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Abstract

Question-Answering (QA) describes a topic in natural language processing in
which the goal is to build a machine model that best answers questions posed in
natural human language. Effective methods in QA often involve recurrent networks,
convolution, or self-attention networks. In this paper, we construct a model using
all three methods. We achieve an F1 score of 64.246 and an EM score of 60.558
on the SQuAD 2.0 dataset.

1 Introduction

Question-Answering (QA) is a problem in which machine models attempt to provide answers to
human-posed questions. Two of the most important motivations for studying question-answering are
its relations to machine understanding and to information retrieval, which we can see in the following
characterization of the QA problem: given a context passage and a query, the goal is to select a span
of the context that answers the query (as opposed to actively generating answers) or conclude that
such a span does not exist. Success in such a system requires a machine’s ability to comprehend text
and filter out important / target details at a level that is basic to humans, and the mastery of which is
fundamental to deeper levels of natural language processing as a whole. This specific type of QA
comes from the SQuAD 2.0 dataset [1], which contains both span-answerable and non-answerable
question-context pairs.

Recurrent models (e.g. BiDAF [2]) are widely considered as leaders in machine compre-
hension and interpretation of human language, owing to a natural fit towards sequential inputs.
More recently, non-recurrent transformer-based models have been shown to be as successful in
some applications in QA. These non-recurrent models employ mechanisms such as convolution,
self-attention, or both (e.g. QANet [3]), to adequately capture relational dependencies in sequential
input. Based on the success of these existing approaches, we attempt a hybrid architecture for
QA that leverages all of these mechanisms including recurrent networks. We attempt to show the
addition and diversification of relational information will lead to stronger model representation,
comprehension, and interpretation levels. Towards that end, we start with a BiDAF-based model
and attempt to add elements of QANet, while maintaining core elements such as bidirectional
LSTM layers and bidirectional attention flow. Therefore, the hybrid model can be considered an
augmentation to the BiDAF model, rather than a pure modification of it.

2 Approach

2.1 Baseline (Provided)

The provided baseline as part of the default final project is a BiDAF-like model that conspicuously
lacks the use of character-level embeddings. This basic architecture has 5 central components: (1)
an input embedding layer, (2) an embedding encoder layer, (3) a context-query attention layer, (4) a



model encoder layer, and (5) an output layer. This is a fairly standard high-level template that we will
follow in our proposed architecture. For details regarding the baseline architecture, refer to the default
final project handout1. Additionally, the started code containing the basic BiDAF implementation is
provided along with the handout2.

2.2 Related Works

While the architecture we will propose uses influences from multiple papers and multiple influences
within a paper, we will focus this section on just the changes to the baseline.

Character-level embeddings
Main article: Bidirectional Attention Flow for Machine Comprehension [2]

Building off the baseline model and architecture, the first modification to attempt would be
to augment the input embedding for each word with a character-level component. This is a standard
approach in many well-performing model, and one key difference between the BiDAF-like baseline
and the actual BiDAF model. Character-level vectors provide additional information to word
representation, and can be particularly helpful for words that lie outside the given vocabulary.

Non-recurrent encoders
Main article: QANet: Combining Local Convolution with Global Self-Attention for Reading
Comprehension [3]

The current baseline uses solely recurrent networks to encode relational dependencies in the
embedding layer and attention layer outputs. An alternative and successful approach, used in QANet,
is to use a combination of convolution (local dependencies) and self-attention (global dependencies)
layers to achieve the desired encoded features. This approach is an enhancement of the transformer
architecture [4], each of which show the value of convolution or self-attention, respectively. For our
purposes, it would be interesting to use a combination all these types, since they all capture inter-word
relations in different ways. This change would take place in the embedding encoder and model
encoder layers. Note, the original QANet approach was designed to be a replacement for the re-
current architecture, though we intentionally keep the original recurrent networks for experimentation.

2.3 Model

The model stars with a context sequence of words C = {c1, ..., cn} and query sequence of words
Q = {q1, ..., qm}. It returns either a continuous sub-sequence of words (span) S = {ci, ..., ci+j}
that best answers the query or the null span S0 denoting a "no-answer".

Input Embedding Layer
The input embedding layer builds upon the infrastructure of the baseline embedding layer by
including character-level information in a word’s final representation. For each word x in the context
and query, let xw ∈ Rn1 denote its word-level embedding and let xc ∈ Rn2 denote its character-level
embedding. For our purposes, we use pre-trained vectors of size n1. xc is a fixed-length vector of
size n2, generated through the 1D-convolution and max-pooling of its constituent character vectors,
which are also of size n2 and are trainable. We aggregate these base representations, xwc = [xw;xc],
and pass the result through a two-layer highway network [5], before finally linearly projecting the
output of that to h-dimensional space.

xwc = [xiw ;xc] ∈ Rn1+n2

xhwy = Highway(xwc) ∈ Rn1+n2

xemb = [W1(xhwy); ...;Wh(xhwy)] ∈ Rh

1http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf
2https://github.com/chrischute/squad
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Figure 1: The augmented BiDAF architecture. Note the addition of encoder blocks at the embedding
and model encoder layers.

Note: The original baseline applies a projection to the base embedding before applying a highway
network on top of that. Here, we apply the highway network first and then project the result to the
hidden size.

Embedding Encoder Layer
This layer takes influence from both the recurrent BiDAF architecture and the transformer-based
QANet architecture. Specifically, the input to this layer, the embedded context or query X , is
simultaneously but separately passed to a 1-layer bidirectional LSTM network [6] and a 1-block
QANet-encoder. The recurrent network generates an encoding of each position of the context and
query, of dimensionality 2h because of the bidirectionality. The QANet-encoder generates an
encoding of dimensionality h using the following architecture. Firstly, the QANet-encoder consists
of a sequential stack of encoder blocks. Each encoder block applies a positional encoding to its own
input and passes the result through a series of depthwise-separable convolution layers [7], then a
multihead self-attention layer, and finally a feed-forward layer. A layer normalization is applied right
before each of those layers, and output of a layer is summed with the input to that layer to form the
input to the next layer. The resulting encodings are concatenated to form a final encoding in R3h

Eirnn = Bi-LSTM(X)i ∈ R2h

Eiblk = Enc-Block(Xi) ∈ Rh

Ei = [Eirnn
;Eiblk ] ∈ R3h

Note: The self-attention and feed-forward section of the QANet-encoder forms the transformer
outlined in the original transformer paper [4]. The implementation of the transformer that is used is
provided by Samuel Lynn-Evans3

Context-Query Attention Layer
The attention layer sits at the juncture of the query encoding Q and the context encoding C and is
responsible for producing a query-sensitive representation of the context. Here, we use bidirectional
attention flow [2], which computes both a context-to-query score and a query-to-context score for
each position in the context and is based on a given similarity function. Let S ∈ Rn×m represent the
similarity matrix between the context encodings (Rn) and query encodings (Rm) from the previous

3https://github.com/SamLynnEvans/Transformer
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layer. Let S̄ be the row-softmax form of S and let ¯̄S be the column-softmax form of S. Furthermore,
let ci ∈ R3h be the encoded context embedding at position i and qj ∈ R3h be the encoded query
embedding at position j. The context-to-query attention (ai) for ci is computed as the sum, from
j = 1, ...,m, of qj multiplied by S̄ij . The query-to-context attention (bi) for ci is computed as the
sum, from j = 1, ..., n, of cj multiplied by (S̄ ¯̄ST )ij . The output of this layer at a given position
(gi) becomes the concatenation [ci; ai; ci � ai; ci � bi] ∈ R12h, where � represents elementwise
multiplication. The output of this layer is immediately mapped to a vector of Rh size.

Sij = α(ci, qj) ∈ R

ai =

m∑
j=1

S̄ijqj ∈ R3h

bi =

n∑
j=1

(S̄ ¯̄ST )ijcj ∈ R3h

gi = [ci; ai; ai · ai; ci · bi] ∈ R12h

Note: This structure of this layer only differs from the default baseline by the inclusion of the final
projection layer to dimensionality d = h

Model Encoder Layer
The model encoder shares a similar approach and structure to the embedding encoder layer, being
a concatenation of both an RNN network and a QANet-encoder layer. Here, the RNN-network
is a 2-layer LSTM and the QANet-Encoder stack consists of 2 [convolutions / self-attention /
feed-forward] blocks (instead of 1 for both). The input to this layer are the attention outputs G. The
output of this layer is once again of dimensionality d = 3h.

Mirnn
= Bi-LSTM(G)i ∈ R2h

Miblk = Enc-Block(Gi) ∈ Rh

Mi = [Mirnn
;Miblk ] ∈ R3h

Output Layer
The output layer computes the probabilities of the starting and ending positions of the answer span,
at each position in the context. The computational flow of this layer takes as input the attention
layer output (G) and model encoder layer output (M1), runs M1 through a bidirectional LSTM to
produce M2, and computes a linear combination of [G;M1] and a linear combination of [G;M2]
at each position. These two outputs at each position are the scores relating to the probability of the
answer starting and ending there. The actual probabilities can be acquired through a soft-max. The
corresponding span is the one that maximizes the product of its start and end probabilities among
spans where the end position is at least the start position.

p1 = softmax(W1[G;M1])

p2 = softmax(W2[G;M2])

During training, we minimize the negative sum of log-likelihoods at the actual start and end index,
across each batch. The null span is handled by prepending an OOV-token to the beginning of each
context, and denoting it as the span beginning and ending at 0.

l(θ) = −[log(p1y1 ) + log(p2y2 )]

Note: This layer differs from the original baseline output layer only to accommodate the size of the
input which is now 3h instead of 2h.
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Table 1: Results

Model EM F1

Baseline 57.016 60.436
BiDAF (Baseline + char-embed) 59.721 62.822
BiDAF + Embedding Enc Blk 60.343 63.460
BiDAF + Embedding and Model Enc Blk 60.813 64.043
BiDAF + Emb. and Mod. Enc Blk (Test) 60.558 64.246

3 Experiments

3.1 Data

The experiment data is the SQuAD 2.0 dataset [1], which is similar to the original SQuAD [8] data
used in the QANet paper except that the newer version contains examples with "no-answer" as an
acceptable response. The dataset is aptly split into 129941 training examples, 6078 dev examples,
and 5915 test examples as outlined in the project handout.

3.2 Evaluation Method

The two evaluation metrics that are used are F1 and EM scores. EM (Exact Match) measures the
ability of a model to produce exact answers. F1 is a more lenient measure of the similarity between
the predicted and target phrases.

3.3 Experiment Details

Setup Details
We invoke a context limit of 400 words, a question limit of 50 words, and answer limit of 30 words in
the following experiments. Texts are truncated and padded accordingly during training. For the input
embeddings, we use pretrained GloVe vectors (R300) [9] and randomly-initialized character vectors
of dimension d = 64. Furthermore, the character limit, used in computing a word’s character-level
embedding component, is set to 16. For the baseline and baseline-char experiments, we use a hidden
size of 128. For the transformer-augmented experiments, we use a hidden size of 96 to account for
the augmented dimensionality between the embedding encoder and attention layers and between the
model encoder and output layers. The kernel size is set to 7 for all convolution layers. The number of
convolution layers is 4 in embedding QANet-encoder and 2 in the model QANet-encoder.

Training Details
The dropout rate between layers is set to 0.1 (0.05 in the CharCNN). For the fully-augmented model,
we also employ a stochastic depth dropout between convolution layers in the transformer block [10].
We use the Adadelta optimizer [11], an initial learning rate of 0.5, and a batch size of 64. The number
of epochs is 30. Because of large differences in training time, each experiment is run on a different
machine. The non-transformer based models are trained on an NV6 machine (20-30 minutes per
epoch) and the transformer-augmented models are trained on an NV12 machine (30-40 minutes per
epoch). All models are implemented using PyTorch [12].

3.4 Results

In terms of dev set performance, there is a +3.797 in EM performance and +3.607 in F1 performance
from the baseline to the final model. We also see incremental improvements between each level of
augmentation in the architectures. Although these improvements are non-trivial, we initially expected
a larger performance increase from a hybrid RNN/Encoder-Block approach that seeks to combine the
best of each individual approach. One thing to note is that compared to the model outlined in the
QANet paper, we used fewer convolution layers in each block, and significantly fewer blocks in the
model encoder (2 instead of 7).
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4 Analysis

4.1 Non-answerable Questions

Upon inspection of the output, it appears that most of the mistakes that the model makes are due to
the non-answerable queries introduced in SQuAD 2.0. For comparative purposes, the same model
achieves an EM score of 70.54 and F1 score of 79.21 on the dev set without non-answerable queries,
a stark contrast from the model’s performance on the full dev set (EM: 60.813, F1: 64.043). To
account for this discrepancy, we will on the issue of "consistent" answers in our analysis. Consistent
answers make sense on some syntactical or semantical levels. For example, a consistent answer to
a "Who?" query would be the name of a person. Consistent answers are "partially correct" in the
sense that they can get some components of a query correct, but not necessarily all. Models that
break down contexts and queries into salient features can lead to heavily component-based systems
that check for consistency. For a model that knows that a correct answer exists (SQuAD 1.1 [8]),
this consistency often leads to correctness. For a model that does not (SQuAD 2.0), achieving good
consistency is no longer a guarantee of correctness and the problem becomes much harder.

EXAMPLE 1
Question: What is the oldest work of Norman art?
Context: By far the most famous work of Norman art is the Bayeux Tapestry, which is not a tapestry
but a work of embroidery. It was commissioned by Odo, the Bishop of Bayeux and first Earl of Kent,
employing natives from Kent who were learned in the Nordic traditions imported in the previous half
century by the Danish Vikings.
Answer: N/A
Prediction: Bayeux Tapestry

This is one of many examples that illustrate the above phenomenon. Here, the query is
looking for an answer that is first and foremost a "work of Norman art". The model produces an
answer that is indeed an example of Norman art, so it has already achieved a great deal of consistency.
The issue is that the modifier "oldest" in the query completely nullifies the prediction, and the model
is ignoring it or not attending to it sufficiently. Somehow, the model needs a mechanism to encourage
that all parts of the query get proper attention in the context.

EXAMPLE 2
Question: Of Poland’s inhabitants in 1901, what percentage was Catholic?
Context: Throughout its existence, Warsaw has been a multi-cultural city. According to the 1901
census, out of 711,988 inhabitants 56.2% were Catholics, 35.7% Jews, 5% Greek orthodox Christians
and 2.8% Protestants. Eight years later, in 1909, there were 281,754 Jews (36.9%), 18,189 Protestants
(2.4%) and 2,818 Mariavites (0.4%). This led to construction of hundreds of places of religious
worship in all parts of the town. Most of them were destroyed in the aftermath of the Warsaw
Uprising of 1944. After the war, the new communist authorities of Poland discouraged church
construction and only a small number were rebuilt.
Answer: N/A
Prediction: 56.%

Here is another example of the model producing a consistent answer (percentage of inhabi-
tants that were Catholic) that is nearly correct, but overlooks a key aspect between the answer and the
query (Warsaw 6= Poland). The model needs to make better use of the fact that "Poland" does not
appear in the particular section describing the answer span.

4.2 Answerable Questions

Although non-answerable questions make up the bulk of the mistakes in the model, we would also
like to address some of the errors in the answerable set. Some of these errors give an insight into the
deficiencies in the question-answering system in general.

EXAMPLE 3
Question: A forced trade agreement between two countries would be an example of what?

6



Context: The definition of imperialism has not been finalized for centuries and was confusedly seen
to represent the policies of major powers, or simply, general-purpose aggressiveness. Further on,
some writers[who?] used the term imperialism, in slightly more discriminating fashion, to mean
all kinds of domination or control by a group of people over another. To clear out this confusion
about the definition of imperialism one could speak of "formal" and "informal" imperialism, the
first meaning physical control or "full-fledged colonial rule" while the second implied less direct
rule though still containing perceivable kinds of dominance. Informal rule is generally less costly
than taking over territories formally. This is because, with informal rule, the control is spread more
subtly through technological superiority, enforcing land officials into large debts that cannot be
repaid, ownership of private industries thus expanding the controlled area, or having countries agree
to uneven trade agreements forcefully.
Answer: "informal" imperialism
Prediction: N/A

In this example, the model struggles with deeper levels of inference. The correct answer
lies on the understanding that a “forced trade agreement” is an example of “less direct rule though
still containing perceivable kinds of dominance”, but this can be hard to conclude from the structure
or wording of the sentence. There may be some similarities more deeply embedded in the context
and query that could be picked up in the context-query attention layer, which would require a more
extensive layering at the embedding encoder stage or higher dimensional word vectors.

5 Conclusion

Our work with QANet encoder blocks appears to be a moderately successful improvement over the
baseline. The improvement amounts to a +3.607 in the F1 metric and +3.797 in the EM metric,
on the dev set, using comparable training parameters, and consistent performance on the test set.
Additionally, each stage of model augmentation had a positive effect compared to the previous stage:
adding character-level embeddings, adding encoder blocks in the embedding encoder layer, and finally
adding encoder blocks in the model encoder layer. The primary limitation, which the additional of
encoder blocks does not directly address, is that of non-answerable questions and challenge they pose
to the validity of consistent answers.

References
[1] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable

questions for squad. CoRR, abs/1806.03822, 2018.

[2] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. CoRR, abs/1611.01603, 2016.

[3] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. CoRR, abs/1804.09541, 2018.

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[5] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. CoRR,
abs/1505.00387, 2015.

[6] Alex Sherstinsky. Fundamentals of recurrent neural network (RNN) and long short-term memory
(LSTM) network. CoRR, abs/1808.03314, 2018.

[7] Jianbo Guo, Yuxi Li, Weiyao Lin, Yurong Chen, and Jianguo Li. Network decoupling: From
regular to depthwise separable convolutions. CoRR, abs/1808.05517, 2018.

[8] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+
questions for machine comprehension of text. CoRR, abs/1606.05250, 2016.

7



[9] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, 2014.

[10] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
stochastic depth. CoRR, abs/1603.09382, 2016.

[11] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701,
2012.

[12] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

8


	Introduction
	Approach
	Baseline (Provided)
	Related Works
	Model

	Experiments
	Data
	Evaluation Method
	Experiment Details
	Results

	Analysis
	Non-answerable Questions
	Answerable Questions

	Conclusion

