Transformer with CSAN for Question Answering:
SQuAD2.0

Simerjot Kaur
sk3391@stanford.edu
Default Project (Non-PCE)

Abstract

Current end-to-end machine reading and question answering models are
based on sequential RNNs (primarily LSTMs) with attention mechanism.
While these models have shown good progress on the machine reading and
question answering tasks, these models are slow in both training and
inference due to their sequential nature. In this project we use a novel
approach to question and answering employed by the QANet authors by
replacing sequential RNNs with convolutions and self-attentions as the
building blocks of encoders. Further, in order to simultaneously capture
model dependencies among local elements and neighboring spaces, QANet
model was further extended to include 2D-Convolutional Self Attention
(CSAN). Our trained QANet model was able to obtain an F1 score of 66.41
and EM score of 62.43 on Squad 2.0 dev dataset. Further, we obtained an
F1 score of 64.07 and EM score of 60.02 for QANet with CSAN. Notably,
the score obtained for QANet w/ CSAN is lower than QANet score because
we could only use a small model and batch size when using QANet w/
CSAN due to the limited GPU memory available on NV6 machines.

1 Introduction

Current end-to-end machine reading and question answering models are based on sequential
RNNs (primarily LSTMs) with attention mechanism. Most reading and question answering
models employ two key ingredients: (a) recurrent models to process sequential inputs (b) an
attention component to cope with long term interactions. While these models have shown good
progress on the machine reading and question answering tasks, these models are slow in both
training and inference due to their sequential nature. In this project we employed a novel approach
to question and answering employed by QANet/?/ authors: replacing sequential RNNs with
convolutions and self-attentions as building blocks of encoders that separately encodes the query
and context. The key motivation behind this design is that convolution captures the local structure
of the text, while the self-attention learns the global interaction between each pair of words. In this
project, we also enhance QANet by using convolutional self attention (CSAN) which uses the
power of CNN on modeling localness of self attention (SAN) and offers the abilities to 1) capture
neighboring dependencies, and 2) model the interactions between multiple attention heads.

Formally, we can describe the machine reading and question answering task as follows: Given a
context paragraph with n words C={c, c»...., cn} and the query sentence with m words Q={qi, qz,
..., qmJ, output a span S={cj, Ci+1,..., Ci+j} from the original context paragraph C.

2 Related Work

This problem is an interesting task because it provides a measure for how well systems can

‘understand’ text. There have been a lot of research done in this area, first to model SQuAD
1.1 and now extended to SQuAD 2.0. The difference between the datasets is that SQuAD
2.0 contains no answer examples as well. The work in this area can be divided into two

mailto:sk3391@stanford.edu

distinct divisions: one for models that use pre-trained contextual embeddings (PCE), and
another for non-PCE models only. PCE models like ELMo and BERT are based on the idea
that to represent a piece of text, word embeddings that depend on the context in which the
word appears in the text should be used. These models have been extremely successful for
SQuAD and have achieved high performance. In the non-PCE world, new concept of
transformers was recently introduced which replaces sequential RNNs with self-attention
and convolution. This project is inspired by this novel approach and has tried to implement
QANet (question answering using transformers) from scratch and has further enhanced it
with CSAN to use the power of CNN on modeling localness of self attention also.

3 Approach
31 Baseline BiDAF

Since the default project has been implemented, the provided BiDAF/// model has been
used as baseline.

Convolutional

3.2 BiDAF with Character Embeddings network Highway network
A A

Since the baseline BiDAF was implemented based

v

on word embeddings only, the first improvement((e22e]

as to inc rate character-level beddings. In|c==2) = 4 ™
was to incorporate er-level embedding a\\é)
ell e i

order to obtain fixed size vector representation of (2222

each word, convolutional network has been adopted %

and passed through a 2-layer highway network. The (e2=°)
— Y Y Y

1-dimensional Max Combination
| Projection
Convolution pooling using gates

final embedding for BiDAF model, is concatenation:
of word and char embeddings.

33 QANet
QANet architecture has next been implemented from

Figure 1: Character-based convolutional embedding

Model One Encoder

. .
scratch. The high level structure of the model consists

of five major components: an embedding layer, an
embedding encoder layer, a context-query attention
layer, a model encoder layer and an output layer:

1. Input Embedding Layer: This layer is similar to

the BiDAF input embedding layer with output of
the layer of dimension p; + p, (3004200 = 500).

2. Embedding Encoder Layer: This layer replaces
the bidirectional LSTMs with stack of Position

Encoding + 4 convolutional layers + self-attention Figure 2: Overview of QANet architecture

layer + feed-forward layer.
a. Positional Encoding: A positional encoding is added to the input at the beginning of each

encoder layer consisting of sine and cosine functions at varying wavelengths.

b. Convolution Layer: Model uses depthwise separable convolutions/#4/ with kernel size=7.

c. Self-Attention Layer: This layer draws inspiration from Transformers/5/. It first creates 3

vectors Query, Key, and Value matrices from each embedding and then produce attention
scores. Instead of performing single attention, transformer uses 8 attention heads.
d. Feed-Forward Layer: This is a fully connected feed-forward network.

These layers are placed inside a residual block and layer-normalization/¢/ is performed.

3. Context-Query Attention Layer: In this layer similarities between each pair of context (C)
and query (Q) words is computed and stored in matrix S/7/. For context-to-query attention (A),

each row of S is normalized producing S and hence A = S e QT. For query-to-context

attention (B), each column of S is normalized producing Sandhence B=35eS «CT.

4. Model Encoder Layer: The input of this layer at each position is [c, a, ¢ ® a, ¢ © b],

where a and b are respectively a row of attention matrix A and B. The layer parameters of
model encoder layer is same as embedding encoder layer, but there are 2 convolutional layers
within a block and within each model encoder layers there are 7 encoder blocks.

5. Qutput Layer :This layer predicts the probability of each position in the context being the
start or end of an answer span.
1_ (. 2 _ .
p =softmax Wl[MO,Ml]) P —softmax(W2[M0,M2])
where W, and W, are trainable variables and M, M, M, are the output of 3 model encoders.
The objective function is negative sum of log probabilities, obtained above, and averaged over all

. N
training examples: - 1L 1,2

g p LO)= -+ Zl‘, l10g(pyi1+pyi2)l
where yl.1 and yl.2 are ground-truth starting and ending position of example i.

34 QANet with CSAN (Convolutional Self Attention)

Although Self Attention (SAN) has achieved significant improvements, it has two major
limitations. Firstly, SAN fully takes into account all the signals with a weighted sum
operation, which disperses the distribution of attention, which may result in overlooking the
relation of neighboring signals. Secondly, the multi-headed attention perform attention
heads independently, which misses the opportunity to exploit useful interactions across
attention heads. To address these problems, we used a novel convolutional self-attention
network (CSAN)//0/ approach, leveraging power of CNN on modeling localness for SAN.

There are two proposed approaches to overcome the two limitations of SAN: 1) 1D-CSAN,
as shown in Fig 3(b), in which window is assigned with width M where 1 < M < I, but
height is consistently fixed to one; 2) 2D-CSAN, as shown in Fig 3(c), where window is
assigned with unrestricted height N where 1 < N < H. QANet w/ CSAN has been
implemented from scratch.

Length Length Length
B e 0 = Y O =J I I i S O
LS S P) S S 5 e N S 5 [5 2 N IO oo
g T S 2 i
(a) Vanilla SAN (b) 1D-Convolutional SAN (c) 2D-Convolutional SAN

Figure 3: (a) Vanilla SAN, 1D- (b) and 2D- (c¢) Convolutional SAN

Given a window width M, the relevance between the ¢-th and y-th elements can be
normalized according to the neighboring elements of ¢, instead of the whole input. Thus, the
calculation of attention weight can updated as follows:

h
expe.
o = < &= A@Wh@whHT m= (M- 1)/
t=i—m SXP €t

and O is padded when the index out of range. Accordingly, the output of attention operation
can be revised as: i+m
yih= Y oWy

Jj=i—m
Furthermore, 2D-CSAN model simultaneously model dependencies among local elements
and neighboring subspaces. The 1-D attentive area (1 x M) can be expanded to a 2-D
rectangle (N x M), which consists of both number of elements and number of heads.
Consequently, the proposed model calculates the energy between the ¢-th element in the 4-th

head and the s-th element in the s-th head. Thus, the energy calculation can be updated as:

efjs = A(x,Wé)(:c]Wf{)T

Accordingly, the energy normalization Equation (4) and the weighted sum of the elements
Equation (5) can be respectively revised as:

h.
ohs = oXp &i;
1] h i+
kiz—n ;:ﬁm €xp e:’tc
htn itm n=[(N-1)/2]
wo= X D af@W)

s=h—n j=i—m
Thus, the attention distribution represents the dependencies among head and the output of
each head covers different group of features. 2D-CSAN equals to 1D-CSAN when N = 1.
4 Experiments
4.1 Data
The dataset for the project is SQuAD 2.0 which has been provided as part of the default
class project setup. The SQuAD 2.0 dataset has three splits: train, dev and test.
e Train(129,941 examples):All taken from the official SQuAD 2.0 training set.
* Dev(6078 examples):Roughly half of the official dev set, randomly selected.
* Test(5915 examples):Remaining examples of official dev set, plus hand-labeled examples.

4.2 Evaluation Method
To evaluate the model Exact Match (EM) and F1 scores have been used as metric. Exact
Match is binary measure of whether system output matches ground truth answer exactly. F1

is the harmonic mean of precision and recall = 2xpredictionxrecall/(precision+recall).

4.3 Experimental Details
The table below summarizes the various key training details for all the four models used:
] BiDAF w/
BiDAF Char Emb QANet QANet w/ CSAN
OP[‘};';Z“ AdaDelta| AdaDelta | Adam with $1=0.8, o= 0.999 | Adam with B1=0.8, B2= 0.999
Batch Size 64 64 32 8
Number of
Epochs 30 30 30 30
Inverse exponential increase | Inverse exponential increase
Learning 0.5 0.5 from 0.0 to 0.001 in first from 0.0 to 0.001 in first
Rate ’) 1000 steps, then constant LR | 1000 steps, then constant LR
for remainder of training for remainder of training
H‘Sd.de“ 100 100 96 64
ize
EMA
Decay 0.999 0.999 0.9999 0.9999
Dropout rates on word, Dropout rates on word,
character embeddings are 0.1 | character embeddings are 0.1
and 0.05, the dropout rate b/ | and 0.05, the dropout rate b/
Dropout w two layers is 0.1. Adopted | w two layers is 0.1. Adopted
Probabilit 0.2 0.2 stochastic depth method stochastic depth method
y within each encoder layer, within each encoder layer,
sublayer ¢ has survival prob p,|sublayer ¢ has survival prob p,
=1-¢/L(1-pL) where Lis | =1—¢/L (1-pr) where L is
the last layer and pL = 0.9. the last layer and pL = 0.9.
Lsze‘ght 0 0 3%10-7 3*10-7
ecay
F Loss NLL | NLL NLL NLL
unction

4.4 Results (Non-PCE)

Since, we are not using the pre-trained BERT Models, we have submitted our results to the
Non-PCE leaderboard. On the Test Non-PCE Leaderboard we achieved EM score of
60.507 and F1 score of 64.099. On the Dev Non-PCE Leadership we achieved EM score
of 62.393 and F1 score of 66.405.

The table below compares results achieved on dev set using baseline BiDAF model, BiDAF
model augmented with character embedding, QANet architecture and QANet w/ CSAN.

BiDAF BiDAF w/ Char Emb QANet QANet w/ CSAN
F1-Score 59.89 62.59 66.41 64.07
EM-Score 56.01 59.28 62.43 60.02
44.1 Baseline BiDAF vs BiDAF with Character Embeddings

The plot below compares the performance achieved on the dev set using BiDAF with
character embedding (Red) and baseline BiDAF model (Blue). As expected, BIDAF with
character embedding outperforms the BiDAF model. The character embeddings are able to

capture out of vocabulary words, hence improving the model’s performance.
dev/AVNA dev/EM dev/F1

\
\
\
\
\
54.0 }
\
\
O

0.000 1.000M 2.000M 3.000M 0.000 1.000M 2.000M 3.000M 0.000 1.000M 2.000M 3.000M

Figure 4: Dev Set performance comparison between BiDAF (Blue curve) and BiDAF with Char Embedding (Red Curve)
4.4.2 QANet

The plot below shows the dev set performance achieved using QANet architecture. As can be
observed that QANet significantly outperforms BiDAF as well as BiDAF w/ Character
Embeddings. This improvement was expected because QANet not only learns the
relationships between words and order of words in the passage and corresponding questions,
but also where the answer appears in the passage with respect to those relationships.

dev/AVNA

dev/EM dev/F1

0.000 1.000M

2.000M

3.000M

0.000 1.000M 2.000M 3.000M

68.0

64.0

60.0

56.0

52.0

48.0

0.000

1.000M 2.000M 3.000M

Figure 5: Dev Set performance of QANet
4.4.3 QANet with CSAN

The plot below shows the dev set performance achieved using QANet with CSAN. Since
CSAN tries to capture simultaneously the model dependencies among local contexts as well
as neighboring subspaces (dependencies among the attention heads), we expected CSAN
will outperform the vanilla QANet. However, the below graphs depict otherwise. This is
because in order to capture the dependencies in CSAN there is an increase in the amount of
GPU memory needed, which limits the maximum batch size we could implement on NV 12
machine to 8 with a hidden size of model as 64. This significantly reduces the achievable
performance, but can easily be improved further by using higher memory GPUs for

computation, and partly re-optimizing the code for memory usage.
dev/AVNA dev/EM dev/F1

), 60.0
70.0 62.0

66.0
56.0 58.0
62.0
58.0
54.0 50.0 500
0.000 1.000M 2.000M 3.000M 0.000 1.000M 2.000M 3.000M 0.000 1.000M 2.000M 3.000M
Figure 6: Dev Set performance of QANet with CSAN
4.4.4 Effects of Hyper parameters on Performance
Different hyper parameters like batch size, learning rate, loss function, stochastic dropout,
optimization techniques and hidden size were analyzed to obtain the model’s best
performance. It was observed that the model performed best with batch size = 32, Learning
Rate = 0.001, Loss function = Negative Log-Likelihood, Stochastic Dropout = Yes, Adam
optimization and hidden size = 96.

Batch Size 32 16 Learning Rate 0.0005 0.001
F1 66.41 64.76 F1 64.39 66.41
EM 62.43 60.81 EM 60.53 62.43

Loss Cross Stochastic
Function BILL Entropy Dropout e M
F1 66.41 65.30 F1 63.59 66.41
EM 62.43 61.97 EM 60.52 62.43

Optimizer | AdaDelta Adam Hidden Size 64 96
F1 62.38 66.41 F1 64.63 66.41
EM 59.32 62.43 EM 60.78 62.43

5 Analysis

In order to perform qualitative evaluation, the analysis of inspecting key characteristics of
the QANet model have been broken down into four subsections:

5.1 Error Analysis on Selected Examples

After training the model, 100 examples were selected to analyze the results produced by the
model vs actual answers. There were 53 examples for which the actual answers were N/A
(no answer) and 47 examples had the answer in the context paragraph. There were two key
observations:

e Actual Answer = N/A: The model produced 68% correct answers i.e. N/A. For the
rest 32%, the model produced wrong written answers.

e Actual Answer = Some Text: The model produced 70% correct answers and 30%
wrong answers (N/A or wrong answer). Also, in case of the wrong answers, the
model produces N/A 40% of the time and wrong answer 60% of the time.

After observing the questions, it was observed that the maximum wrong answers occur in
the cases when questions start with ‘what’ (41%) and ‘how’ (35%). Fewer wrong answers
occurred in the cases when questions start with ‘when’ (6%) and ‘who’ (18%). The most
common types of errors made by the model can be broken down into four categories:

5.1.1 Long Term Dependency

The most common error observed was that the model was not able to perform long term
dependency. For instance, In the example below, question was regarding Sybilla as to what
did she introduce to Scotland. Since she was the wife of King David I’s brother, the model
was not able to capture this relationship and hence the question that the model answered
was as to what King David introduced to Scotland rather than Sybilla.

step 1,650,396

Question: What did Sybilla of Normandy introduce to Scotland?

Context: Normans came into Scotland, building castles and founding noble families who would provide some future kings, such as Robert the Bruce, as well as
founding a considerable number of the Scottish clans. King David | of Scotland, whose elder brother Alexander | had married Sybilla of Normandy, was
instrumental in introducing Normans and Norman culture to Scotland, part of the process some scholars call the "Davidian Revolution". Having spent time at the
court of Henry | of England (married to David's sister Maud of Scotland), and needing them to wrestle the kingdom from his half-brother Méel Coluim mac
Alaxandair, David had to reward many with lands. The process was continued under David's successors, most intensely of all under William the Lion. The Norman-
derived feudal system was applied in varying degrees to most of Scotland. Scottish families of the names Bruce, Gray, Ramsay, Fraser, Ogilvie, Montgomery,
Sinclair, Pollock, Burnard, Douglas and Gordon to name but a few, and including the later royal House of Stewart, can all be traced back to Norman ancestry.
Answer: N/A

Prediction: Normans and Norman culture

The model can be improved by introducing self attention of phrases (n-gram words) rather
than on single words.

5.1.2 Out of Vocabulary Words

Another error that was observed, was regarding out of vocabulary (OOV) words. The word
“non-Muslims” in the question is most likely OOV word which it was not able to interpret.

Although character embedding has been introduced, it was not able to understand the “non-
Muslims” word, hence while concatenating the characters it dropped ‘non’ and interpreted

as to how many Muslims are in Greater London, for which the model gave the answer of.

step 3,850,913

« Question: How many non-Muslims are in Greater London?

 Context: Greater London has over 900,000 Muslims, (most of South Asian origins and concentrated in the East London boroughs of Newham, Tower Hamlets and
Waltham Forest), and among them are some with a strong Islamist outlook. Their presence, combined with a perceived British policy of allowing them free rein,
heightened by exposés such as the 2007 Channel 4 documentary programme Undercover Mosque, has given rise to the term Londonistan. Following the 9/11
attacks, however, Abu Hamza al-Masri, the imam of the Finsbury Park Mosque, was arrested and charged with incitement to terrorism which has caused many
Islamists to leave the UK to avoid internment.[citation needed]

« Answer: N/A

* Prediction: 900,000

The model can be improved by using byte level embedding or pertained BERT embeddings.

5.1.3 Lexical Gap
Another challenge in natural language is that same meaning can be expressed in different

ways. Because question can usually only be answered if every referred concept is
identified, in below example too, model failed to produce correct answer. The question was

what can exhaust steam not fully do if the exhaust event is ‘insufficiently long’. In context
paragraph, answer is given in terms of ‘if the exhaust even is too brief’. The model was not

able to relate ‘insufficiently long’ and ‘too brief’, hence resulting in the wrong answer.

step 200,053

* Question: What can the exhaust steam not fully do when the exhaust event is insufficiently long?

« Context: The simplest valve gears give events of fixed length during the engine cycle and often make the engine rotate in only one direction. Most however have a
reversing mechanism which additionally can provide means for saving steam as speed and momentum are gained by gradually "shortening the cutoff" or rather,
shortening the admission event; this in turn proportionately lengthens the expansion period. However, as one and the same valve usually controls both steam
flows, a short cutoff at admission adversely affects the exhaust and compression periods which should ideally always be kept fairly constant; if the exhaust event
is too brief, the totality of the exhaust steam cannot evacuate the cylinder, choking it and giving excessive compression ("kick back”).[citation needed]

* Answer: evacuate the cylinder

« Prediction: N/A

The model can be improved by providing synonym phrases in vocabulary or training the
model on how a synonym is same as using ‘not’ of antonym.

5.1.4 Multilingualism

Finally, since there is not a single language that is always used, the model is expected to
recognize a language and get the results on the go. In this example, although the answer
looks to be correct, but it was depicted in Chinese language since the context contains
‘Chinese:’. Since the model doesn’t understand what pinyin is, it’s not able to predict the
English version of the answer.

step 2,500,591

Question: What is the Chinese name for the Yuan dynasty?

Context: The Yuan dynasty (Chinese: 7t&f; pinyin: Yuan Chdo), officially the Great Yuan (Chinese: A7t; pinyin: Da Yuan; Mongolian: Yehe Yuan Ulus[a]), was the
empire or ruling dynasty of China established by Kublai Khan, leader of the Mongolian Borjigin clan. Although the Mongols had ruled territories including today's
North China for decades, it was not until 1271 that Kublai Khan officially proclaimed the dynasty in the traditional Chinese style. His realm was, by this point,
isolated from the other khanates and controlled most of present-day China and its surrounding areas, including modern Mongolia and Korea. It was the first
foreign dynasty to rule all of China and lasted until 1368, after which its Genghisid rulers returned to their Mongolian homeland and continued to rule the Northern
Yuan dynasty. Some of the Mongolian Emperors of the Yuan mastered the Chinese language, while others only used their native language (i.e. Mongolian) and the
'Phags-pa script.

Answer: Yuén Chéo

Prediction: 7558

The model can be improved by training the model on multilingual dictionary, so that the
model can understand the meanings of multilingual words.

5.2 Ablation Study

The ablation study is performed on the two main components of the model: the number of
heads used in Self Attention and number of encoder layers used in the Model Encoder
Layer. As can be seen from the table, the number of encoder layers used in Model Encoder
Layer is crucial. Changing the number of encoder layers from 4 to 8 contributes towards a
gain of 2.1/1.9 in F1 and EM scores. This makes the number of encoder layers crucial as
they are trying to capture local structure as well as global interactions between text. On the
other hand, while the number of independent heads do contribute to gains in F1 and EM
score but using lower number of heads doesn’t hamper the model too much. This is because
the heads are concatenated independently, hence there is no interdependency which might
effect the model a lot.

Encoder *
Layers 3 7 # of Heads 4 8
F1 64.31 66.41 F1 64.76 63.6
EM 60.53 62.43 EM 60.81 59.7

* In order to test number of heads = 8, the model had to be run on batch size of 16 to deal with CUDA out of memory error.

5.3 QANet vs QANet-CSAN

The models QANet and QANet-CSAN are also compared based on the answers provided.
As can be observed QANet-CSAN is able to better capture lexical gaps than QANet. For
instance, in the context below, there is nothing stated regarding how unsuccessful was
Braddock initial effort. QANet-CSAN was able to interpret ‘None succeeded and the main
effort by Braddock was a disaster’ and hence gave the correct result as N/A.

step 2,650,100

¢ Question: How unsuccessful was initial effort by Braddock?

« Context: In 1755, six colonial governors in North America met with General Edward Braddock, the newly arrived British Army commander, and planned a four-way
attack on the French. None succeeded and the main effort by Braddock was a disaster; he was defeated in the Battle of the Monongahela on July 9, 1755 and died
a few days later. British operations in 1755, 1756 and 1757 in the frontier areas of Pennsylvania and New York all failed, due to a combination of poor
management, internal divisions, and effective Canadian scouts, French regular forces, and Indian warrior allies. In 1755, the British captured Fort Beauséjour on the
border separating Nova Scotia from Acadia; soon afterward they ordered the expulsion of the Acadians. Orders for the deportation were given by William Shirley,
Commander-in-Chief, North America, without direction from Great Britain. The Acadians, both those captured in arms and those who had sworn the loyalty oath to
His Britannic Majesty, were expelled. Native Americans were likewise driven off their land to make way for settlers from New England.

¢ Answer: N/A

* Prediction: N/A

But as can be observed below, QANet was not so successful in interpreting the full phrase
and hence resulted in wrong answer. This shows that QANet-CSAN can easily outperform
QANet if the current implementation is improved further by using higher memory GPUs for
computation, and partly re-optimizing the code for memory usage.

step 2,650,628

* Question: How unsuccessful was initial effort by Braddock?

« Context: In 1755, six colonial governors in North America met with General Edward Braddock, the newly arrived British Army commander, and planned a four-way
attack on the French. None succeeded and the main effort by Braddock was a disaster; he was defeated in the Battle of the Monongahela on July 9, 1755 and died
a few days later. British operations in 1755, 1756 and 1757 in the frontier areas of Pennsylvania and New York all failed, due to a combination of poor
management, internal divisions, and effective Canadian scouts, French regular forces, and Indian warrior allies. In 1755, the British captured Fort Beauséjour on the
border separating Nova Scotia from Acadia; soon afterward they ordered the expulsion of the Acadians. Orders for the deportation were given by William Shirley,
Commander-in-Chief, North America, without direction from Great Britain. The Acadians, both those captured in arms and those who had sworn the loyalty oath to
His Britannic Majesty, were expelled. Native Americans were likewise driven off their land to make way for settlers from New England.

* Answer: N/A

* Prediction: a disaster

6 Conclusion and Future Work

In this project we used a novel approach to question and answering employed by the QANet
authors by replacing sequential RNNs with convolutions and self-attentions as the building
blocks of encoders. Further, in order to simultaneously capture model dependencies among
local elements and neighboring spaces, QANet model was further extended to include 2D-
Convolutional Self Attention (CSAN). Our trained QANet model was able to obtain an F1
score of 66.41 and EM score of 62.43 on Squad 2.0 dev dataset. Further, we obtained an F1
score of 64.07 and EM score of 60.02 for QANet with CSAN. The score obtained for

QANet w/ CSAN is lower than QANet score because we could only use a small model and
batch size when using QANet w/CSAN due to the limited GPU memory available on NV6
machines. Hence this can be further improved by optimizing the code for memory usage
and also using higher memory GPUs for computation. The model can be further improved
by introducing self attention of phrases (n-gram words) rather than on single words. Also
using byte level embedding or pertained BERT embeddings can further help in dealing with
Out of Vocabulary words.

References

[1] Minjoon Seo, Aniruddha Kembhavi, Ali Ferhadi, Hananneh Hajishirzi. BiDAF (Bi-Directional
Attention Flow for Machine Comprehension), ICLR 2017 : https://arxiv.org/pdfi1611.01603 pdf
[2] Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. Neural machine translation (seq2seq)
tutorial, 2017 : https://github.com/tensorflow/nmt

[3] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah,
Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s
neural machine translation system: Bridging the gap between human and machine translation,
2016: https://arxiv.org/pdfl1609.08 144 pdf

[4] Francois Chollet. Xception: Deep Learning with Depthwise Separable Convolutions, 2017 :
https:/larxiv.org/pdfi1610.02357 pdf

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, NIPS 2017 https://arxiv.org/pdf!
1706.03762 pdf

[6] Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016 https.//
arxiv.org/pdf/1607.06450.pdf

[7] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering, ICLR 2017: https://arxiv.org/pdfi1611.01604 pdf

[8] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
Transformer-XL: Attentive Language Models beyond a Fixed-Length Context, 2019: https://

arxiv.org/pdf/1901.02860.pdf
[9] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad

Norouzi, Quoc V. Le. QANet: Combining Local Convolution with Global Self-Attention for
Reading Comprehension, ICLR 2018: https://arxiv.org/pdf/1804.09541 .pdf

[10] Baosong Yang, Longyue Wang, Derek F. Wong, Lidia S. Chao, Zhaopeng Tu. Convolutional
Self-Attention Network, cs.CL 2018: https://arxiv.org/pdf/1810.13320.pdf

https://arxiv.org/pdf/1901.02860.pdf
https://arxiv.org/pdf/1901.02860.pdf
https://arxiv.org/pdf/1804.09541.pdf

