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Abstract

The QANet model has shown great results on machine comprehension tasks. Unlike
more recent Transformer architectures (BERT) it maintains separate encodings
for the context and the query. The interaction between those encodings is carried
out by a single attention layer, which has been noted could not be a sufficiently
powerful inference procedure. The aim of this work is to combine the QANet
architecture with the multi-hop attention structure presented in the Ruminating
Reader model. This project has two main contributions: 1) We combine both
models and add further extension, via a multi-layer iterative attention mechanism
and 2). We propose an entirely new fully-convolutional Ruminating Block structure
with dual attention mechanisms, which improves performance by 1 point in both
EM and F1 scores. This is a default project, participating in the Non-PCE division.

1 Introduction and Related Work

The problem of Machine Comprehension, involves a short paragraph (context) and a question (query),
related to it, with the goal to output the answer location within the given text. The BiDAF model
Seo et al.| (2018)) utilizes a bi-directional LSTM network to encode both the context and query input,
which are then passed through an attention layer and final modelling layers. The QANet model of |Yu
et al.|(2018)) (Figure 1 A))uses ideas from the Transformer model (Vaswani et al.|(2017)) to replace
recurrent neural networks in the BiDAF framework with an "Encoder Block" (Shown in Figure 1
B))that consist of several layers of local convolutions and a self-attention module that models global
dependencies in the text. This architecture has the advantage that when learning the encoding at
each word in the paragraph the model has access to all other words, versus using only the the hidden
state representations of an RNN network. In addition this model is fully convolutional, avoiding the
sequential nature of RNNs and thus speeding-up training. Until the introduction of BERT (Devlin
et al.| (2018)) QANet was considered state of the art. On the other hand. the Ruminating Reader
(Gong and Bowman|(2017)) uses ideas from [Dhingra et al.[|(2017),|Sordoni et al.|(2017) and |Wang
and Jiang| (2016 to extend the basic BIDAF model with a two-hop attention mechanism, which the
authors refer to as a "Ruminating Layer". The main idea of the layer is to use a two-hop attention
layer to construct query-aware context encodings, thus creating a more complex inference scheme
between the query and context representation. At the time of it’s publishing the Ruminating Reader
matched state of the art. The goal of this work is to extend the QANet model with a Ruminating
Chain, which stacks ruminating blocks together to from a depth-recurrent mechanism, similar to
ResNet. In addition we develop the idea further by introducing a new convolutional-based ruminating
block architecture with two attention mechanism that recurrently re-computes query-aware context
representations and context-aware query representations, which improves performance over the
original ruminating chain by 1 point (both in EM and F1 scores). In addition we implement several
other extensions of the base code that we have been provided with.
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Figure 1: A: Original QANet architecture (Yu et al.| (2018))), with Encoder Block, B: Original
Ruminating Block architecture (Gong and Bowman| (2017)).

2 Models

2.1 Joint Word Embedding

The first step of the model is a word-embedding block for both the context and the query. We
obtain both pre-trained embeddings for words and characters from the files provided with the
project. A character-based word embedding is produced from the character embedding via a standard
convolutional model. At this point, both the pre-trained GloVe word embedding and the character
based embedding are concatenated and passed through a projection layer, followed by a Highway
Network block. This differs from the standard BiDAF approach, which concatenates both the word
and character-based embedding, however, in order to keep the size of the model manageable and still
maintain relatively high-dimensional word representations I opted for this aggregation approach. This
layer outputs query embeddings q.,,,;, ; € RH,i=1,..., M and context embeddings ¢cpmp; € R,
i =1,..., N, where H is the dimensionality of the hidden representation (in this model, similarly
to QANet we use H = 128). These vectors are stacked together to obtain ce.,p, € RHEXN and
demb € RHX M .

2.2 Encoder Block

The Encoder block architecture (shown in Figure 1. A) follows fairly closely the original paper
(Yu et al.[(2018)). We experimented with using a trainable positional encoding, i.e. i — ¢; € R,
instead of the sinusoidal encoding used in |Vaswani et al.| (2017)) (which was also applied in the
QANet model). That modification did not seem to impact performance, but slowed training mildly
(consistent with the experiments carried out in|Vaswani et al.| (2017))), so we opted to maintain the
original positional encoding. We pass the output from the embedding layer through an encoder
block (both query and context encoder blocks share the same weights) to obtain query encodings
q € REXM — EncoderBlock(qens) and context encodings ¢ € R”*N = EncoderBlock(Ceynp)-

2.3 Attention and Summarization Architecture: Model 1

I trained two main models. Model 1 is based on QANet with an additional ruminating block, based
on|Gong and Bowman| (2017)), with a few small changes, described below.

2.3.1 Attention Layer

The attention layer in our model follows the same general structure as the one provided with the
starting code distribution. We experimented with two modifications:



e Computing the similarity score as a generalized quadratic function S;; = ¢ Wq; + wlc; +
w:qu, where W, w. and w, are trainable parameters.

e Adding several attention heads (in our implementation between 4 to 8) working in parallel.
The final output of the attention layer is an averaging of all attention heads, via a trainable
depth-wise convolution.

Using a general quadratic form for computing the similarity score fully nests the basic attention
model, however this modification slowed down training significantly, so I reverted back to the original
similarity computation. Surprisingly, adding multiple attention heads did not improve performance
either (will comment on this in the Results section), so finally we decided to stick with the original
formulation. The attention layer returns attention vectors g; € R

The ruminating Block consist of three separate layers: the Sumamrization Layer, the Context
Ruminating Layer and the Query Ruminating Layer. Here I will present my implementation, which
differs somewhat from the original model. In particular, we apply iterative procedure, similar to
a stacking ResNet blocks. We stack 7' consecutive Ruminating Blocks (which share weights), all
variables withing block ¢ are specified with a ¢ superscript.

2.3.2 Summarization layer
The sumamrization layer is a bi-directional LSTM module applied to the output of the attention layer.
In particular

Si,jwa = LSTM(mj_,, g}) € R*

St oo = LSTM(m!_,g!) € R?#

i,rev

L [gt Lot 4H
S; = [Si,fwd7si,7'ev] eR

Also, similarly to the encoder-decoder NMT structure, we get the LSTM state

t _ [t .ot 4H
S = [Slenfc,fwd7sl,rev] eR

by concatenating the first and last hidden states of the module.

2.3.3 Query Ruminating Layer

The basic Query Ruminating Layer has the same structure as the original model, with the exception
that our model is iterative with a skip connection to the query encoder output g.

z; = tanh(W s’ + Wézqi +bg.)
ff = o(Wh,s" + W, ai + bo,)
G =foqi+ (11 o

Notice that here the block always has access to the query encoding. The process is recurrent as we
re-compute the attention block (and thus the summary) at each ruminating iteration. Information
from the previous iteration flows through the Summarization Layer.

2.3.4 Context Ruminating Layer

In the original architecture, the attention summary state vector s!, is stacked /N times and then an
LSTM module is applied in order to encode positional information. This seemed very inefficient and
somewhat wasteful, so we dispense with that step and use directly the attention summary layer hidden
states, which already encode positional information. In more detail, we have the below computation:

z, = tanh(W¢_s! + W&_c; + bc.)
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Figure 2: A: Chart for Model 2 Ruminating Blocks as implemented and presented here, B: Alternative
for Model 2 Ruminating BLock. The Double BiDAF attention layers combined both the Query and
Context Attention layers, which share weights for the combination of the joint similarity matrix. The
modified encoder is a unit that computes positional embeddings and local convolutions on bith inputs
seperately, but applies self-attention over both sets of vectors jointly..

ff = o(Wi si + Wé,ci +be,)
ch=floc,+(1—f)oz!

This way we obtain iteration-t encodings, c?, q* which we pass again through the attention layer to
obtain g™t = Attention(c?, q°).

2.4 Attention and Summarization Architecture: Model 2

Model 2’s architecture is presented in Figure 2 A). In the QANet (and Model 1) all RNN units usually
used for encoding and modelling have been replaced with convolutional based encoder blocks. Thus
the summarization layer is the only recurrent-based unit in the Model 1. The way it’s currently used
has two major drawbacks:

1. As discussed in |[Vaswani et al.|(2017)), there is meaningful information loss when using
RNNSs for encoding, even in the bi-directional case, while the self-attention mechanism has
proved much more robust, due to having access to the entire sequence at encoding time.

2. Sequential computation of RNN based architectures over the summarization layer is slower
than a purely convolutional one, which can take advantage of GPUs and other accelerators.

We can address both of these points by replacing the bi-directional LSTM summarizaton layer with
an encoding block. We can then process the context ruminating layer in the same way as in Model 1,
however we would have to adopt a different procedure for the Query Ruminating block computation,
since we no longer have a single attention state vector s. One potential idea is to simply drop that unit
in the ruminating block, however ablation studies performed in/Gong and Bowman| (2017) showed
that both the context and query ruminating blocks have meaningful contribution to performance. Our
approach is to add an additional attention block. In Model 2, we deploy two context-query attention
layers. The first attention layer, which we refer to as the Context Attention is identical to the one
used in Model 1 and outputs attention vectors g/:t! = ContextAttention(c’, q*). The query attention
layer is described below.



2.4.1 Query Attention Layer

The Query Attention layer is similar to the Context Attention layer. We compute the matrices S,

S, and S, in the same fashion as the regular Attention Layer (these matrices depend on the current
iteration ¢, but we omit the superscript to keep notation cleaner). These matrices have a subscript g,
as we use separate trainable similarity parameters from the Context Attention block. However, we
exchange the procedures for the Context-to-Question and Question-to-Context attention computation
within the attention layer itself. In more detail:

N
al ;=Y Sgici eRY Vje{l,..., M}

q,J
i=1

S, = SIS, e RM*M

M
by ;= ng,ijfﬂ eRf vje{l,...,M}
i=1

And finally géfjl =[q};al ;;q}0al ;;q] obfm-] eR¥ vje{l,...,M}.

In the main implementation in this project the Query Attention and Context Attention are separate
layers, however they could also share weights in the computation of the similarity matrix. With the
benefit of hindsight, this would have three advantages:

1. We could speed up computation, since we do not have to re-estimate the similarity matrix
(which could be expensive) and avoid re-computing the softmax matrices.

2. We could speed up learning as signal backpropagates to the weights in the similarity
computation along both branches of the model.

3. Decrease overfitting, by reducing the number of model parameters.

We recommend that this setup is used in further development.

2.4.2 Summarization Layer

In Model 2 the summarization layer is another Encoder Block, that operates on the output of
both attention layers described in the previous point. We have s’ = EncoderBlock(g!) and sfz =
EncoderBlock(gg). Since the Encoder Block utilizes positional encoding, the resulting summarization
vectors already have embedded positional information and we do not need to take further steps in that
direction.

An alternative idea is to apply the encoder block to the concatenated tensor [s!, sg] =
EncoderBlock([g!, g!]), which would allow the self-attention mechanism access to both the query
and context attention vectors at the same time. We would only need a small modification to apply
the positional encoding and convolutional mapping to each tensor separately and concatenate them
before the self-attention module is computed. This is one modification that we could test as further
development, a schematic for an alternative Model 2, including these modifications is shown in Figure

2B).

2.4.3 Ruminating Layers
The context ruminating layer has the same structure as before, utilizing the summarization vectors s_..
The query ruminating layer has the structure:

t_ 1t 2

z; = tanh(Wg,_ s, + W5 _q; +bg.)
1 2
fi = o(Wg,sq: + W5, qi +bo,)
q=fioq+(1-f)oz



Using a separate summarization vector at each point in the query allows us to bring in a more
information-rich representation than using a single summary vector, which was the case in Model 1.

2.5 Modelling block

For both Model 1 and Model 2, the final modelling block is identical to the one presented in the
QANet architecture, consisting of 3 stacks with shared weights, each consisting of 7 shallow Encoder
Blocks. It operates on the output of the context attention layer in the final ruminating block iteration

gl
3 Results and Discussion

We implemented the models presented above in several stages, which serve as a basic ablation study.

1. The first model we trained consisted of the base BiDAF model provided with a 2-step
Ruminating Chain. The goal here was the gauge the value added of the ruminating chain.
Within 30 epochs the model reached a top dev set EM score of 57.33, F1 score of 60.92 and
AvNA of 70.54. This handily outperforms the baseline scores of 55, 58 and 65 respectively.

2. The second model we trained was Model 1, described above. This model achieved signifi-
cantly better dev set results of 63.59 EM and 67.02 F1 scores in 30 epochs. Results on the
test set were 60.034 EM and 63.695 F1 scores.

3. After implementing Model 1, we experimented with modifying the attention layer with a
richer structure. In particular we added a quadratic similarity measure in the bi-directional
attention layer, i.e S;; = ¢ Wq; +wl¢c; + wl q;, as well as a parallel multi-head mech-
anism with 4 attention heads. Learning turned out to be quite slow in this case (although
consistent) and after 30 epochs, we did not obtain a workable model. This improved slightly,
when we initialized the matrix W with a diagonal equal to the vector corresponding to the
¢; o q; term in the similarity computation, obtained from a trained Model 1, however the
model still did not reach good performance in meaningful time. As a next step in the study
we reverted back to the original similarity matrix computation ( S;; = wl e, q;,€i0q;l),
maintaining the multi-head mechanism. Surprisingly this slowed down learning somewhat
(as compared to using a single-head attention), but did not result in improved performance.
We will discuss further below.

4. The final model trained was Model 2, described in Section 2.4. The model achieved top
performance on the dev set of 63.89 EM and 67.52 F1 scores. The performance on the test
set was 61.048 EM and 64.63 F1 scores (available on the NON-PCE Leaderboard under
RMR), getting an improvement of 1 point on both the EM and F1 scores over Model 1.

The most surprising observation from the above results, was that adding a more expressive similarity
measure and multiple attention heads, did not improve performance and slowed down learning. We
believe that this may be due to the structure of the ruminating chain. This block is essentially a
recurrent neural network, with hidden states g* and {g?, gfz} for Model 1 and 2 respectively, and
inputs q and c at each iteration. In fact the context and query ruminating layers serve similar function
to the gating mechanisms of an LSTM. We could also interpret the attention output as a hidden state
for the ruminating block and the attention summarization layer as a hidden state mapping. Recurrent
Neural networks have been proven to be Turing Complete (for a survey and recent results [Pérez et al.
(2019)). It seems plausible that by including a deep enough ruminating chain, we could learn any
algorithm for computing attention vectors, even with a relatively simple internal representation. This
would explain why adding more general similarity mechanisms and multi-headed attention did not
result in improved performance. The optimal attention mechanism within the given class, could
already be reachable with the simpler formulation, via the ruminating chain recurrence. In Pérez et al.
(2019) it is also proved that the Transformer model of [Vaswani et al.| (2017) is Turing complete (our
Encoder Block is based on the same self-attention mechanism), which could also be a reason for the
improved performance of Model 2 over Model 1, however any interaction between two such systems
seems likely to be quite complex and at this point I have no definitive proof of this hypothesis.



4 Conclusion and Further Steps

In this project we extended the Ruminating Reader model into a full recurrent Ruminating Chain.
We showed that this modification results in increased performance over the basic BiDAF model.
We also combined the QANet model with a ruminating chain and showed additional improved
performance. We proposed an entirely new dual attention, fully-convolutional Ruminating Block,
based on self-attention. The proposed model resulted in better performance over our original model
by 1 point in EM and F1 scores. There are multiple venues for analysis and further work here.

e One of our surprising discoveries was that adding more complex attention mechanisms did
not improve performance and we stipulated that this was due to the recurrent structure of the
ruminating chain. One avenue for further development would be to test this hypothesis more
extensively. This would include varying the length of the ruminating chain with different
attention and summarization mechanisms.

e We proposed an alternative form for Model 2 with shared weights in both attention layers and
a summarization procedure, via a single pass through an encoder block, with self-attention
over both sets of attention vectors. We plan to train this model as well and compare it to the
original form of Model 2.

e If our hypothesis about the expressiveness of the ruminating chain is correct, it seems
there would be little room for further improvement coming from more elaborate attention
layers. Within the confines of the non-PCE framework, that means we could explore more
expressive encodings, for example stacking multiple encoder blocks for the query and
context, or perhaps applying the architecture proposed in the alternative Model 2 to the word
encodings as well, i.e. [c,q] = EncoderBlock([Cemb, Qems)), similarly to the proposed
BERT architecture for question answering.

e Many of the models trained showed continued improvement well into the training procedure.
At least one showed improved performance with additional training and learning-rate fine
tuning. I believe that we could get additional improvement from both Model 1 and Model 2
with some fine tuning.

e [ explored the output of both Model 1 and Model 2, however it was difficult to find any
particular common characteristic of questions that were answered wrong. Perhaps with
additional time and investigation we could discover potential issues and make amendments
to the model.
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6 Appendix: Development and Contributions

1.

I wrote the code for the joint word embedding, although it was based on the one we did for Assignment
5.

. T adapted the Encoder Block from two public github repos and the original model tensorflow repo. I

would estimate I modified about 20% of the code. For example, I implemented a trainable Positional
Encoder and the modified encoder block described in the alternative Model 2.

. I modified the bi-directional attention model we were provided with to include a general quadratic

similarity function and multiple parallel heads, as well as the final combination layer.

. Model 2 is entirely an original idea and I implemented the Query Attention Layer myself, using the

provided Attention module as a template.

. I wrote the whole Ruminating Block from scratch for both Model 1 and Model 2.
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