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Abstract

In this paper we explore deep learning techniques for answering questions in the
Stanford SQuAD 2.0 dataset. We want to assess the performance of different deep
learning architectures for models that can most accurately answer questions based
on context paragraphs. We first extend our baseline bidirectional attention flow
model to include character level embeddings in addition to word embeddings, and
experiment with various hyperparameters to achieve improvements on the baseline
model (these improve the baseline performance by about a point for both F1 and
EM scores). Second, we implemented a Match-LSTM with Answer Pointer model,
trying to leverage a more complex architecture to improve performance. Due to
computational and time limitations (training Match-LSTM took upwards of 50
hours), we were only able to train a single version of the Match-LSTM model
and it underperformed our baseline architecture on EM and F1 scores. Further
work needs to be done to improve the efficiency and accuracy of our Match-LSTM
model.

1 Introduction

In 2016, Rajpurkar et al. released the Stanford Question Answering Dataset (SQuAD) [1]], which
consists of a series of passages from Wikipedia articles, a question corresponding to each passage, and
an answer to the question. Human performance on this task is 86.8%;, but initial logistic regression
models achieve an F1 score of 51.0%. In this paper, we aim to improve the F1 score using deep
learning models.

2 Related Work

In Seo et al.’s paper on "Bidirection Attention Flow for Machine Comprehension"[2]], the authors
approach question answering using the SQuAD 2.0 dataset by constructing a model that uses a
Bidirectional LSTM. Their model concatenates a character embedding and a word embedding before
feeding it into the model. Our baseline is similar to this model but does not use character embeddings.

Wang and Jiang approach the problem with a completely different model in their paper "Machine
Comprehension Using Match-LSTM and Answer Pointer"[3]. The general goal of a Match-LSTM
and Answer Pointer model is, given a premise and a hypothesis, to predict whether the premise
contains the hypothesis. For question answering, the passage is treated as the premise and the question
is treated as the the premise. Our project aims to implement this model.



3 Approach

3.1 Baseline Model

We are using the provided baseline, which is modeled as a bidirectional LSTM. Our experiments will
work to improve the performance compared to this baseline. For more information regarding the
baseline, see the Default Final Project Handout[ﬂ and the following paper on bidirectional-attention
flow for machine comprehension [2].

3.2 Improvements to Baseline Model

3.2.1 Character Embedding Model

Our current iteration of the model differs from the baseline in a couple of ways.

First of all, the baseline Embedding model takes word indices for both the question and the context,
looks up the corresponding word embeddings, then feeds both sets of embeddings into a two-layer
highway network: given an input h;, a single highway network is applied, where g indicates gate, t
indicates transform, W4, W, € RH and b,,b; € RH.

g=(Wsh; +by) € R
t = ReLU(W;h; +b;) € RY
hi=got+(l—g)oh eRY

We first extended this model so that it trains character embeddings and combines the two embeddings
(through concatenation) before feeding them into the two-layer highway network. The highway
network has an increased input size to accommodate the character and word level embeddings.
Character-level word embeddings are produced by first looking up the character embeddings for the
characters in a word, then applying a CNN over the character embeddings and a max-pool layer
(similar to Assignment 5 embeddings) ﬂ The output of the CNN layer is concatenated with our
previous input to the highway network (h; above) before feeding it into the two layer Highway.

3.2.2 Fine Tuning

In addition to adding character-level embeddings, we did a variety of hyperparameter tuning experi-
ments to improve on the baseline model (see Experiments section). We primarily experimented with
changing the dropout probability for regularization and changing the learning rate. The baseline
model uses an Adadelta optimizer, and we also experimented with using other optimizers such as an
Adam optimizer to see if it improved performance.

Our final change to the baseline model has been switching the encoder and output layers to use GRUs
instead of bidirectional LSTMs. We find that doing so allows us to train the model faster while
achieving comparable performance.

3.3 Match-LSTM and Answer Pointer Model

Next, we implemented a Match-LSTM and Answer Pointer Model, using Wang’s and Jiang’s
research.[3]] This Model had three parts:

1. A Pre-processing layer

2. A Match-LSTM layer

3. An Answer-Pointer Layer

3.3.1 Preprocessing Layer

In the preprocessing layer, a bidirectional LSTM is applied to the context and question separately.
This step functions to incorporate the context of both the answer and the question for the next steps.
The output of the LSTM, H? € R and H? € R!*?, where P is the length of the passage, @ is the
length of the question, and [ is the hidden size of the LSTM.

"http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf
“http://web.stanford.edu/class/cs224n/assignments/a5.pdf



3.3.2 Match-LSTM Layer

Next, the output from the previous layer, H? € R'*F and H? € R!*€, is fed into a Match-LSTM
layer, which goes through the passage sequentially to calculate the attention, using the following
equations:

G, = tanh(W7H? + (WPH? + W'h,_; +bP) O eg)
d@; = softmax(w/ G; + b @ eg).

In the above equations, W%, WP, W™ € R™*! b” w € R!, and b € R. We use these value to compute
z;, which is the concatenation of hf and aniT, which is fed into a unidirectional LSTM to produce
h;. On each step, the previous hidden state, h;_1, is used to calculate the next state (see equations
above).

The attention calculated in this layer indicates the degree to which the ith word in the pas-
sage corresponds to the jth word of the question.

We also constructed a match-LSTM as described above but in the reverse direction so as to
encode the contexts of the passage in both directions.

The result of the Match-LSTM layer is a matrix, H" € R?>*” which is a concatenation of
I-T%, the hidden states of the forward layer, and i? , the hidden states of the backward layer.

3.3.3 Answer-Pointer Layer

The Answer-Pointer Layer take H", the output from the Match-LSTM layer, as input. We decided to
implement the Boundary Model, which attempts to identify the start and end tokens of the answer
from the passage (the alternative presented in the paper was a Sequence Model, which selects the
indices of all of the tokens that should appear in the answer). Since the question is a sequence of
consecutive words, we felt the boundary model was a better fit for our problem.

The Answer-Pointer layer has a similar framework to the Match-LSTM layer. First, we
take the output of the Match-LSTM layer H" and calculate a probability distribution over the passage
of being the start word in the answer using the following equations:

F, = tanh(V?H" + (W°h? +b%) © ep)
Bs = softmax(vTFS +c@ep).
p(as|Hr) = Bs

Then, we calculate a probability distribution 3. for the end token (which is p(a.|as, H")) using the
same equations, with h{ replaced by the result of passing H" 37 through a unidirectional LSTM.

Finally, we calculate the probability of the answer being bounded by start and end indices a = (as, ac)
by
P(a[H") = P(as|[H")P(ac|as, H')

4 Experiments

4.1 Data
Our data for our experiments is derived from the SQuAD 2.0 dataset, which contains triples of

(passage, question, answer). Since the SQuUAD test set is secret, we will be splitting the official
SQuAD dev set into two parts for our project to form our dev and test sets.

4.2 Evaluation Metric

Our primary evaluation metrics are F1 and EM, since these are what is used for the leaderboard.



4.3 Experimental Details
We had six main categories of experiments, all compared to the provided baseline:

1. Value for dropout probability: The baseline uses 0.2 for the dropout probability. We ran
experiments to see how the model does compared to the baseline when we use dropout
probability of 0.1 and 0.3.

2. GRU vs LSTM: The baseline uses a bidirectional LSTM. We experimented with using a
GRU instead of a bidirectional LSTM to see if we could get results comparable with the
baseline but in less time.

3. Character embedding: We tried using a CNN to consider character embeddings. While
this makes the model take more time to train, we wanted to see if it would improve F1 and
EM scores.

4. Learning Rate: We tried tuning the learning rate to see how this alters the results compared
to the baseline. The default learning rate is 0.5, and we experimented with learning rates of
1.0 and 0.25.

5. Match-LSTM and Answer Pointer: The next experiment was running a completely new
model, the Match-LSTM and Answer Pointer model described above, rather than changing
small things with the baseline model.

6. Optimizer: Finally, we experimented with the optimizer we used. The baseline used an
Adadelta Optimizer, and we tried using an Adam Optimizer.

4.4 Results

We are on the Non-PCE Leaderboard. Our leaderboard submission for the dev set has an EM score of
58.293 and an F1 score of 61.675. Our scores for the test set are an F1 score of 60.129 and an EM
score of 56.585.

Experiment: Dropout Probability

For the first experiment, we ran the baseline three times with three different dropout probabilities to
experiment with which dropout probability gave the best results. In the following graph, the orange
line is the default dropout probability (0.2), the red line is a dropout probability of 0.3, and the blue
line is a dropout probability of 0.1.
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As seen in the graph, using a dropout probability of 0.1 improved both EM and F1 scores. The base-
line has EM score of 56.67 and an F1 score of 60.15. Using dropout probability of 0.1 (the blue line)
improves both scores, with an EM score of 57.68 and an F1 score of 61.46 and using dropout prob-
ability of 0.3 (the red line) decreased both scores, with an EM score of 56.20 and an F1 score of 59.41.

Experiment: GRU vs. LSTM We next ran experiments to see how GRU performs compared to
LSTM. We started with running the baseline against a model that uses GRUs instead of bidirectional
LSTMs. We wanted to see how just changing this affected the performance, so we started with not
changing any other variables (i.e., dropout probability). In the following graphs, the orange lines are
the baseline model and the light blue lines are the GRU model.
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As seen in the graphs, the GRU model performs just about as well as the LSTM model. However, we
found that the GRU model was faster to train than the LSTM model, which is helpful when training
these large models.

We wanted to then check that we achieved similar results when using a dropout probability of 0.1
instead of 0.2 (since we found that a dropout probability of 0.1 improved performance). In the
following graphs, the dark blue line is the LSTM model and the pink line is the GRU model.
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As observed in these graphs, the GRU and LSTM models also achieve comparable results when run
with a dropout probability of 0.1. It was again faster to train the GRU than the LSTM.

Experiment: Character Embedding

Our next experiment was to include a character embedding model. We started with a CNN character
model, which we then concatenated to the word model. Our results were comparable to the baseline.
In the following graphs, the orange line is the provided baseline (on a GRU) and the green line is our
model that uses character embeddings.
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We noticed that the character embedding models started out better than the baseline, but then fluctuated
a lot. From observing these results, we decided to implement learning rate annealing in order to start
with a high learning rate and decay exponentially over time. In the following graphs, the orange
line is the baseline model (but with a GRU) and the blue line is the character embedding model with
learning rate annealing.



EM F1
tag: dev/EM tag: dev/F1

0.000 1.000M 2.000M 3.000M 0.000 1.000M 2.000M 3.000M
Learning rate annealing proved to be ineffective at improving performance, so we decided to stick
with a constant learning rate for our model.
Experiment: Learning Rate

The next experiment was to test different values for the learning rate. In the following graphs, the
light blue uses a learning rate of 0.5 (i.e., the baseline), the orange line uses a learning rate of 1.0, and
the gray line uses a learning rate of 0.25.
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From the graphs, we did not notice a significant difference in performance from the various learning
rates, so we stuck with the default learning rate of 0.5 in our final model.

Experiment: Match-LSTM and Answer-Pointer

This experiment was the largest change we made since we implemented an entirely new model. While
we did find some preliminary positive results (the loss on the dev set decreased over time during
training and the model improved at detecting questions with no answer), the model did not achieve
improvements on our EM or F1 scores. Additionally, due to the presence of many LSTMs in the
model, it took significantly longer to train than the baseline (approximately 60 hours training time).
This long training time made it extremely difficult to test different iterations of the model and figure
out why it wasn’t performing well on our primary evaluation metrics. Further work is necessary
to improve the efficiency of the model and conduct more tests to figure out why our results are not
matching those achieved in the reference paper. In the following graphs, the red line is the initial
baseline and the blue line is the Match-LSTM and Answer Pointer Model.
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As observed in the graphs, the loss decreases with the Match-LSTM and Answer Pointer Model, but
the F1 score does not improve.

Experiment: Adadelta vs. Adam Optimizers

Our final experiment was with the optimizer we use when training our model. The baseline uses an
Adadelta optimizer, and we tried using an Adam Optimizer. In the following graphs, the orange line
is the baseline model (using the Adadelta optimizer) and the green line is uses the Adam optimizer.
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From the graphs, we noticed that the Adam optimizer started out better, but then had a steep drop off
and decrease in both EM and F1 scores. Because of this, we stuck with the Adadelta optimizer.

5 Analysis

5.1 Qualitative Analysis

We analyzed a subset of the questions (using the questions listed in the "Text" tab of Tensorboard).
Of those questions, we looked 8 categories: why, what, when, who, how many, how, where, and
which. Of the questions sampled for our best model (GRU with dropout 0.1), we had the following in
each category:

Category | Num questions | Num correct | Num incorrect

Why 1 0 1
What 55 20 35
When 21 18 3
Who 9 5 4
How Many 7 4 3
How 4 2 2
Where 5 2 3
Which 1 1 0

We noticed that When and What questions were the most popular of any of the categories. When
questions were the most accurate of any category. For the less popular categories (why, who, how
many, how, where, and which), the number correct was within 1 of the number incorrect. We also
noticed that our model did the worst on what questions. Upon further inspection, there were a few
common mistakes. The first, and most prevalent, was when the correct answer was N/A, our model
was too quick to pick an answer. Of the 35 incorrect what questions, 14 of them were when our
model picked an answer when the correct answer was N/A. We also observed that many of the what
questions were deemed incorrect even though a human would have the expected answer and predicted
answer as equivalent. For example, consider the following two questions:

e Question: What was AUSTPAC

e Context: AUSTPAC was an Australian public X.25 network operated by Telstra. Started by
Telecom Australia in the early 1980s, AUSTPAC was Australia’s first public packet-switched
data network, supporting applications such as on-line betting, financial applications — the
Australian Tax Office made use of AUSTPAC — and remote terminal access to academic
institutions, who maintained their connections to AUSTPAC up until the mid-late 1990s in
some cases. Access can be via a dial-up terminal to a PAD, or, by linking a permanent X.25
node to the network.[citation needed]

o Answer: AUSTPAC was an Australian public X.25 network operated by Telstra

e Prediction: Australian public X.25 network
and

e Question: What German ruler invited Huguenot immigration?

e Context: Frederick William, Elector of Brandenburg, invited Huguenots to settle in his
realms, and a number of their descendants rose to positions of prominence in Prussia. Several



prominent German military, cultural, and political figures were ethnic Huguenot, including
poet Theodor Fontane, General Hermann von Francois, the hero of the First World War
Battle of Tannenberg, Luftwaffe General and fighter ace Adolf Galland, Luftwaffe flying
ace Hans-Joachim Marseille, and famed U-boat captain Lothar von Arnauld de la Periere.
The last Prime Minister of the (East) German Democratic Republic, Lothar de Maiziere, is
also a descendant of a Huguenot family, as is the German Federal Minister of the Interior,
Thomas de Maiziére.

o Answer: Frederick William

e Prediction: Frederick William, Elector of Brandenburg

The correct answer and the answer given by our model were essentially the same, but not an exact
match, which is an issue with selecting the start and end boundaries.

6 Conclusion and Future Work

In this paper we explored multiple deep learning techniques for question answering on the SQuAD
2.0 dataset. We first improved upon a provided baseline bidirectional attention flow model with
relatively basic modifications such as adding character embeddings and hyperparameter tuning. These
modifications yielded minor improvements to our EM and F1 performance on the dataset (about a
point in each).

We then tried to implement Match-LSTM, an entirely different architecture, and encountered unantic-
ipated shortcomings associated with the new architecture. Primarily, we found that the multitude of
LSTMs used (in all three layers) significantly slowed training time, making it very difficult to test
different iterations of the model given our time and computational resource limits. Given these limits,
we may have achieved better performance implementing an architecture that was less computationally
expensive to train. This experience highlighted the potential value of convolutional architectures and
parallelizable architectures due to their ability to scale and train efficiently.

Additional work needs to be done to improve and potentially fix our Match-LSTM layer. While our
basic sanity checks suggest that the model is correctly computing what is described in our reference
paper, the results achieved from training the model do not match the results achieved in the paper.
Further work needs to be done to correct any potential mistakes in the implementation, but primarily
to improve efficiency so that new iterations of the model can be trained and tested in a reasonable
amount of time.
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