
SQuAD: Eliminate What You Don’t Know

Todd Macdonald
Dept. of Computer Science

Stanford University
Stanford, CA 94305

tmacd@stanford.edu

Ashwin Sreenivas
Dept. of Computer Science

Stanford University
Stanford, CA 94305

ashwinsr@stanford.edu

Jessica Zhao
Dept. of Computer Science

Stanford University
Stanford, CA 94305

jesszhao@stanford.edu

Abstract

Machine reading comprehension is an active field of research that involves read-
ing, understanding, and answering questions about a passage of text. The recent
publication of BERT, Bidirectional Encoder Representations from Transformers
(Devlin et al. 2018), brought significant, near instantaneous, performance gains
to this field. Specifically, BERT improved state of the art performance in both
SQuAD 1.1 and SQuAD 2.0 (Rajpurkar et al. 2018) simply through the use of
BERT’s contextual encodings to identify answer spans in a passage. However, our
experiments show that models based on BERT still perform poorly at identifying
unanswerable questions in SQuAD 2.0. To improve upon this, thereby improving
BERT’s performance on the dataset as a whole, we ensemble the fully fine-tuned
BERT model with an analogous BERT verifier model that shares the same archi-
tecture. We show that the verifier’s ability to identify unanswerable questions
materially improves upon the performance of a BERT model that has been fully
fine-tuned on the SQuAD 2.0 dataset.

1 Introduction

The introduction of SQuAD 2.0 significantly increased the difficulty of the popular question-
answering benchmark. It’s precursor, SQuAD 1.1, simply required that an NLP model identify
spans of text from a given context passage to answer a series of questions. Importantly, every question
was guaranteed to have an answer span in its corresponding passage. Models such as BERT quickly
achieved near human-performance on this challenge. The introduction of SQuAD 2.0 changed this.
Primarily, SQuAD 2.0 introduced unanswerable questions; now, rather than simply identifying answer
spans, an NLP model would also have to identify questions that had no corresponding answer in the
passage. Interestingly, this increase in complexity significantly hurt the performance of previously
state-of-the-art models like BERT that achieved near human performance.

In this paper, we extend the work of Devlin et. al (BERT) and Sun et. al (U-Net) to build more power-
ful question-answering models on SQuAD 2.0. Our approaches for modifying these architectures are
detailed in Section 3.

2 Related Work

Our first baseline is a simplified version of the model architecture described in Min Joon et al.’s study
Bi-Directional Attention Flow For Machine Comprehension” [6]. Most notable in Min Joon et al.’s
work, as noted in the study’s title, is the attention layer, which includes both context-to-question and
question-to-context attention. The input to the attention layer is the contextual word embeddings of
the question and context, which are the hidden states of a bidirectional LSTM, which takes itself as
input the word embeddings of both sequences [6].

We used Devlin et al.’s language representation model called Bidirectional Encoder Representations
from Transformers, or BERT, in our second baseline. It uses a novel application of Transformers
called a multi-layer bidirectional Transformer. Compared to traditional encoder representation
approaches, such as with a bidirectional LSTM, that condition separately on the left and right contexts
of a sequence, the BERT representations are advantageous in that they are conditioned on both the
left and right context concurrently. In figure below, we can see how the input to each transformer unit
in a given layer is all of the outputs from the previous layer. For the first transformer layer, the input
is all of the sub-word embeddings in the sequence (e.g., the question and passage, as in SQuAD).

Figure 1: Baseline architectures. (a) Devlin et al.’s BERT [1]; (b) Vaswani et al.’s Transformer [8];
(c) Sun et al.’s U-Net [7].

One of the building blocks to the BERT baseline, as well as multiple of our experimental models, is an
attention mechanism known as the Transformer, introduced by Vaswani et al. [8]. Unlike with RNN’s,
a Transformer does not use an autoregressive structure, in which each token of the input sentence
would need to be sequentially passed in as input. As a result, the Transformer can process all of the
tokens in the input or output in parallel. These computational blocks consist of multi-headed self
attention, residual connections, and a feed forward layer. Self-attention involves attending an input
with a trainable representation, and multi-headed attention involves using several copies of a simpler
attention mechanism, such as dot-product attention, whose representations are then concatenated as
input into a feed-forward layer.

We also use Sun et al.’s machine comprehension model called U-Net for our third baseline [7]. U-Net
seeks to address the unanswerable questions of SQuAD 2.0 by introducing an answer pointer to
predict answer spans, a no-answer pointer to avoid selecting any spans in the case of unanswerability,
and an answer verifier to determine the unanswerability probability of a question. The authors use a
combination of non-PCE and PCE embeddings, including GloVe and ELMo. These three subtasks are
unified in an end-to-end pipeline whose implementation we further describe and modify in Section
3.5.

3 Approach

3.1 Baseline: BiDAF

This is the baseline that was part of the starter code for the default final project. Since we did not
modify this code at all, and since it is not central to our paper, we omit describing it here. However,
we will compare its performance to the rest of our models in Section 4.

2

3.2 Baseline: BERT

For our baseline, we use a PyTorch pre-trained BERT model, from Huggingface, that is adapted for
SQuAD. For predictions, we use the additional linear layer, on top of the vanilla BERT model, that
outputs logits for the start and end indices of the predicted answer [3].

To identify unanswerable questions, an OOV token is appended to the beginning of the input to the
BERT model. The log probability of a question being unanswerable is equal to pstart(0) + pend(0),
where pstart(0) and pend(0) are the logits for the start and end indices of the answer being the OOV
token.

For best model performance, we follow the pre-training and fine-tuning procedures as mentioned
in Devlin et al. In pre-training, the model is given an input sequence in which some of the words
are masked. The prediction task is then to predict the masked words using the context of the other
words, which Devlin et al. refer to as the "masked language model" objective [1]. The pre-training
corpus consists of over 3 billion words from BooksCorpus and English Wikipedia, many orders of
magnitude larger than the SQuAD dataset, which has only about 150,000 questions, and as such
enables significant transfer learning [1].

Since the Huggingface implementation of BERT includes saved model weights from the pre-training
step, we use these weights instead of pre-training the model ourselves. For the fine-tuning step, we
then use the BERT model, initialized with weights from the pre-training step, with an additional
linear layer, and train this model in SQuAD. From the output of the final (12th) transformer layer,
we get the contextual embeddings for each sub-word in the input sequence. The linear layer then
converts these contextual embeddings into two logits that represent the probability that the start and
end of the answer sequence are that sub-word.

To train this model, we average the multi-class cross-entropy loss over the start and end indices of the
model’s output. The results of this approach are described in Section 4.

3.3 Baseline: U-Net

For our last baseline, we use Sun et al.’s U-Net Machine Comprehension model, from FudanNLP,
which introduces an answer verifier to address the non-answerable questions in SQuAD 2.0 [2].
U-Net takes in GloVe and ELMo embeddings as input and feeds them through several layers of
Multi-Attention and Self-Attention before arriving at a three-part loss function focused on capturing
answerability. The results of this approach are described in Section 4, and we detail how we build
upon this model in Section 3.5

3.4 BERT + Answer Verifier

This approach is the ensemble of two other models. First, we use the Baseline BERT model from
section 3.1 that has been fine-tuned on the SQuAD 2.0 dataset and has an additional linear layer for
the start and end indices of the predicted answer.

Second, we independently train another BERT model that has the same architecture as the baseline
BERT model. However, this model only has one output in its final fully connected layer: whether
or not the question is answerable. We adapt the SQuAD 2.0 dataset to have the "answers" to the
questions+context pairing to be whether or not the question is answerable. Then, we can train this
model using a simple binary cross-entropy loss.

Finally, the two models above are ensembled. The second model is used first to predict whether
or not a question is answerable. If it isn’t, the entire model simply predicts that the question is not
answerable. If it is, the first model is run and the output of the first model is used as the final answer.
(Note, in practice, both models are run simultaneously and the results of the first model are only
used if the second model predicts that the question is answerable). The results of this approach are
described in Section 4.

3.5 BERT + U-Net

In this approach, we build upon the U-Net Machine Comprehension architecture proposed by Sun et
al. Instead of GloVe and ELMo embeddings as model input, we use embeddings from the Baseline

3

BERT uncased model from Section 3.2 that has been fine-tuned on SQuAD 2.0. We considered
several ways to incorporate these embeddings and built three custom models before deciding to
focus on the third. In the first model, we aimed to replace GloVe with BERT embeddings at
the preprocessing step. However, because the BERT embeddings are contextual while the GloVe
embeddings are not, we could not appropriately construct a token-to-vector mapping without losing
the contextual advantages of BERT. In the second model, we attempted to keep GloVe embeddings and
replace ELMo embeddings with BERT. However, we faced challenges as both the GloVe and ELMo
embeddings were based on the allennlp tokenizer while BERT uses its custom WordPiece tokenizer,
which for a single example, generally produced more tokens than the former. This difference resulted
in dimension incompatibilities. Therefore, in our final model, we decided to focus solely on passing
BERT embeddings through the U-Net model to reduce dimensional inconsistencies.

To achieve a rich-text representation, we use both case-sensitive and case-insensitive information by
extracting the original paper’s part-of-speech and name entity recognition features with case-sensitive
input tokens, concatenating original, lowercased and lemmatized text representations, and finally
incorporating our additional BERT contextual data with case-insensitive input tokens.

Then, following the authors’ approach, we build an input layer composed of a fused representation of
question, passage, and universal node focused on learning answerability. The collective representation
allows for an end-to-end prediction model with a consolidated loss function rather than a fragmented
pipeline that isolates the answer verifier segment from the rest of the model. To arrive at this fused
representation:

1. Each word in question and passage is a d−dimensional embedding, where d = 768 follow-
ing the shape of BERT embeddings. We concatenate the question, U-node, and passage
representations into a single vector V ∈ <dx(mxn+1)

2. We use a BiLSTM of two layers to produce low-level and high-level semantic representations
Hl and Hh.

3. We concatenate Hl and Hh and run it through a BiLSTM of one layer to produce the full
representation Hf .

4. We perform multi-level attention between questions and passages to find Ĥl, Ĥh, Ĥf .

5. We perform self-attention. To do so, we use a BiLSTM to concatenate H and Ĥ .

HA = BiLSTM([H l;Hh;Hf ; Ĥl; Ĥh; Ĥf])

Then we concatenate the original V :

A = [V ;HA]

Then we apply self-attention upon the fused information A to arrive at the attended Â.
6. To arrive at the final fused representation,

O = BiLSTM [HA; Â]

We use the loss functions of three prediction tasks:

1. Answer pointer, to detect answerability and predicts an answer from the passage text
spanning (a, b):

LA = −(logαa + logβb)

2. No-answer pointer to detect non-answerability, where α0 and β0 correspond to the position
of the universal node:

LNA = −(logα0 + logβ0)

3. Answer verifier, which uses a prediction pc built upon information from the question,
passage, and universal-node. δ∈{0, 1} indicates answerability.

LAV = (δlogpc + (1− δ)(log(1− pc)))

To train, we combine the losses into a single function:

L = δLA + (1− δ)LNA + LAV

Finally, we re-add the linear layer to arrive at the start and end logits.

4

3.6 Code and Original Approach

Our three baseline models are each constructed from their repositories cited below.

Our BERT + Answer Verifier model is adapted from the Huggingface BERT repository implemented
in PyTorch. We extended this model to include our additional verifier model; this involved modifi-
cation of the actual final prediction layer, and the costs associated with it for training (detailed in
section 3.4). We also wrote the code to combine the predictions of BERT with the verifier.

Our BERT + U-Net model is adapted from the FudanNLP repository but incorporates several
new bodies of code. For each of our three experimental models under the U-Net exploration, we
constructed independent training and model classes as well as many helper functions to modify
BERT examples to feed into the U-Net architecture. Our approach is original in its combination of
case-sensitive and case-insensitive data, the former of which is valuable in capturing named entities
that often form answers and the latter of which is valuable in generalizing textual content to perform
more robustly on unseen data.

Additionally, we wrote two pipelines to translate BERT and U-Net predictions to the desired csv
format in order to submit to the leaderboard.

We also wrote code to perform quantitative and qualitative error analysis to illuminate patterns in the
performance of question-passage pairs and categorize scores by answer type, which we discuss in
Section 5.

4 Experiments

4.1 Data

We are using the modified CS224N SQuAD 2.0 datasets, which are a subset of the original SQuAD
2.0 datasets released by Rajpurkar et. al [5].

4.2 Evaluation Method

For our metrics of choice, we intend to follow the rest of the SQuAD 2.0 leaderboard and optimize
the F1 and EM scores obtained by all of our models.

Note that we have three baselines here. The first baseline is the one from the default starter code. The
second baseline is the Huggingface BERT model that has been finetuned on the SQuAD 2.0 dataset
(described in Section 3.1). The third baseline is U-Net (described in Section 3.2).

We have built upon these baselines using two other approaches. The first is the BERT+Answer
Verifier model, described in Section 3.3, that should be compared to the BERT baseline. The second
is the BERT+U-Net model, described in Section 3.4, that should be compared to the U-Net baseline.

4.3 Experimental Details

The Huggingace BERT baseline implementation was fine-tuned on the SQuAD 2.0 dataset for 6
hours for two epochs on an Azure NV12, using two GPUs. Since computational constraints now
allowed for it, we fine-tuned the entire model with a low learning rate, instead of restricting ourselves
to the top layers alone. We used the following hyperparamters to fine-tune:

• Batch size: 12
• Learning rate: 3× 10−5

• Max sequence length: 384

• Doc stride: 128
• Epochs: 2

Similarly, we tuned the two ensembled components of the BERT+Answer verifier layer on the
SQuAD 2.0 dataset on an Azure NV12, using two GPUs. We also fine-tuned the entirety of both
models using the same hyperparameters as above.

As for U-Net, we tuned the FudanNLP U-Net implementation on the SQuAD 2.0 dataset for 6 hours
over 30 epochs on Azure NV12. We used the following parameters to fine-tune:

5

• Batch size: 32
• Learning rate: 2× 10−3

• Max sequence length: 384
• Epochs: 15 and 30 (separate runs)

We tuned the BERT + U-Net model, adapted from the FudanNLP repository, on the SQuAD 2.0
dataset for 12 hours over 6 epochs using Azure NV24. We used the following parameters to fine-tune:

• Batch size: 32
• Learning rate: 2× 10−3

• Max sequence length: 384

• Doc stride: 128
• Epochs: 6

4.4 Results

Running the experiments described in Section 3 yielded the following results on the SQuAD 2.0 dev
and test sets:

Model EM F1 EM-HA EM-NA F1-HA F1-NA
Baselines

BiDAF 57.63 60.86 60.58 52.61 67.18 52.61
BERT + Linear Layer 65.76 69.22 74.30 57.92 81.52 57.92

U-Net (15 epochs) 46.38 51.28 52.61 40.66 62.85 40.66
U-Net (30 epochs) 66.70 70.95 55.32 77.15 64.30 77.15

Ensembles
BERT + U-Net (Dev) 59.56 64.10 57.22 61.71 66.71 61.71

BERT + Verifier (Dev) 67.03 70.37 71.24 63.16 78.21 63.16
BERT + Verifier (Test) 67.46 71.15 – – – –

Other
224N Official Baseline (Test) 56.29 59.92 – – – –

Human Performance 86.83 89.45 – – – –

Figure 2: Baseline and Experimental Results. Note that all results should be compared to the PCE
leaderboard.

5 Analysis

5.1 Qualitative Evaluation

5.1.1 BERT + Answer Verifier

To better understand how our top models, BERT and BERT + Answer Verifier, do on different types
of answers, we divide the results into subsets dependent on certain properties of the predicted answer
strings.

Answer attribute BERT EM BERT F1 BERT+Verifier EM BERT+Verifier F1
Single word answer (nonempty) 59.87 61.88 61.36 63.42

Two word answer 57.17 60.57 58.39 61.90
> 1 word answer 51.11 58.13 52.74 60.05
Answer is digit 62.75 63.92 65.65 66.93

Repeated > 3 times (non-empty) 48.57 50.42 48.31 50.02
Repeated > 3 times & multi-word 43.42 47.39 41.67 44.80

Predicted answerable 54.17 59.44 55.77 61.23
Predicted unanswerable 87.93 87.93 84.75 84.75

Figure 3: EM and F1 scores for the BERT and BERT + Answer Verifier models on different subsets
of the dev training set.

In both models, we see that the EM score is much higher in predicted answers that are a single word
while the F1 scores are relatively similar. For instance, the F1 score with the BERT model is 61.88

6

and 58.13 with one word and greater than one word answers, whereas the respective EM scores are
59.87 and 51.11. This result makes intuitive sense, as shorter answers are often named entities or
numbers, for which it is easier to identify the exact beginning and ending indices. Digits such as
dates, a subset of single word answers, have even higher EM and F1 scores, at 62.75 and 63.92 for
the vanilla BERT model.

Interestingly, we see that both the BERT and BERT+Verifier models perform significantly worse
when predicting several questions to have the same answer. For instance, the vanilla BERT model
achieves a 58.13 F1 on multi-word answers but only a 47.39 F1 score on multi-word answers that the
model predicts at least 3 times (for 3 separate questions). This result indicates that the models tend to
over-predict common answers to questions.

Figure 4: Comparison of question length to F1 score for unanswerable questions. F1 scores are for
the BERT + Answer Verifier model.

Overall, the question length of unanswerable questions does not have a strong correlation with
model performance for questions at least 30 characters long. While the result for the 10-19 character
question length can be discounted, as there are only 4 such questions, the 20-29 character length
interval has 111 such questions, which is more significant and may indicate that it is more difficult to
predict unanswerable questions if the question is quite short, possibly due to a lack of context in the
question.

5.1.2 BERT + U-Net

We observe that BERT + U-Net is outperformed by both the U-Net baseline and BERT + Answer
Verifier. This may be for a few possible reasons. First, we trained BERT + U-Net for 6 epochs over
12 hours on NV24, compared to U-Net for the full 30 epochs over 6 hours on NV12. Therefore, the
resulting numbers may be partially attributed to the lower number of epochs. Notably, our 6-epoch
model outperforms vanilla U-Net’s 15-epoch model on every measure, suggesting the robustness of
BERT embeddings and a higher score if trained over the full 30 epochs.

Since BERT embeddings are already fine-tuned, it is possible that passing them through U-Net’s
multiple layers of attention, on top of BERT’s existing layers of attention, dilutes the contextual
information already present in the vectors. This suggests some redundancy in U-Net’s attention
layers, resulting in diminished performance compared to BERT + Answer Verifier. An improved
BERT + U-Net architecture might focus on the unanswerability pointer of U-Net to improve the score
gap between answerable and unanswerable questions, and place less focus on learning answer spans,
a task on which BERT with simple modifications already performs well.

5.2 Quantitative Analysis

5.2.1 BERT + Answer Verifier

In comparison to the BiDAF baseline model, we see that the baseline BERT, using only a linear layer
on top of the BERT model, has significantly better EM and F1 scores for every category in the table.

7

As we can see, the fine-tuned BERT model takes significant performance penalties because it is
unable to effectively identify when a question is unanswerable. While it enjoys an F1 score of 81.52
on questions that have an answer, it drops to 57.92 on questions that do not have an answer.

Our BERT + Verifier ensemble is designed to better this discrepancy. By preemptively identifying
questions that are not answerable, it is able to significantly boost performance in unanswerable
questions. Notice that this approach boosts F1 scores of unanswerable questions to 63.16, from the
57.92 for baseline BERT. This significant performance gain comes only at the cost of a slight penalty
to the F1 score of answerable questions. The EM metric also receives benefits analogous to the F1
score.

Our model also does not overfit to the train and dev sets as can be seen by the results in Figure 2 -
both the EM and F1 scores on the test set are in line with those on the dev set.

5.2.2 BERT + U-Net

Out of all the models, BERT + U-Net achieves the smallest differential of approximately 5 points
between F1-Has Answer and F1-No Answer scores, suggesting that its subtask pointers for an-
swerability are working to balance out predictions for both categories of answers. The next closest
differential is approximately 15 points for BERT + Verifier. Additionally, we observe a nearly 4-point
improvement in F1-No Answer (61.71, compared to the BERT baseline of 57.92), suggesting the
model’s strength in detecting unanswerability may increase with more training time.

6 Conclusion

The introduction of unanswerable questions in SQuAD 2.0 significantly hurt the performance of
models that performed at near human-levels. In this paper we have shown that state-of-the-art models
such as BERT suffered this performance penalty because they were substantially worse at identifying
unanswerable questions than they were at answering questions that did indeed have answers. To
combat this, we introduced an ensemble model, the BERT+Verifier, which consisted of two models
with similar architectures: the first was a BERT model that was trained to identify answer spans; the
second was a model based off of BERT whose sole purpose was to identify unanswerable questions.
We show that this ensemble is able to boost the overall performance on SQuAD 2.0 since the verifier
model is able to adequately screen out unanswerable questions.

Our work also highlights the large computational resources required of model architectures such as
BERT and possible future directions of research that could address this issue. While BERT utilizes a
model architecture that is highly parallelizable, this parallelization requires immense computational
resources. Running BERT on Azure’s NV-12 instance, we could only use a batch size of 4, and
as a result each epoch would take about 3 hours, compared to 15 minutes for the vanilla U-Net.
Therefore, while BERT-related models perform better over an equal number of epochs, they require
more computational resources to do so. Furthermore, the pre-training step of BERT is even more
computationally costly. Google researchers pre-trained the large BERT model on 16 Cloud TPU’s
over 4 days; at the current price of $4.5 per TPU per hour, the computational cost is around $7000,
above the budget for many researchers [1]. Therefore, while BERT has proven to be a successful
model architecture, future directions of research could explore using this new model architecture in a
computationally constrained environment.

8

References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[2] FudanNLP. The official implementation of paper u-net: Machine reading comprehension with
unanswerable questions. https://github.com/FudanNLP/UNet, 2018.

[3] huggingface. The big extending repository of transformers: Pytorch pretrained models
for google’s bert, openai gpt gpt-2, google/cmu transformer-xl. https://github.com/
huggingface/pytorch-pretrained-BERT, 2019.

[4] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[5] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for squad. arXiv preprint arXiv:1806.03822, 2018.

[6] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. CoRR, abs/1611.01603, 2016.

[7] Fu Sun, Linyang Li, Xipeng Qiu, and Yang Liu. U-net: Machine reading comprehension with
unanswerable questions. arXiv preprint arXiv:1810.06638, 2018.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008, 2017.

9

https://github.com/FudanNLP/UNet
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT

	Introduction
	Related Work
	Approach
	Baseline: BiDAF
	Baseline: BERT
	Baseline: U-Net
	BERT + Answer Verifier
	BERT + U-Net
	Code and Original Approach

	Experiments
	Data
	Evaluation Method
	Experimental Details
	Results

	Analysis
	Qualitative Evaluation
	BERT + Answer Verifier
	BERT + U-Net

	Quantitative Analysis
	BERT + Answer Verifier
	BERT + U-Net

	Conclusion

