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Abstract
Current  end-to-end  machine  reading  and  question  answering  models  are 
based on sequential  RNNs (primarily LSTMs) with attention mechanism. 
While these models have shown good progress on the machine reading and 
question  answering  tasks,  these  models  are  slow  in  both  training  and 
inference  due  to  their  sequential  nature.  In  this  project  we  use  a  novel 
approach to  question  and answering employed by the  QANet  authors  by 
replacing  sequential  RNNs  with  convolutions  and  self-attentions  as  the 
building  blocks  of  encoders.  Further,  in  order  to  simultaneously  capture 
model dependencies among local elements and neighboring spaces, QANet 
model  was  further  extended  to  include  2D-Convolutional  Self  Attention 
(CSAN). Our trained QANet model was able to obtain an F1 score of 66.41 
and EM score of 62.43 on Squad 2.0 dev dataset. Further, we obtained an 
F1 score of 64.07 and EM score of 60.02 for QANet with CSAN. Notably, 
the score obtained for QANet w/ CSAN is lower than QANet score because 
we  could  only  use  a  small  model  and  batch  size  when  using  QANet  w/
CSAN due to the limited GPU memory available on NV6 machines.

1 Introduction
Current  end-to-end  machine  reading  and  question  answering  models  are  based  on  sequential 
RNNs  (primarily  LSTMs)  with  attention  mechanism.  Most  reading  and  question  answering 
models  employ two key ingredients:  (a)  recurrent  models  to  process  sequential  inputs  (b)  an 
attention component to cope with long term interactions. While these models have shown good 
progress on the machine reading and question answering tasks, these models are slow in both 
training and inference due to their sequential nature. In this project we employed a novel approach 
to  question  and  answering  employed  by  QANet[9]  authors:  replacing  sequential  RNNs  with 
convolutions and self-attentions as building blocks of encoders that separately encodes the query 
and context. The key motivation behind this design is that convolution captures the local structure 
of the text, while the self-attention learns the global interaction between each pair of words. In this 
project, we also enhance QANet by using convolutional self attention (CSAN) which uses the 
power of CNN on modeling localness of self attention (SAN) and offers the abilities to 1) capture 
neighboring dependencies, and 2) model the interactions between multiple attention heads.  

Formally, we can describe the machine reading and question answering task as follows: Given a 
context paragraph with n words C={c1, c2,…, cn} and the query sentence with m words Q={q1, q2,
…, qm}, output a span S={ci, ci+1,…, ci+j} from the original context paragraph C.

2 Related Work
This problem is an interesting task because it provides a measure for how well systems can 
‘understand’ text. There have been a lot of research done in this area, first to model SQuAD 
1.1 and now extended to SQuAD 2.0. The difference between the datasets is that SQuAD 
2.0 contains  no answer examples  as  well.  The work in this  area can be divided into two 
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distinct  divisions:  one for  models  that  use pre-trained contextual  embeddings (PCE),  and 
another for non-PCE models only. PCE models like ELMo and BERT are based on the idea 
that to represent a piece of text, word embeddings that depend on the context in which the 
word appears in the text should be used. These models have been extremely successful for 
SQuAD  and  have  achieved  high  performance.  In  the  non-PCE  world,  new  concept  of 
transformers  was  recently  introduced which replaces  sequential  RNNs with  self-attention 
and convolution. This project is inspired by this novel approach and has tried to implement 
QANet (question answering using transformers)  from scratch and has further  enhanced it 
with CSAN to use the power of CNN on modeling localness of self attention also.

3 Approach
3.1 Baseline BiDAF
Since  the  default  project  has  been  implemented,  the  provided  BiDAF[1]  model  has  been 
used as baseline.

3.2 BiDAF with Character Embeddings
Since the baseline BiDAF was implemented based 
on  word  embeddings  only,  the  first  improvement 
was  to  incorporate  character-level  embeddings.  In 
order  to  obtain  fixed size  vector  representation  of 
each word, convolutional network has been adopted 
and passed through a 2-layer highway network. The 
final embedding for BiDAF model, is concatenation 
of word and char embeddings. 

3.3 QANet
QANet architecture has next been implemented from 
scratch. The high level structure of the model consists 
of  five  major  components:  an  embedding  layer,  an 
embedding  encoder  layer,  a  context-query  attention 
layer, a model encoder layer and an output layer:
1. Input Embedding Layer: This layer is similar to 

the BiDAF input embedding layer with output of 
the layer of dimension �  (300+200 = 500).

2. Embedding Encoder Layer:  This layer replaces 
the  bidirectional  LSTMs  with  stack  of  Position 
Encoding + 4 convolutional layers + self-attention 
layer + feed-forward layer. 
a. Positional Encoding: A positional encoding is added to the input at the beginning of each 

encoder layer consisting of sine and cosine functions at varying wavelengths.
b. Convolution Layer: Model uses depthwise separable convolutions[4] with kernel size=7.
c. Self-Attention Layer: This layer draws inspiration from Transformers[5]. It first creates 3 

vectors Query, Key, and Value matrices from each embedding and then produce attention 
scores. Instead of performing single attention, transformer uses 8 attention heads. 

d. Feed-Forward Layer: This is a fully connected feed-forward network. 
These layers are placed inside a residual block and layer-normalization[6] is performed. 

3. Context-Query Attention Layer: In this layer similarities between each pair of context ( �  
and query ( ) words is computed and stored in matrix S[7]. For context-to-query attention ( ), 
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Figure 1: Character-based convolutional embedding

Figure 2: Overview of QANet architecture



each  row  of  S  is  normalized  producing  �  and  hence � .  For  query-to-context 

attention (B), each column of S is normalized producing �  and hence � . 
4. Model  Encoder Layer:  The input  of  this  layer  at  each position is � , 

where a and b are respectively a row of attention matrix �  and B. The layer parameters of 
model encoder layer is same as embedding encoder layer, but there are 2 convolutional layers 
within a block and within each model encoder layers there are 7 encoder blocks. 

5. Output Layer :This layer predicts the probability of each position in the context being the 
start or end of an answer span.  

where �  and �  are trainable variables and � , � , �  are the output of 3 model encoders.
The objective function is negative sum of log probabilities, obtained above, and averaged over all 
training examples:

where �  and �  are ground-truth starting and ending position of example � .

3.4 QANet with CSAN (Convolutional Self Attention)

Although Self  Attention  (SAN) has  achieved  significant  improvements,  it  has  two major 
limitations.  Firstly,  SAN  fully  takes  into  account  all  the  signals  with  a  weighted  sum 
operation, which disperses the distribution of attention, which may result in overlooking the 
relation  of  neighboring  signals.  Secondly,  the  multi-headed  attention  perform  attention 
heads  independently,  which  misses  the  opportunity  to  exploit  useful  interactions  across 
attention  heads.  To address  these  problems,  we used  a  novel  convolutional  self-attention 
network (CSAN)[10] approach, leveraging power of CNN on modeling localness for SAN. 
There are two proposed approaches to overcome the two limitations of SAN: 1) 1D-CSAN, 
as  shown in Fig 3(b),  in  which window is  assigned with width M where 1 < M < I,  but 
height is consistently fixed to one; 2) 2D-CSAN, as shown in Fig 3(c),  where window is 
assigned  with  unrestricted  height  N  where  1  <  N  <  H.  QANet  w/  CSAN  has  been 
implemented from scratch.

Given  a  window  width  M,  the  relevance  between  the  i-th  and  j-th  elements  can  be 
normalized according to the neighboring elements of i, instead of the whole input. Thus, the 
calculation of attention weight can updated as follows:

and 0 is padded when the index out of range. Accordingly, the output of attention operation 
can be revised as:

Furthermore,  2D-CSAN model  simultaneously model  dependencies among local  elements 
and  neighboring  subspaces.  The  1-D  attentive  area  (1  ×  M)  can  be  expanded  to  a  2-D 
rectangle  (N  ×  M),  which  consists  of  both  number  of  elements  and  number  of  heads. 
Consequently, the proposed model calculates the energy between the i-th element in the h-th 
head and the j-th element in the s-th head. Thus, the energy calculation can be updated as:
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Figure 3: (a) Vanilla SAN, 1D- (b) and 2D- (c) Convolutional SAN



Accordingly, the energy normalization Equation (4) and the weighted sum of the elements 
Equation (5) can be respectively revised as:

Thus, the attention distribution represents the dependencies among head and the output of 
each head covers different group of features. 2D-CSAN equals to 1D-CSAN when N = 1.

4 Experiments
4.1 Data
The dataset  for the project  is  SQuAD 2.0 which has been provided as part  of the default 
class project setup. The SQuAD 2.0 dataset has three splits: train, dev and test.
• Train(129,941 examples):All taken from the official SQuAD 2.0 training set. 
• Dev(6078 examples):Roughly half of the official dev set, randomly selected. 
• Test(5915 examples):Remaining examples of official dev set, plus hand-labeled examples.

4.2 Evaluation Method
To evaluate the model Exact Match (EM) and F1 scores have been used as metric. Exact 
Match is binary measure of whether system output matches ground truth answer exactly. F1 
is the harmonic mean of precision and recall = 2×prediction×recall/(precision+recall).

4.3 Experimental Details
The table below summarizes the various key training details for all the four models used:

BiDAF BiDAF w/ 
Char Emb QANet QANet w/ CSAN

Optimizer 
Used AdaDelta AdaDelta Adam with β1=0.8, β2= 0.999 Adam with β1=0.8, β2= 0.999

Batch Size 64 64 32 8

Number of 
Epochs 30 30 30 30

Learning 
Rate 0.5 0.5

Inverse exponential increase 
from 0.0 to 0.001 in first 

1000 steps, then constant LR 
for remainder of training

Inverse exponential increase 
from 0.0 to 0.001 in first 

1000 steps, then constant LR 
for remainder of training

Hidden 
Size 100 100 96 64

EMA 
Decay 0.999 0.999 0.9999 0.9999

Dropout 
Probabilit

y
0.2 0.2

Dropout rates on word, 
character embeddings are 0.1 
and 0.05, the dropout rate b/
w two layers is 0.1. Adopted 

stochastic depth method 
within each encoder layer, 

sublayer l has survival prob pl 

= 1− l / L (1−pL) where L is 
the last layer and pL = 0.9.

Dropout rates on word, 
character embeddings are 0.1 
and 0.05, the dropout rate b/
w two layers is 0.1. Adopted 

stochastic depth method 
within each encoder layer, 

sublayer l has survival prob pl 

= 1− l / L (1−pL) where L is 
the last layer and pL = 0.9.

L2 Weight 
Decay 0 0 3*10-7 3*10-7
Loss 

Function NLL NLL NLL NLL



4.4 Results (Non-PCE)
Since, we are not using the pre-trained BERT Models, we have submitted our results to the 
Non-PCE leaderboard.  On  the  Test  Non-PCE Leaderboard  we achieved  EM score  of 
60.507 and F1 score of 64.099. On the Dev Non-PCE Leadership we achieved EM score 
of 62.393 and F1 score of 66.405.

The table below compares results achieved on dev set using baseline BiDAF model, BiDAF 
model augmented with character embedding, QANet architecture and QANet w/ CSAN.

4.4.1 Baseline BiDAF vs BiDAF with Character Embeddings
The  plot  below  compares  the  performance  achieved  on  the  dev  set  using  BiDAF  with 
character  embedding  (Red)  and  baseline  BiDAF model  (Blue).  As  expected,  BiDAF with 
character embedding outperforms the BiDAF model. The character embeddings are able to 
capture out of vocabulary words, hence improving the model’s performance. 

4. 4 .2 QANet

The plot below shows the dev set performance achieved using QANet architecture. As can be 
observed  that  QANet  significantly  outperforms  BiDAF  as  well  as  BiDAF  w/  Character 
Embeddings.  This  improvement  was  expected  because  QANet  not  only  learns  the 
relationships between words and order of words  in the passage and corresponding questions, 
but also where the answer appears in the passage with respect to those relationships.

Figure 5: Dev Set performance of QANet

4. 4 .3 QANet with CSAN

The plot below shows the dev set performance achieved using QANet with CSAN. Since 
CSAN tries to capture simultaneously the model dependencies among local contexts as well 
as  neighboring  subspaces  (dependencies  among the  attention  heads),  we expected  CSAN 
will  outperform the vanilla  QANet.  However,  the  below graphs depict  otherwise.  This  is 
because in order to capture the dependencies in CSAN there is an increase in the amount of  
GPU memory needed, which limits the maximum batch size we could implement on NV12 
machine to 8 with a hidden size of model as 64. This significantly reduces the achievable 
performance,  but  can  easily  be  improved  further  by  using  higher  memory  GPUs  for 

BiDAF BiDAF w/ Char Emb QANet QANet w/ CSAN

F1-Score 59.89 62.59 66.41 64.07

EM-Score 56.01 59.28 62.43 60.02

Figure 4: Dev Set performance comparison between BiDAF (Blue curve) and BiDAF with Char Embedding (Red Curve)



computation, and partly re-optimizing the code for memory usage.

Figure 6: Dev Set performance of QANet with CSAN

4. 4 .4 Ef fec t s  o f  Hyper parameters on Performance
Different hyper parameters like batch size, learning rate, loss function, stochastic dropout, 
optimization  techniques  and  hidden  size  were  analyzed  to  obtain  the  model’s  best 
performance. It was observed that the model performed best with batch size = 32, Learning 
Rate = 0.001, Loss function = Negative Log-Likelihood, Stochastic Dropout = Yes, Adam 
optimization and hidden size = 96.

5 Analysis
In order to perform qualitative evaluation, the analysis of inspecting key characteristics of 
the QANet model have been broken down into four subsections:
5.1 Error Analysis on Selected Examples
After training the model, 100 examples were selected to analyze the results produced by the 
model vs actual answers. There were 53 examples for which the actual answers were  N/A 
(no answer) and 47 examples had the answer in the context paragraph. There were two key 
observations:

• Actual Answer = N/A: The model produced 68% correct answers i.e. N/A. For the 
rest 32%, the model produced wrong written answers.

• Actual Answer = Some Text: The model produced 70% correct answers and 30% 
wrong answers  (N/A or  wrong answer).  Also,  in  case  of  the  wrong answers,  the 
model produces  N/A 40% of the time and wrong answer 60% of the time.

After observing the questions, it was observed that the maximum wrong answers occur in 
the cases when questions start with ‘what’ (41%) and ‘how’ (35%). Fewer wrong answers 
occurred in the cases when questions start  with ‘when’ (6%) and ‘who’ (18%).  The most 
common types of errors made by the model can be broken down into four categories:

5. 1 .1 Long Term Dependency
The most  common error  observed was that  the model  was not  able to perform long term 
dependency. For instance, In the example below, question was regarding Sybilla as to what 
did she introduce to Scotland. Since she was the wife of King David I’s brother, the model 
was not able to capture this  relationship and hence the question that  the model answered 
was as to what  King David introduced to Scotland rather than Sybilla.

Batch Size 32 16
F1 66.41 64.76
EM 62.43 60.81

Learning Rate 0.0005 0.001
F1 64.39 66.41
EM 60.53 62.43

Loss 
Function NLL Cross 

Entropy
F1 66.41 65.30
EM 62.43 61.97

Stochastic 
Dropout No Yes

F1 63.59 66.41
EM 60.52 62.43

Optimizer AdaDelta Adam
F1 62.38 66.41

EM 59.32 62.43

Hidden Size 64 96
F1 64.63 66.41

EM 60.78 62.43



The model can be improved by introducing self attention of phrases (n-gram words) rather 
than on single words. 
5. 1 .2 Out of Vocabulary Words
Another error that was observed, was regarding out of vocabulary (OOV) words. The word 
“non-Muslims” in the question is most likely OOV word which it was not able to interpret. 
Although character embedding has been introduced, it was not able to understand the “non-
Muslims” word, hence while concatenating the characters it dropped ‘non’ and interpreted 
as to how many Muslims are in Greater London, for which the model gave the answer of.

The model can be improved by using byte level embedding or pertained BERT embeddings.
5. 1 .3 Lexical Gap
Another challenge in natural language is that same meaning can be expressed in different 
ways.  Because  question  can  usually  only  be  answered  if  every  referred  concept  is 
identified, in below example too, model failed to produce correct answer. The question was 
what can exhaust steam not fully do if the exhaust event is ‘insufficiently long’. In context 
paragraph, answer is given in terms of ‘if the exhaust even is too brief’. The model was not 
able to relate ‘insufficiently long’ and ‘too brief’, hence resulting in the wrong answer. 

The model  can be improved by providing synonym phrases in vocabulary or  training the 
model on how a synonym is same as using ‘not’ of antonym.
5. 1 .4 Multilingualism
Finally, since there is not a single language that is always used, the model is expected to 
recognize a language and get  the results  on the go.  In this example,  although the answer 
looks  to  be  correct,  but  it  was  depicted  in  Chinese  language  since  the  context  contains 
‘Chinese:’. Since the model doesn’t understand what pinyin is, it’s not able to predict the 
English version of the answer.



The model can be improved by training the model on multilingual dictionary, so that the 
model can understand the meanings of multilingual words.

5.2 Ablation Study
The ablation study is performed on the two main components of the model: the number of 
heads  used  in  Self  Attention  and  number  of  encoder  layers  used  in  the  Model  Encoder 
Layer. As can be seen from the table, the number of encoder layers used in Model Encoder 
Layer is crucial. Changing the number of encoder layers from 4 to 8 contributes towards a  
gain of 2.1/1.9 in F1 and EM scores. This makes the number of encoder layers crucial as 
they are trying to capture local structure as well as global interactions between text. On the 
other hand, while the number of independent heads do contribute to gains in F1 and EM 
score but using lower number of heads doesn’t hamper the model too much. This is because 
the heads are concatenated independently, hence there is no interdependency which might 
effect the model a lot.

* In order to test number of heads = 8, the model had to be run on batch size of 16 to deal with CUDA out of memory error.

5.3 QANet vs QANet-CSAN
The models QANet and QANet-CSAN are also compared based on the answers provided. 
As can be observed QANet-CSAN is able to better capture lexical gaps than QANet. For 
instance,  in  the  context  below,  there  is  nothing  stated  regarding  how  unsuccessful  was 
Braddock initial effort. QANet-CSAN was able to interpret ‘None succeeded and the main 
effort by Braddock was a disaster’ and hence gave the correct result as N/A.

But as can be observed below, QANet was not so successful in interpreting the full phrase 
and hence resulted in wrong answer. This shows that QANet-CSAN can easily outperform 
QANet if the current implementation is improved further by using higher memory GPUs for 
computation, and partly re-optimizing the code for memory usage.

6 Conclusion and Future Work
In this project we used a novel approach to question and answering employed by the QANet 
authors by replacing sequential RNNs with convolutions and self-attentions as the building 
blocks of encoders. Further, in order to simultaneously capture model dependencies among 
local elements and neighboring spaces, QANet model was further extended to include 2D-
Convolutional Self Attention (CSAN). Our trained QANet model was able to obtain an F1 
score of 66.41 and EM score of 62.43 on Squad 2.0 dev dataset. Further, we obtained an F1 
score  of  64.07  and  EM  score  of  60.02  for  QANet  with  CSAN.  The  score  obtained  for 

# Encoder 
Layers 3 7

F1 64.31 66.41
EM 60.53 62.43

# of Heads* 4 8

F1 64.76 63.6
EM 60.81 59.7



QANet w/ CSAN is lower than QANet score because we could only use a small model and 
batch size when using QANet w/CSAN due to the limited GPU memory available on NV6 
machines.  Hence this  can be further  improved by optimizing the code for  memory usage 
and also using higher memory GPUs for computation. The model can be further improved 
by introducing self attention of phrases (n-gram words) rather than on single words. Also 
using byte level embedding or pertained BERT embeddings can further help in dealing with 
Out of Vocabulary words.
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