but this did not improve performance, and
was more computationally expensive. I also tried halving the learning rate when the dev NLL began
to increase, but this didn’t lead to noticeably different performance either.

4



4.5 Results

On the hidden test set, my QANet implementation obtained an F1 score of 66.9 and an EM score of
63.3, which was competitive on the non-PCE class leaderboard. The performance of this model on
the dev set compared with two other models that I trained, the baseline BiDAF and improved baseline
model, can be seen in Table 1.

Model Dev Set EM Dev Set F1
Baseline BiDAF without char-embedding 57.3 60.7
BiDAF with char-embedding 61.0 64.4
QANet 67.3 70.7

Table 1: F1/EM scores on the dev set

As can be seen, the QANet implementation outperformed the improved baseline BiDAF implemen-
tation. This was an expected outcome, because QANet was one of the top performing models on
the original SQuAD 1.1 challenge. These results indicate that QANet can also obtain reasonable
performance when adapted for SQuAD 2.0.

5 Analysis

5.1 Subsets of the data

In Table 2, we see the performance of the model on different subsets of the questions. The model
achieves EM and F1 scores above those on the full dataset for questions beginning with "when" and
"who". In particular, performance on "when" questions is dramatically higher, with increases of 7.0
EM and 4.6 F1. This likely indicates that the model is very good at picking out years from the context,
as well as being quite good at identifying named entities. On the other hand, the model achieves a low
EM score on questions staring with "why", despite achieving a reasonable F1 score. An explanation
for this could be that when answering higher-level questions concerning cause and effect, the model
is able to identify the general part of the context in which the answer lies, but is incapable of cutting
out irrelevant information and honing in correctly on the precise location of the answer.

Question type Count Dev Set EM Dev Set F1
When 440 74.3 75.3
Who 601 69.2 71.9
What 2759 67.3 70.6
Where 231 67.1 71.3
How 525 66.7 70.1
Which 146 63.7 68.4
Why 84 57.1 70.7

Table 2: Dev set F1/EM scores by question type

5.2 Selected outputs

An examination of some sample outputs for the model indicates that while it is largely capable of
providing answers that are reasonable in a syntactic sense, it sometimes fails to understand basic
semantic relationships between words. In some cases this leads to the model answering questions
that have no answer. For instance:

Context: Tymnet was an international data communications network headquartered in San
Jose, CA.
Question: Tymnet worked with what?
Answer: N/A
Prediction: data communications network

While the model seems to understand that there is a relationship between "Tymnet" and

5



"data communications netework", and that the question is looking for something with a relationship
to "Tymnet", it fails to distinguish between the semantically distinct relationships expressed by the
verbs "was" and "worked with".

However, in some cases, it is debatable whether questions are correctly labelled as unan-
swerable. For instance:

Context: Thus, on 1 August 1944, as the Red Army was nearing the city, the Warsaw Up-
rising began. The armed struggle, planned to last 48 hours, was partially successful, however it went
on for 63 days.
Question: How many days did the Red Army Warsaw Uprising last?
Answer: N/A
Prediction: 63

Despite the example being labelled as unanswerable, it seems clear from the context that
the Warsaw Uprising lasted for 63 days, which is what the model output.

5.3 Ablation analysis

As can be seen in Table 1, the addition of the character-level embedding layer to the baseline BiDAF
model resulted in an increase of 3.7 EM and 3.7 F1. This big jump in performance is likely due to the
character-level embedding layer giving the model the ability to more easily associate words with
similar spellings. This might allow the model to more easily pick out words of the context that share
sub-components with words in the question, which could be useful in locating the answer span.

I also tried replacing Encoder block in the embedding encoder layer with LSTM-based en-
coder from the baseline BiDAF model. This resulted in a relative decrease of 1.9 EM and 2.2 F1 after
1M steps, and it was also slightly more computationally expensive.

6 Conclusion

In this project, I implemented a version of the QANet model for the SQuAD 2.0 challenge. The
model improved on the baseline EM and F1 scores, and achieved a competitive performance among
the top models on non-PCE class leaderboard. The project demonstrates that the QANet model,
which was originally written for SQuAD 1.1, is also capable of reasonable performance when
adapted for SQuAD 2.0.

Since the model was quite computationally expensive to train, it was difficult to do exten-
sive hyperparameter search in the available time. In future work, it could be interesting to experiment
with changing the number and arrangement of sublayers in the Encoder blocks, and with using
varying amounts of dropout in different parts of the model.

References

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[2] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for squad. arXiv preprint arXiv:1806.03822, 2018.

[3] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[4] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008, 2017.

6



[6] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. arXiv preprint arXiv:1804.09541, 2018.

7


	Introduction
	Related Work
	Approach
	Baseline model
	QANet
	Embedding layer
	Embedding encoder layer
	Bidirectional attention layer
	Model encoder layer
	Output layer
	Loss function
	Predicton


	Experiments
	Dataset
	Evaluation method
	Implementation details
	Other experiments
	Results

	Analysis
	Subsets of the data
	Selected outputs
	Ablation analysis

	Conclusion

