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Abstract

Our main goal is to produce a question answering (QA) system that performs
well on SQuAD 2.0 and improves upon the BiDAF baseline, through use of the
BERT model. To do so, we experiment with fine-tuning BERT, and with adding
two different attention mechanisms to BERT: Attention-over-Attention (AoA) and
Dynamic Coattention Network (DCN). The fine-tuned BERT model achieved the
highest scores: EM score of 73.69 and and F1 score of 76.98 on the test dataset.
We believe our attention mechanisms hold promise to improve upon this score, but
require additional fine-tuning and experimentation.

1 Introduction

Our task is to create a question answering (QA) system that performs well on the Stanford Question
Answering Dataset (SQuAD), particularly on SQuAD 2.0. QA is a very important task in NLP,
as it holds great promise to automate reading comprehension, and to ultimately help us extract
useful information from massive amounts of text data. Open-domain QA dates back to the 1960s,
and traditional methods relied on linguistics techniques, such as Named Entity Recognition (NER),
Parsing, and Part of Speech (POS) tagging. More recently, deep learning models have shown great
promise for the QA task, yielding significantly better results.

The SQuAD 2.0 dataset differs from SQuAD 1.0 in that it contains unanswerable questions as well as
answerable questions - whose answers are spans of text in the corresponding document. Therefore the
SQuAD 2.0 task is difficult for two reasons: (1) systems must determine when no answer is available,
(2) systems must correctly return the span of text which answers the question when possible. In
this project, we investigate Google’s revolutionary model, Bidirectional Encoder Representations
from Transformers (BERT) [2], which was released at the end of 2018. BERT is a pre-trained,
general purpose language representation model, which can be fine-tuned on NLP tasks such as QA. In
addition to fine-tuning BERT, we also implement our own versions of Attention-over-Attention (AoA)
[1] and Dynamic Coattention Network (DCN) [6] on top of BERT. Out of all our models, the BERT
fine-tuned model (with no additional attention) performs best on the SQuAD 2.0 dataset, achieving
an F1 score of 77.72 on the dev set and an F1 score of 76.98 on the test set. We believe our additional
attention mechanisms have potential to outperform this model, but require more hyperparameter
fine-tuning to achieve better results.

2 Related Work

There are two main classes of models used to solve QA tasks: pretrained contextual embeddings
(PCE) models, and non-PCE models. PCE methods, such as Embeddings from Language Models
(ELMo, 2018) [4] and Bidirectional Encoder Representations from Transformers (BERT, 2018)
[2], are newer and achieve state-of-the-art results. The novelty of ELMo and BERT is that word
embeddings are based on the context that a word appears in, as opposed to using fixed embeddings
for words. Both methods pretrain weights on a large-scale language modeling dataset, which can be



loaded as initial layers of other models. Non-PCE methods do not use pretrained weights to generate
predictions. Non-PCE model types include character-level embeddings (as used in Bidirectional
Attention Flow for Machine Comprehension (BiDAF)1 [5], self-attention (as used in R-Net) [3], and
Transformers (as used in QANet) [7].

We explore PCE models, given their impressive performance over non-PCE methods. In particular,
we use BERT instead of ELMo, because it uses Transformers, which have become the dominant
model family for deep learning in NLP. BERT trains deep Transformers on a bidirectional language
modeling task, and achieves state-of-the-art results on many NLP tasks, including SQuAD v1.0 and
v2.0. Indeed, the top twenty models on the SQuAD 2.0 leaderboard all use BERT in some way.2
BERT’s most important technical innovation is the bidirectional nature of the model. The major
limitation of other language models (LMs) is their unidirectionality, because tokens can only attend
to previous tokens in the self-attention layers. This is restrictive for QA, where it is very important to
use context from both the left and right of each token.

For further inspiration, we examine the models used in conjunction with BERT on the SQuAD 2.0
leaderboard. The top submissions are all quite recent, so many lack published papers. We did find
papers on Attention over Attention (AoA, 2017) [1] and Dynamic Coattention Network (DCN, 2018)
[6], which are used in the models in 11th and 26th place, respectively.

AoA’s novelty is that it places a second attention mechanism over the document-level attention to
produce “attended attention.” AoA was designed for the cloze-style reading comprehension problem.
The cloze-style task is very similar to the QA task, although it traditionally requires predicting a
single word, rather than a start and end word to produce an answer span from the text. Therefore the
prediction portion requires adaptation for SQuAD.

DCN is designed for the QA task, and has three main contributions. First, DCN has a Coattention
Layer, which provides two-way attention (context to question, and question to context). Second, DCN
also attends over representations that are themselves attention outputs, thus forming a second-level
attention mechanism. Third, DCN introduces a dynamic pointing decoder that iterates over potential
answer spans. This iterative procedure allows the model to escape local maxima corresponding to
incorrect answers.

3 Approach

3.1 Overview

We use three models, all of which include open-source BERT code. The first is a fine-tuned version
of the BERT model adapted for SQuAD, the second is BERT + AoA, and the third is BERT + DCN.

We use the following BERT implementation and pretrained weights, adapted for PyTorch: https:
//github.com/huggingface/pytorch-pretrained-BERT.

3.2 BERT Model

Google’s BERT model is a multi-layer bidirectional Transformer encoder designed to pretrain deep
bidirectional representations by conditioning on the left and right context of all layers jointly. The
encoder incorporates six identical layers, each with two sub-layers: a multi-head self-attention
mechanism and a position-wise fully connected feed-forward network. There is a residual connection
around the sub-layers. This is followed with layer normalization.

BERT pre-trains on the concatenation of BooksCorpus (800M words, Zhu et al., 2015), and English
Wikipedia (2,500M words). Each input sequence is generated by sampling two spans of text, the
first of which receives the sentence A embedding, and the second of which receives the sentence B
embedding. The input representation sums up token embeddings (WordPiece embeddings), segment
embeddings (representing whether the word belongs to sentence A or B), and position embeddings
(see Figure 1).

1BiDAF is used as the default project baseline, however, without character-level embeddings.
2https://rajpurkar.github.io/SQuAD-explorer/
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Figure 1: BERT input embeddings

BERT is pre-trained using two unsupervised prediction tasks. The first is Masked Language Modeling
(MLM), and is necessary to create a ’bidirectional’ model. The authors use MLM to mask 15% of
tokens at random in each sequence and then predict only those tokens. The second task is Next
Sentence Prediction (NSP), which is critical for QA, because it allows for the model to learn the
relationship between pairs of sentences. When selecting sentences A and B for each pre-training
example, 50% of the time B is the true next sentence, and 50% of the time it is a randomly selected
sentence. Because MLM only predicts 15% of words in each batch, BERT converges more slowly
than left-to-right approaches, but outperforms them after a small number of pretraining steps.

BERT can be easily adapted for many tasks, including QA on the SQuAD dataset. Each input
question and paragraph is packed into a single sequence. Questions receive the A embedding, and
paragraphs receive the B embedding. During the fine-tuning process, the only new parameters learned
are: a start vector S ∈ Rh, and end vector E ∈ Rh, where h is the hidden size. The probability of
word i being the start of the answer span is the dot product between the final hidden vector for the ith
input token, Ti, and S, softmaxed over the words in the paragraph:

Pi =
eS·Ti∑
j eS·Tj

A similar process is done to find the end of the answer span. At inference time, we must impose that
the end of an answer span must come after the start of the answer span.

The huggingface repository provides an example, run_squad.py, that allows us to fine-
tune an instance of BertForQuestionAnswering, the BERT model adapted for SQuAD.
BertForQuestionAnswering is a BERT Transformer with a token classification head on top,
and has a from_pretrained class method that allows us to load BERT weights that are pretrained
specifically for the SQuAD task. This runs the output from the generic BertModel through a Linear
Layer to obtain start and end logits. Cross Entropy Loss is used during training, and softmax is used
in the write_predictions function to select the most likely start and end positions for each answer
span. To fine-tune BERT, we experiment with different hyperparameters, and run run_squad.py.

3.3 Attention over Attention

For our second model, we add an AoA architecture to the BertModel output. We edit the
BertForQuestionAnswering class in the modeling.py file. First, we split the output of the
BertModel, into queries (Q) and contexts (C), each padded to a maximum length. We then have
Q ∈ Rh×n and C ∈ Rh×m, where h is the hidden size of the BERT output (h = 768), n is the length
of the padded queries (n = 66), and m is the length of the padded contexts (m = 382).3 We calculate
M , the pair-wise matching matrix containing similarity scores of all document and query word pairs:

M = DTQ ∈ Rm×n

We apply a column-wise softmax on M , to calculate query-to-context (Q2C) attention at time t
(α(t) ∈ Rm), and a row-wise softmax to calculate context-to-question (C2Q) attention (β(t) ∈ Rn):

α(t) = softmax(M(1, t), ...,M(m, t))
β(t) = softmax(M(t, 1), ...,M(t, n))

Because QA only relies on Q2C attention, we average all β(t) to produce β, an averaged query-level
attention.
3Please note that we did not remove the CLS or SEP tokens

3



We calculate the ’attended document-level-attention’, s ∈ Rm, as the dot product of α and β. This
essentially is a weighted sum of each α(t) in regards to a query word at time t:

s = αTβ

We append s to the context hidden states produced by BERT, and feed the result into a Linear Layer,
to obtain start and end logits. We believe s provides valuable information and should improve
predictions, since document-level attention incorporates the importance of each query word.

3.4 Dynamic Coattention Network

Our third model adds a variation of DCN to the BERT output. As described in section 3.4, we obtain
queries (Q) and contexts (C), each padded to a maximum length. Note that DCN requires appending
sentinel vectors to the query and contexts, because these allow the model to not attend to any word.
These sentinel vectors are trainable parameters in the DCN embedding layer. Since we replace this
embedding layer with the BERT outputs, we preserve the SEP tokens4 at the end of the queries and
contexts to act as proxies for the sentinel vectors.5 We then calculate L = DTQ ∈ Rm×n, the affinity
matrix containing scores corresponding to all pairs of document and question words.6

We use L to compute attention outputs for both directions.7 We take a row-wise softmax of L to
obtain the matrix α, which is used to calculate C2Q Attention outputs (a ∈ Rm×h). We take a
column-wise softmax of L to obtain the matrix β, which is used to calculate Q2C Attention outputs
(b ∈ Rn×h)8:

a = α QT , b = βTDT

Next, we use the the C2Q attention distribution, α, to take weighted sums of the Q2C attention output,
b, which gives us the second-level attention outputs, s:

s = α b ∈ Rm×h

We then concatenate the second-level attention output s with the C2Q attention output a, and feed
this sequence through a bidirectional LSTM. The concatenated forward and backward hidden states
form our coattention encodings:

{u1, ..., uN} = BiLSTM ({[s1; a1], ..., [sN ; aN ]})

The DCN paper describes a dynamic decoder to avoid getting stuck in local maxima when making
predictions, but due to time constraints for this project, we implement a similar decoder to that
of BiDAF. For our first version of our BERT + DCN model (v1), we calculate logits by summing
the projection of attention through a Linear Layer with output size 2, and the projection of the
bidirectional LSTM output using a Linear Layer with output size 2. We then split the result into the
start and end logits, and use the Cross Entropy Loss that BertForQuestionAnswering uses. For
our second version of our BERT + DCN model (v2), we use Linear Layers with output size 1 to
predict the start logit distribution. We then run the output of the bidirectional LSTM through another
bidirectional LSTM, and sum the linear projection of those outputs with the linear projection of the
attention layer to obtain the end logit distribution.

3.5 Baseline

For our baseline we refer readers to the BiDAF model described in the default project specification.9

4These parameters are learned during BERT fine-tuning
5We remove the CLS token at the beginning of each query. Thus, the padded length of queries is now n = 64.
6Note that this is equivalent to the computation of M in AoA.
7Please note that the naming conventions for α and β in DCN and AoA are reversed
8Please note that both the row-wise and column-wise softmaxes are masked softmaxes, so padding receives a

probability of 0. We use similar functions as those used in the baseline code provided by Chris Chute.
9http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf#page=7
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4 Experiments

4.1 Data

We are using the custom SQuAD dataset provided. Our dataset split is as follows:

• train (129,941 examples): All taken from the official SQuAD 2.0 training set

• dev (6078 examples): Roughly half of the official dev set, randomly selected

• test (5921 examples): Remaining examples from the official dev set, and hand-labeled ones

To run the BiDAF baseline model, as well as our BERT models, we use the train and dev datasets. For
our highest performing model (fine-tuned BERT) we also make final predictions on the test dataset.

4.2 Evaluation Method

To evaluate the results of our model, we convert the predictions file from a json to a csv format to
submit to the leaderboard and calculate EM and F1 scores. For questions with no answer (NA), both
the F1 and EM score are simply 1 if our model correctly predicts NA and 0 otherwise. For questions
with answers, the maximum F1 and EM scores across the three human-provided answers are taken.
In the end, our EM and F1 scores are averaged across the evaluation dataset to get the reported scores.

4.3 Experimental Details

First, we run the baseline model using the command from the default project specification.9 This
model takes roughly 9 hours to train on our NV6 VM.

Second, to run the BERT model for SQuAD, we utilized the version 2, bert-base-uncased model with
the following parameters: a learning rate of 3e−5, 3.0 training epochs, a max sequence length of 384,
and a document stride of 128 (See Appendix 2 for full command).10

Fine-tuning this BERT model takes approximately 9 hours on an NV12 (batch size of 12), and
approximately 12 hours on an NV6 (batch size of 6).11 BERT + AoA takes approximately 14 hours
to train on an NV6 (batch size of 6). BERT + DCN (v1) takes approximately 16 hours to train on an
NV12 (batch size of 6)12, and we estimate BERT + DCN (v2) will take roughly 24 hours to train on
an NV12 (batch size of 6).13

4.4 Experimentation with BERT Query & Context Splitting

We attempt two methods for splitting BERT’s output into query and context, which is necessary
to calculate attention. In the first method, we use the token_type_id_masks, which assign 0 to
query (and padding) tokens, and 1 to context tokens, to partition the BERT hidden output tensor
within modeling.py. In the second method, we pad queries to the maximum question length of 64
in run_squad.py. This allows us to know exactly where to partition the BERT hidden state output
tensor (unlike the previous method, in which query lengths are variable). This standardizes splitting,
but may also reduce the length of certain context sequences, because the maximum total sequence
length is retained at 384.14 Unfortunately, an error appears in the second method after training.15

Since this error only surfaces after many hours of training, we did not find it fruitful to continue
debugging given time constraints. Thus, we use the first method for our BERT + AoA and BERT +
DCN models.

10train_batch_size requires modification depending on the model and VM, due to memory constraints.
11To obtain final predictions for the test leaderboard, we use the same command on our NV12, but with the

test-v2.0.json dataset as the prediction file.
12Note that we reduce the batch size even though we use a NV12, because the additional infrastructure (i.e.

LSTM layers) requires more memory.
13This model has an additional bidirectional LSTM layer to predict end logits, and is still training.
14The length of an input sequence is equal to the length of the query (capped at 64), plus the length of the context

(capped at 384− len(query) - 3), plus 3 (for the CLS, SEP, SEP tokens)
15AttributeError: ’NoneType’ object has no attribute ’start_logit’
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4.5 Results

Table 1 shows our quantitative results from the baseline and BERT models:

Table 1: Dev Scores

Model EM F1

BiDAF 57.32 61.06
BERT 74.48 77.72
BERT + AoA 35.36 46.91
BERT + DCN (v1) 42.83 44.85

The EM and F1 scores for our models are generated by our submissions to the dev PCE leaderboard.
The results from running the BiDAF baseline are slightly higher than the default project handout; this
is likely due to random variation.

The results from running BERT are what we expect, per comparison with other students. It took us
quite some time to discover why our earlier scores generated from BERT were roughly 10 points
lower than expected (refer to Appendix 1 for further explanation).

Our results from BERT + AoA and BERT + DCN are much lower than expected.

We expected BERT + AoA to improve BERT’s scores because it contains additional information from
the bidirectional attention mechanisms. We did not expect a very large improvement from this method
(i.e. we expected to improve BERT’s scores by one or two points), because we only concatenate
a single scalar to each of the context hidden states. Indeed, reducing Q2C and C2Q information
to a single scalar per context word is an information bottleneck, and we believe that concatenating
the dot product of context and attention to the hidden states would have been more helpful. In any
case, our scores did not improve over BERT, but rather dropped significantly compared to BERT. We
have three hypotheses to explain these low scores: (1) our method of splitting queries and contexts
is incorrect, (2) our models require more hyperparameter fine-tuning, particularly in adjusting the
null_score_diff_threshold parameter, because our probability distributions may be spikier
without the query tokens,16 (3) padding tokens should have been masked in the Cross Entropy Loss
(which computes a softmax) to ensure they do not get selected for the answer span. Another possible
source of error is that we included the CLS and SEP tokens from the BERT model output. However,
we do not think this is a great source of error, since the final Linear Layer should learn very negative
scores for these tokens, giving them low probabilities after softmax function.

We expected DCN to perform well above the original BERT code, so we were surprised it received
the lowest F1 score. We hypothesize that similar problems that arose in AoA contributed to our low
scores, particularly hypotheses (1) and (2). Furthermore, BERT + AoA may be performing better than
DCN because AoA’s final Linear Layer can more easily learn negative weights for padding tokens,
but the LSTMs used in DCN still place some importance on them. Furthermore, in DCN v1, we do
not use an additional RNN to calculate end logits, which we believe lowers our scores significantly.
Unfortunately our BERT + DCN v2 (which uses a second bidirectional LSTM to calculate end logits)
is still training, so we do not have the results yet. We will be sure to include these results and further
analysis in our poster.

Lastly, since BERT performs the highest out of our models on the dev leaderboard, we use BERT to
make final predictions on the test dataset. On the test dataset, BERT achieves an EM score of 73.69
and and F1 score of 76.98 (BERT++ on leaderboard).

5 Analysis

5.1 Qualitative Analysis of Results

We divide our models’ incorrect answers into three categories: incorrect answer, incorrectly reporting
no answer (NA), and incorrectly reporting an answer.

16This is described more in section 5.2
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5.1.1 BERT

BERT’s incorrect answers at times consist of answers that are partially correct. An example of this is
ID fd4619c4ba43dcc17afe7bb0d: ’Upon learning of a French scouting party in the area, what did
Washington do?’. The dev set answers include: ’killed many of the Canadians’ and ’surprised the
Canadians on May 28.’ However, BERT answers with ’surprised the Canadians.’ Although a human
grader would likely deem this answer correct, EM does not count the answer and F1 gives partial
credit to the answer. Repetitive near-misses could have cost BERT greatly.

A trend we observe with BERT (and all our models) is their inability to locate specific names
and locations. An example of this is ID fc2bcb90ce3cc22d6ea2e6cda: ’Who was a prominent
Huguenot in Holland?.’ The dev set answers are ’Pierre Bayle,’ but BERT predicts NA.

BERT’s largest shortcoming is its inability to handle NA questions. Often, BERT provides an answer
when it should be NA. Consider dev example ID f0229ad5e7385b8deb7aeedde: ’What is the full
official city name of Miasto?.’ The correct response is NA, but BERT provides the answer ’miasto
stołeczne Warszawa.’ This is likely because the phrase ’official city name’ appears in the context
close to ’miasto stołeczne Warszawa.’ However, BERT does not understand that the city referenced
in the context is Warsaw, not Miasto. BERT can easily be confused by modifiers and contexts that
contain phrasing similar to the question but do not have the answer the question is searching for.

5.1.2 BERT + AoA

BERT + AoA has a tendency to cut off early despite being on the right track. The best example of
this is with ID 9dbc679fb46ba6e0d67bdade9, ’What are cancerous tumors of the skin known as?.’
The dev answer is ’melanomas’; however, BERT + AoA predicts ’tumors called mel,’ cutting the
word melanomas short.

This characteristic is even evident in NA questions like that of ID fa6f8ae4e32f8bffaff4c3cee:
’In Sept 1760 who negotiated a war from Montreal?.’ BERT + AoA answers with ’Governor Vaudre,’
an incorrect answer, but more importantly, an answer truncated from the context phrase ’Governor
Vaudreuil.’ These tendencies are likely the reason for BERT + AoA’s low F1 and particularly low
EM scores (which does not credit partial answers). BERT + AoA struggles in a similar manner to
BERT in regards to NA questions.

5.1.3 BERT + DCN (v1)

BERT + DCN (v1)’s incorrect answers are strikingly different than those generated by BERT and
BERT + AoA. BERT + DCN often produces single word or even partial word responses. An example
of this is dev ID eb7fc2fa24cf4c3ded5face6e: ’Gamma delta T cells share the characteristics of
what other types of T cells?.’ A correct answer is ’helper T cells’; however, BERT + DCN predicts
’er.’ This is likely a major truncation of ’helper.’ We believe BERT + DCN (v2) will do a much better
job at this, because the end logits will be predicted more accurately. BERT + DCN (v1) seems to
pay too much attention to parts of words rather than analyzing the entire word. This odd behavior
may be due in part to improper hidden state splitting techniques, but we have been unable to confirm
this. BERT + AoA does not have this problem to the extent of BERT + DCN (v1). The additional
attention layer involved in BERT + DCN (v1) could be causing these errors. Also, BERT + DCN’s
tendency to focus only on certain parts of the question, while ignoring parts that should be more
relevant, indicates that another RNN layer may be helpful in order to successfully encode the context.

Like BERT, BERT + DCN (v1) often returns NA when an answer is present, especially in the
case of specific names or locations. In particular, BERT + DCN (v1) is prone to producing
an answer simply because a question word appears close to a context token. For example, ID
b1aaddedcbdefbc3d6c56f70c: ’What type of electric engine produces most electricity in the
world today?.’ The correct response is NA, however BERT + DCN replies with a quite random
response of ’continuing.’ BERT + DCN is likely paying additional attention to aspects of context
it would likely be better off without. This could also be reflective of BERT + DCN possibly taking
padding tokens into consideration. This may have resulted in an odd distribution of scores, leading to
inaccurate and nonsensical predictions.
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5.2 The ’No Answer’ Problem

All three of our models struggle with predicting NA appropriately. To further analyze this, we observe
true positives (TP), false positives (FP), and false negatives (FN). Results are summarized in Table 2.

Table 2: NA Analysis

Model TP Rate FP Rate FN Rate

BERT 38.23% 5.3% 13.9%
BERT + AoA 33.9% 8.0% 18.1%
BERT + DCN (v1) 39.6% 19.3% 12.5%

About 52% of the dev set has NA, but BERT predicts NA on 37% of examples, BERT + AOA predicts
NA on 41% of examples, and BERT + DCN predicts NA on 59% of examples. Therefore, we can see
that BERT is under-predicting the percentage of NA, but it has a high TP rate, and the lowest FP and
FN rate of the four models. BERT + AOA seems to predict a more reasonable amount of NAs, but
we can see that the FP and FN rates are quite high, so it is not predicting NA for the correct questions.
BERT + DCN over-predicts NA, and has a very high FP rate. This is likely the cause of the very low
F1 score, since it predicts NA instead of even a partial answer for many questions. We believe BERT
+ DCN (v2) will have a higher F1 score, because it should capture more of the answer span.17

6 Conclusion

Overall, we have learned a great deal about advantages and disadvantages of using PCE models
such as BERT for QA, particularly for SQuAD 2.0. We have also learned pitfalls of implementing
attention mechanisms in addition to BERT, and have reasoned through hypotheses as to why our
attempts are not as fruitful as we initially had hoped for.

With regards to future work, we believe additional hyperparameter fine-tuning could improve the
NA problems that our models each face in unique ways. In particular, we would adjust the value
of the null_score_diff_threshold. This flag is responsible for determining the threshold at
which the model predicts no answer, as opposed to predicting the start and end logits with the highest
probabilities.

Furthermore, we would like to experiment with the bert-large-uncased model, which consists of
24-layer, 1024-hidden, 16-heads, 340M parameters. This model would have taken too long to train
given our project timeline, but would allow us to achieve much higher BERT results (i.e. an F1 > 80).

In addition, an ablative analysis, in which we run our models with only one aspect changed and all
others held constant, would be very helpful to pinpoint issues within our models. In particular, we
would like to rerun the BERT model, while only passing in the context hidden states through the final
output layer, as opposed to the entire hidden state tensor. This would allow us to verify if our splitting
is correct, and fine-tune to obtain similar EM and F1 scores as the original BERT model itself.

Lastly, we are interested in ensembling. We would obtain logits across different models, apply a
softmax function, and then take the weighted average of these different models (weighted by F1 to
place higher weight on the models which perform better). Since our models have different failure
modes - particularly regarding the NA problem - ensembling would be beneficial to help us leverage
the best aspects of each model.
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Appendix

Appendix 1

Our BERT scores reported in our milestone were lower (EM: 62.41; F1: 65.72), because we had
cloned the huggingface repository and used the command pip install -r requirements.txt
as opposed to pip install –editable .. Thus, we hypothesize that somehow the pretrained
model weights adapted for SQuAD were not being used, even though it seems unlikely that no
pretrained weights were used, because our model did achieve scores of 62.41 and 65.72 for EM and
F1, respectively, which are not plausible if BERT was training entirely from scratch for only 3 epochs.
We have posted this as an issue to huggingface to see what exactly occurred and what weights our
previous BERT model was using.

Appendix 2

python run_squad.py \
--bert_model bert-base-uncased \
--do_train \
--do_lower_case \
--do_predict \
--train_file $SQUAD_DIR/train-v2.0.json \
--predict_file $SQUAD_DIR/dev-v2.0.json \
--train_batch_size 12 \
--learning_rate 3e-5 \
--num_train_epochs 3 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir /tmp/debug_squad/ \
--version_2_with_negative
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