
QuAVONet: Answering Questions on the SQuAD
Dataset with QANet and Answer Verifier

Jesus Cervantes
Department of Computer Science

Stanford University
cerjesus@stanford.edu

https://github.com/CerJesus/cs224nfinalproject

Abstract

SQuAD has been a driving force behind the challenge of Machine Comprehension
in recent years. In this paper, I set to first recreate a popular model, QANet, from
SQuAD 1.1, before combining it with Answer Verifier from U-Net, what I refer
to as QuAVONet. The best results achieved, however, was a QANet-lite with 4
attention heads and 96 hidden dimension size for an EM of 58.157 and F1 of 61.39
on the hidden test set. QuAVONet, however, only achieves EM of 57.532 and
nearly identical F1 of 61.389 on the test dataset.

1 Introduction

SQuADv1.1 is a challenge and dataset of 100,000 passages and corresponding questions introduced
in 2016 for the purpose of encouraging the advancement of Machine Comprehension (MC) through
answering reading comprehension questions of passages [9]. In 2018, SQuADv2.0 introduced an
additional 50,000 questions for which the answer could not be found in the given passage [10]. The
ability to determine the answerability of questions resulted in the development of adjustments to
existing models and the creation of entirely new models to account for this new challenge.

One model that was fairly successful on SQuADv1.1 but as of writing this report is still not on
the leaderboard for SQuADv2.0 is QANet [1]. In an attempt to bring QANet to the modern world
of SQuADv2.0, I set out to combine QANet with the Answer Verifier (AV) component of U-Net
[12]. AV is specifically designed to predict whether the answer to a question is in a passage, the
exact component that the original QANet model was lacking. I call this model the Question Answer
Verifying Optimization Network (QuAVONet).

2 Related Work

The bulk of my work is predominantly focused on QANet, a feedforward model consisting
exclusively of convolutions and self-attention [1]. The defining feature of QANet is the EncoderBlock,
an analogue of Transformers applied to SQuAD [2]. QANet was introduced to tackle SQuADv1.1
where it achieved 73.6/82.7 EM/F1 scores. QANet was able to surpass State of the Art (SotA) with
even higher scores through the use of data augmentation, however this is a practice I don’t explore in
this paper. QANet’s data augmentation entailed translating the questions and contexts into French and
back to English to obtain paraphrases of the original text and effectively expand the dataset. While
this technique worked well, it was beyond the resources and time constraint of this project.

The other major work that serves as the basis for this project is U-Net [12]. U-net is an end-to-end
model that incorporates many concepts from Seo et al.’s BiDAF. The primary component from U-net

CS224N Winter 2019 Final Project



that I make use of in this work is the answer verifier. The answer verifier is a component that predicts
the probability of a question being unanswerable and comes in the form of a linear layer. U-net is not
the first to use an answer verifier, however, prior approaches trained the answer verifier separately
from the rest of the model. U-net utilizes information from the rest of the model, such as the answer
pointer and attention, to help train the answer verifier. The complete U-Net model achieved 71.7 F1
on SQuAD 2.0.

Finally, I utilized BiDAF as described by Seo et al. and implemented by the teaching staff to serve
as both a baseline and a third model to experiment with combining with QANet and Answer Verifier
[11].

3 Approach

3.1 Problem Formulation

Here, I define the following terms of the problem that are referred to throughout the paper. The
model takes as input a context C of length n defined as C = {c1, c2, ..., cn} and a question Q of
length m defined as Q = {q1, q2, ..., qn}, my models output indices i and j such that 0 ≤ i ≤ j < n
the answer to Q is S = {ci, ci+1, ..., cj}, a span in C.

3.2 Baseline

For my initial baseline, I used the provided modified BiDAF model with no character embeddings
as described in the default project handout.

3.3 QANet

This subsection will focus on the implementation of QANet, consisting of an embedding layer,
embedding encoding layer, a context query attention layer, a model encoding layer, and an output
layer.

3.3.1 Embedding

The embedding layer involves getting 64-dimensional character embeddings for every letter in
each word and running a 1D convolution on the resulting matrix before performing relu on it and
taking the max element of each row to get a 64-dimension word representation. We then concatenate
this with a 300-dimension word2vec vector for the word and run the concatenation of these vectors
through a 1D convolution to get a 96-dimension hidden state, though I also experimented with hidden
dimensions of 100 and 128. During training, the model also employs dropout with probability 0.1 for
word embeddings and 0.05 for the character embeddings. Note that the original QANet model used
200-dimension trainable representations for the characters whereas my implementation simply uses
the 64-dimension embeddings that were given in the starter code. These embeddings are still made
trainable, as they are in the original QANet.

3.3.2 Embedding Encoder

The next major component of QANet is QANet’s signature Encoder Block. The Encoder Block is
a major part of QANet and is derived from Transformer.

Each Encoder block takes an input and scales up the values before adding a positional encoding to
the vector. The original vector is scaled up to make the positional encodings relatively smaller. After
the positional encoding, we then run through a varying number of depthwise separable convolutions
each preceded by a layernorm [4]. Each convolution has kernel size 1 and output size equal to the input
size. Next, the model runs through another layernorm before running the multi-head self-attention,
with 4 heads, and finally ending with a feed-forward layer preceded by another layernorm. Note that
the original QANet utilized 8 attention heads, but I was able to only use 4 with no performance loss.
Each layer in the block is also wrapped in a residual block such that the output of any given layer is

2



Figure 1: A visual representation of an Encoder Block, consisting of convolutional layers and
multi-head self-attention.

f(layernorm(x))+x [1]. The overall output size for an Encoder Block is the same as the input size.
In addition, along with regular dropout, during training the Encoder Block also employs sublayer
dropout in which each sublayer has dropout probability dl = l

L (1 − pL) where l is the current
sublayer, L is the total number of sublayers, and pL = 0.9 [9]. Since the Encoder Block is based
on Transformer, I was able to source from a few different Transformer implementations [8]. First, I
outsourced implementations for the Positional Encoder and Depthwise Separable convolution, though
for the convolution I looked at various implementations and readings to better understand the concept
and ensure the validity of the implementation I was using [8] [5]. I also took the implementation for
multi-head self-attention from the same source before implementing my own feed-forward network
to finish off the pieces needed for the Encoder Block. When it comes to making the Encoder Block
itself, the rest of the implementation was done by me.

3.3.3 Context-Query Attention Layer

This attention layer is the exact same as that proposed by Seo et al. and implemented in the baseline
[11]. A similarity matrix between C and Q is computed through the trilinear similarity function
to output S ∈ Rnxm [11]. Softmax is then applied to S to normalize each row and yield S. The
context to query attention is defined as A = S ·QT ∈ Rnxd. The query to context attention is then

computed as B = S · S
T
· CT where S is the column normalized matrix of S. The output of this

layer is [C,A,C*A,C*B] where * is the element-wise multiplication of the two matrices. The code for
this layer was entirely copied from the baseline implementation.

3.3.4 Model Encoder

The Model Encoder layer of QANet consists of 7 stacked Encoder Blocks, each with 2 convolution
layers. The input to these Encoder Blocks is the hidden size. Since the output of the CQAttention
Layer is 4*hidden size, we use a 1D convolution to scale the output from CQAttention back down to
hidden size to be input D to the Model Encoder blocks. This layer outputs 3 matrices M1,M2,M3.
M1 is the result of D going through the stacked Encoder Blocks once. To get M2, I run M1 through
the Encoder Blocks again. M3 is the result of running M2 through the Encoder Blocks. These
matrices serve as the input for the output layer.

3



Figure 2: A visual representation of the QANet architecture.

3.3.5 Output Layer

The output layer is adapted from Seo et al. and the baseline and predicts the probability of each
position from being either the beginning or end of the correct answer span [1]. Like in the baseline,
each context is prepended with a token such that the (start,end) pair (0,0) represents a prediction of
No Answer. The probabilities for the start and end positions are calculated as:

p1 = softmax(W1[M0;M1]), p
2 = softmax(W2[M0;M2])

where W1 and W2 are trainable weight variables. The score for a specific span is calculated by taking
the product of the probabilities of the start and end positions of that span. For the model’s objective
function, QANet takes the negative sum of the log probabilities of the predicted probabilities of the
correct endpoints, averaged over the training examples. More formally, this is written as:

L(θ) = − 1

N

N∑
i

{log(p1y1
i
) + log(p2y2

i
)

where y1i and y2i are the true start and endpoints for example i. For predictions, the predicted span
output (s,e) is chosen to maximize the product of the probabilities of s and e and such that s ≤ e. The
final architecture of QANet can be seen in Figure 2, taken from the original QANet paper [1].

3.4 QANet + Answer Verifier - QuAVONet

The final component of my model is Answer Verifier and it is what transforms QANet to QuA-
VONet. Answer Verifier is a linear layer that is run on F = (cq; om+1; cs; ce) to output pc, the
probability a question is answerable [12]. Before I define each of these terms, I will first note that
these matrices are based on other aspects of U-Net that don’t always have direct analogues in QANet.
As such, these terms have some slightly different representations in my model than in the original
U-Net paper.

First, cq is meant to be a representation of the question. To create this, in the CQAttention layer I
performed a matrix multiplication similar to that used to create A and got the max of each row along

the query length dimension. This is more formally written as cq = S
T
· C to create an attentive

representation of the question.

4



Next, om+1 is what U-Net describes as a universal node and is effectively the attention representa-
tion of the prepended No-Answer token in the starter code. My representation is slightly different
from U-Net’s due to different attentions but is functionally similar.

Finally, cs and ce are representations of the passage based on the log probabilities of the start and
end answer pointers. We define them as follows:

cs = p1 ·B, ce = p2 ·B
The concatenation of these four components yields F ∈ Rbx7∗h where b is the batch size and h is the
hidden size. The loss for this layer is the binary cross-entropy loss:

LAV = −(σlog(pc) + (1− σ)(1− log(pc)))
where σin{0, 1} indicates whether a question is answerable or not. This loss is added to the NLL
loss of QANet. At inference time, I use this layer to override the prediction from QANet if the AV
probability of a question being answerable is below a threshold. In the U-Net paper, the threshold
they found best was 0.3 [12].

4 Hybrid Models

Using the 3 models described above, I created several models that are hybrid combinations of the
baseline, QANet, and AV. The most prominent hybrid is QuAVONet, the combination of QANet and
AV. However, I experimented with various other combinations of these models that yielded interesting
results. First, A model I call QAEmb takes the baseline but replaces the embedding layer with the
QANet embedding layer. AVQAEmb is QAEmb with AV. Next, QAEmbEnc is a similar premise
but also replaces the embedding encoder layer of the baseline with the Encoder Block used by the
embedding encoder layer of QANet. Finally, QARNNet is QANet but with the Embedding Encoder
layer replaced with the RNNEncoder from the baseline and a 1D convolution to bring the output size
back down to hidden size. While QARNNet may seem like a strange idea, the reasoning behind this
will be made clear in the experiments section of this paper. During experiments, I will refer to models
based primarily on QANet (QANet, QuAVONet, QARNNet) as the QANet family and the models
based primarily on BiDAF (baseline, QAEmb, QAEmbEnc, AVQAEmb) as the BiDAF family of
models.

5 Experiments

5.1 Data

The data for this project comes from the official SQuAD 2.0 dataset, consisting of passages from
Wikipedia and corresponding questions and answer spans [10] [3]. The train data consists of 129,941
examples taken from the SQuAD 2.0 training set. This is not the entirety of the official training set
as the official dev set is used to create this project’s dev and test set. The dev set consists of 6078,
roughly half of the official dev set, randomly selected samples of the official dev set. Finally, the test
set consists of 5915 examples from the official dev set with a few hand-labeled examples to detect
cheating by teams who may try to train their model on the official dev set. For the evaluation metrics,
I use the EM and F1, as is common practice for SQuAD and outlined in the starter code.

5.2 Implementation Details

For the word embeddings, I used the starter code’s 300-dimensional GloVE vectors trained on the
CommonCrawl dataset [6]. These embeddings remained unchanged and were not trained for any
of my models. As for the character embeddings, I used the starter codes 64-dimension character
embeddings and unfroze these embeddings to let them be trained for each model.

During training of all models, as per the starter code I maintain moving averages of all parameters
with a decay rate of 0.999 and use these moving averages as parameters during test time. For
the QANet family, I use the Adam optimizer as described in the QANet paper with 1 = 0.8,2 =
0.999, ε = 10−7 and a learning rate of 0.0001 with logarithmic growth for the first 1000 steps [1] [7].
For the BiDAF family, I used the Adadelta optimizer with constant learning rate of 0.5 as defined in
the starter code [11] [13].

5



I trained 2 versions of QANet, one with 8-head attention and 128 hidden size, as defined in the
QANet paper, and another with 4 attention heads and 96 hidden size for speed as described in the
CS224N staff implementation on Piazza [1]. QuAVONet and QARNNet both use the 4-head attention
and 96 hidden size. The BiDAF family all use the default parameters like 100 hidden size from the
starter code.

Finally, I trained QAEmb, QAEmbEnc, and 4-head QANet on an NV6 instance. I trained
QuAVONet, AVQAEmb, the baseline, AVQAEmb, 8-head QANet, and QARNNet on an NV12
instance. I trained each model to different number of iterations depending on the potential seen
for each on Tensorboard. For example, it became quite obvious early on that QAEmbEnc was not
going to surpass baseline so I only trained it for roughly 2M iterations whereas QuAVONet was still
growing after 30 epochs expired so I trained it for an additional 10 epochs, amounting to roughly
5.3M iterations. As a result, QuAVONet appears as 2 separate colors on my graphs: grey until 30
epochs then becoming a rust color.

5.3 Results and quantitative analysis

In this section, I compare the results from the various models trained and analyze some errors and
other key differences between the models.

5.4 Model Performance and Quantitative Analysis

The best performing model was the 4-head QANet implementation, achieving 60.813/64.458
EM/F1 on the dev set and 58.157/61.390 EM/F1 on the hidden test set. QuAVONet achieved nearly
comparable results with decreases of 0.067/0.101 on the dev set and 0.626/0.001 on the hidden test
set compared to the 4-head QANet. The 8-head QANet, interestingly enough, was slightly inferior to
both of these models, with a loss of 0.218/0.066 relative to 4-head QANet on the dev set and a loss
of 1.200/1.578 on the hidden test set. It would seem that the larger model size resulted in increased
overfitting during training, stunting performance on the test set.

Figure 3: Plots of the AvNA, F1, EM, and NLL scores for the models, weaker ones on the left and
stronger on the right. Left: baseline, orange; QARNNet, pink; AVQAEmb, mint; QAEmbEnc, orange
(bottom) Right: baseline, orange; QuAVONet, gray then rust; QAEmb, dark blue; QANet 8-head
light blue; QANet 4-head dark red

Another interesting note is that QAEmb performed nearly as well as the 4-head QANet (loss of
0.369/0.699 on dev set) but was 3.5x faster than QANet, taking 7 hours to complete 3M iterations
compared to 4-head QANet’s 25 hours. The results of various models I implemented on the dev
and test set can be seen in Table 1. This comparable performance in reduced time is why I created
AVQAEmb, hoping that AV would be able to boost QAEmb beyond QANet while retaining the
speed advantage. While AVQAEmb remained very fast, finishing 3M iters in 6.5 hours on NV12, its
performance was severely stunted, barely catching up to the baseline after 3M iterations.

6



Another key area of quantitative interest is the effect of the Encoder Embedding layer of QANet.
For QAEmbEnc the Encoder Block severely stunted performance over the RNNEncoder in the
baseline (QAEmb), yielding a loss of about 7.4 on AvNA, 8.7 on EM, and 9.7 on F1 after 2M
iterations, which was worse than baseline, though it performed marginally faster than QAEmb. This
performance loss is why I created QARNNet, replacing the embedding encoder in QANet with
the RNNEncoder, to see if it would boost performance of QANet. However, after 2M iterations,
QARNNet (in pink in Figure 3) was significantly underperforming both QAEmb and QANet, so I cut
the training short given the scarcity of time and resources, though it was able to surpass the baseline
in that time.

5.5 Qualitative Analysis

In this section I will analyze different error types I noticed were common throughout the main
high-performing models: QANet 8- and 4-head, QuAVONet, and QAEmb.

5.5.1 Making Short Answers Shorter

Figure 4: Example Question, Passage, and Answer from QANet 4-head in which the predicted answer
was just slightly off from the true answer, but similar in meaning.

A common issue among all the QANet family has been cutting already short answers slightly
shorter, like missing an article. Figure 4 show as such an error from 4-head QANet, but 8 head
QANet has similar incorrect answers like predicting "Scotland Act" instead of "Scotland Act 1998".
QuAVONet also has a similar issue, one example being predicting "Catholic church" instead of
"Catholic church in the region". These slightly shortened answers don’t seem to impact the meaning
of the answer too much, likely retaining F1 score, but the slight missteps are likely a significant
impact on the EM scores of the models given the relative frequency of their occurrence.

5.5.2 Relationship Dependency without Logical Backing

Figure 5: Example Question, Passage, and Answer from QuAVONet correctly identifying a relation
in the passage, but of the wrong nature from that defined in the question.

Another error type for QuAVONet is answering based on the existence of a correectly modeled
relationship without accurately taking into account the nature of the relationship. In Figure 5,

7



QuAVONet predicts that "The age-related decline in immune function" causes elevated Vitamin D
levels when, in fact, the elderly don’t experience elevated vitamin D levels. However, the passage
creates a logical link between the predicted span and "decreased Vitamin D levels". QuAVONet
seems to accurately extract the link between its predicted span and "Vitamin D levels" but does not
model the distinction between the "elevated" in the question and the "decreased" in the context.

6 Conclusion

For this project, I implemented a neural network to answer questions from the SQuAD dataset.
My network was a combination of QANet with the Answer-Verifier from U-Net, what I dub as
QuAVONet (Question Answer Verifier Optimizing Network) [1][12]. While AV was an idea to bring
QANet from it’s original application to SQuAD1.1 to SQuAD 2.0, my QANet achieved an EM of
58.157 and F1 of 61.39 on the hidden test set whereas QuAVONet achieved 57.532 EM and 61.389
F1, slightly worse than the regular QANet.

What’s even more interesting is that, in spite of the speed of QANet relative to RNNs that is touted
in the paper, the QAEmb model achieves only slightly inferior results relative to these two models on
the dev set (less than 0.4 loss of EM and 0.8 loss for F1) but in a fraction of the time. QAEmb reached
3M iterations in 7 hours on NV6 whereas QANet took 25 hours on NV6 to reach 3M iterations and
QuAVONet required nearly 16 hours on an NV12 to reach the same number.

While QANet and QuAVONet were able to achieve marginally better results, they are significantly
less efficient. As to why this occurs, that is work that could make for an interesting project in the
future. Another project I would like to explore is incorporating recent improvements to Transformers,
into QANet and QuAVONet. My original project was going to be QANet-XL: applying the segment
level recurrence and relative positional encodings from Transformer-XL to QANet, so I’d certainly
be interested to see how a QuAVONet-XL would perform [14].

As of writing this paper, the best performer on the SQuAD 2.0 leaderboard is 0.158 EM and 0.305
F1 short of human performance [10]. This only goes to show that there is still plenty of work to be
done in the field of MC and progress is being made every day.

7 Acknowledgements

I’d like to thank the CS224N teaching staff for the constructive feedback and guidance for this
project. I’d also like to thank Microsoft for sponsoring the class’ use of GPU VMs.

8 Notes

8.1 Qualitative Notes

QANet at 2.25m iters with 4 heads and batch size 12 on NV6, lr=0.0001 Seems to often miss
articles in the beginning of answers (i.e predicts "Parliamentary Bureau" instead of "the Parliamentary
Bureau" for a who question or "Article 5" instead of "in Article 5" for a "where" question. After
about 2.6M iters, performs about as well as QAEmbed, but takes 21h on NV6 as opposed to 6h for
QAEmbed. Way slower!

8.2 Tests

QANet at 2.25m iters with 4 heads hidden size 96 and batch size 12 on NV6, lr=0.0001 Takes around
62 minutes per epoch (30-35it/s), scored EM: 60.813 (+0.370 from QAEmb) F1: 64.458 (+0.700
from QAEmb)

QANet with 4 heads,hidden size 96 and batch size 12 on NV12, lr=0.0001 (just to check speed): 60
it/s, twice as fast! Didn’t run to results for time and instead just looked at speed

8



QANet iters with 8 heads, 128 hidden, and batch size 12(*2) on NV12, lr=0.0001: 45 it/s!
53min/epoch. Almost identical performance to 8 head, 96 hidden size performance, but thanks
to NV12 only took 19h 35min instead of 24h 50 min to get to 3M iters.

QANet with 4 heads, hidden size 96, batch size 12, RNNEncoder for EmbEnc, NV12, lr = 0.0001:
48 min/epoch, 45-50 it/s, this is slower than same dims but with EncoderBlock for EmbEnc

QuAVONet with 4 heads, hidden size 96, batch size 12, NV12, lr = 0.0001, Adam Optimizer after
40 epochs: Dev: EM: 60.746 (-0.067) F1: 64.358 (-0.101) Test: EM: 57.532 (-0.626) F1: 61.389
(-0.001)

QAEmb + AV, hidden size 100, batch size 64(?), NV12, lr = 0.0001: not great

ANSWER VERIFIER: https://arxiv.org/pdf/1810.06638.pdf

9 References

References
[1] Minh-Thang Luong Rui Zhao Kai Chen Mohammad Norouzi Adams Wei Yu, David Dohan

and Quoc V Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. 2018.

[2] Niki Parmar-Jakob Uszkoreit Llion Jones Aidan N Gomez Łukasz Kaiser Ashish Vaswani,
Noam Shazeer and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, page 5998–6008, 2017.

[3] Danqi Chen and Adam Fisch et al. Reading wikipedia to answer open-domain questions.
Association for Computational Linguistics, 2017.

[4] Franc¸ois Chollet. Xception: Deep learning with depthwise separable convolutions. CoRR,
abs/1610.02357, 2016.

[5] Pytorch Forums. How to modify a conv2d to depthwise separable convolution?, 2019.

[6] Richard Socher Jeffrey Pennington and Christopher D. Manning. Glove: Global vectors for
word representation. 2014.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[8] S. Lynn-Evans. How to code the transformer in pytorch - towards data science, 2018.

[9] Konstantin Lopyrev Pranav Rajpurkar, Jian Zhang and Percy Liang. Squad: 100, 000+ questions
for machine comprehension of text. CoRR, abs/1606.05250, 2016.

[10] Robin Jia Pranav Rajpurkar and Percy Liang. Know what you don’t know: Unanswerable
questions for squad. arXiv preprint arXiv:1806.03822, 2018.

[11] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hananneh Hajishirzi. Bi-directional
attention flow for machine comprehension. 2018.

[12] Fu Sun, Linyang Li, Xipeng Qiu, and Yang Liu. U-net: Machine reading comprehension with
unanswerable questions. 2018.

[13] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

[14] Yiming Yang-William W Cohen Jaime Carbonell Quoc V Le Zihang Dai, Zhilin Yang and
Ruslan Salakhutdinov. Transformer-xl: Language modeling with longer-term dependency.
2019.

9


	Introduction
	Related Work
	Approach
	Problem Formulation
	Baseline
	QANet
	Embedding
	Embedding Encoder
	Context-Query Attention Layer
	Model Encoder
	Output Layer

	QANet + Answer Verifier - QuAVONet

	Hybrid Models
	Experiments
	Data
	Implementation Details
	Results and quantitative analysis
	Model Performance and Quantitative Analysis
	Qualitative Analysis
	Making Short Answers Shorter
	Relationship Dependency without Logical Backing


	Conclusion
	Acknowledgements
	Notes
	Qualitative Notes
	Tests

	References

