
Question Answering on SQuAD 2.0

Liz Guo
Department of Electrical Engineering

Stanford University
lizguo@stanford.edu

Lantao Mei
Department of Electrical Engineering

Stanford University
lantao@stanford.edu

Abstract

In this project, we use SQuAD 2.0 dataset and build several end-to-end systems to perform
automated question answering base on the given context. In this paper we present an end-to-
end model which combines idea from BiDAF, QANet, R-NET and an ensemble of 9 models
achieve EM 65.65, F1 68.79 in the development set.

1 Introduction

Machine reading comprehension style question answering and automated question answering have gained
significant popularity over recent years because of its wide usage in applications and also because its
theoretical values in natural language processing. In this project, we use SQuAD2.0 dataset [1] and build an
end-to-end system to perform automated question answering base on the given context. System is supposed to
provide correct answer to an answerable question about a given context by selecting a segment of text from
corresponding paragraph, and abstain when presented with a query that cannot be answered based on given
passage. Our model combines BiDAF, Self-attention and Encoder block inspired by [2] and achieves EM
score 65.65, F1 score 68.79 after ensemble 9 single models.

2 Related Work

The baseline model we use here is highly based on Bidirectional attention flow mechanism discussed in [4]. It
incorporates both context-question and question-context attention. The second paper [3] focuses on reading
comprehension which presents a novel structure called Gated Self-Matching Networks which is the refinement
of basic seq-to-seq with attention model. The key innovation is its passage self-matching layer which matches
passage against itself and effectively encodes information from the whole passage [3]. The idea of encoder
block comes from [2] achieves better performance than bi-directional LSTM to learn temporal dependencies
between words in the question and context.

3 Approach

In this section, we will first describe our baseline model and then we will introduce our model architecture that
combines idea from BiDAF [4], QANet [2] and R-NET [3].

3.1 Baseline model

Our baseline model is to incorporate character-level embedding into the given BiDAF model. We code
character-level embedding ourselves based on assignment5. The architecture is the same as Figure 2 in the
assignment 5 handout. More specifically, for each character c, we look up a dense character embedding, apply
1-dimensional convolution, max pooling and highway network [5] to get character level word embedding. We
set the dimension of character level word embedding to be the same as the pretrained word embedding in our
implementation.



3.2 Primary model

Our primary model contains embedding layer, encoding layer, bi-directional attention layer, self-matching
attention layer and output layer. Figure 1 gives the multi-stage model architecture.

Figure 1: Overview of model architecture

3.2.1 Input Embedding layer

We use both word-level embedding and character-level embedding to represent context and question. In
terms of word-level embedding, we use pretrained 300-dimensional Glove vectors. For the character-level
embedding, we use the techniques described in section 3.1 Baseline model. We adopt similar techniques to
obtain the representation of each word by concatenating its pretrained word embedding with character-level
embedding. We set the dimension of character-level embedding to 200. Therefore after the embedding layer,
context words can be represented as [c1,...,cN ] where ci ∈R500 and question words can be represented as
[q1,...,qM ] where qi ∈R500.

3.2.2 Encoder layer

This layer allows our model to learn temporal dependencies between timesteps of the embedding layer’s output.
Instead of using a bi-directional LSTM to encode context and question, we followed the original paper [2] and
built encoder layer as a stack of the following basic unit: [conv_layer * 4 + self_attention + feed_forward].
For the convolution layer, we use depthwise separable convolutions. We use the same kernel size (which
is 7) as the original paper. For the self-attention layer, we adopt the idea from [7]. We also apply the layer
normalization and residual connection as indicated in the paper.

2



3.2.3 Bidirectional attention layer

After the encoder layer, we have dense representation of context C and question Q where C ∈Rclen∗H and Q
∈Rqlen∗H , H is the hidden size, clen is context length and qlen is question length. In this layer, we fuse context
representation into question representation and fuse question representation into context representation and
concatenate the result. The Context-to-query (C2Q) attention signifies which query words are most relevant to
each context word and the Query-to-context (Q2C) attention signifies which context words have the closest
similarity to one of the query words and are hence critical for answering the query [4]. Therefore a combination
of the two attentions gives question-aware context information.
Same as the handout, the similarity of i-th context word and j-th question word Sij can be computed as:

Sij = WT
sim[ci; qj ; ci ◦ qj ] (1)

Different from handout, our weight Wsim ∈R3H because ci and qj has hidden size H rather than 2H after
passing through the encoder layer. The equations for C2Q and Q2C and output gi are the same as handout.

3.2.4 Self-matching attention layer

As mentioned in R-NET [4], question-aware passage representation has limited knowledge of surrounding
context in practice. So it proposes self-attention to directly match the question-aware passage representation
against itself. According to Figure 1, we first pass the question-aware context information G a bidirectional
LSTM layer to get G’. And then we adopt the similarity-based attention idea to construct another similarity
matrix S’ where

S′ij = W ′sim
T [g′i; g

′
j ; g
′
i ◦ g′j ] (2)

W ′sim ∈R6H and it is a trainable weight. S′ij represents the similarity of i-th context word and j-th context
word. According to [8], we compute the attention score a’ as

a′t = softmax(S′t:) (3)

And we compute the attention vector M as

mt =

N∑
i=1

ati ∗ g′i (4)

The final context representation by self attention M’ can be represented as:

m′t = gt +ReLU(W ′′m[mt; g
′
t;mt ◦ g′t]) (5)

W ′′sim ∈R6H and it is a trainable weight.

3.2.5 Modeling and Output layer

After self attention layer, the modeling layer integrates temporal information between context representations
conditioned on the question. Same as BiDAF implementation, we use a two layer bi-directional LSTM. For
the output layer, same as BiDAF, we produce a vector of probabilities corresponding to each position in the
context being start or end of an answer span. We adopt negative sum of log probabilities of prediction as
objective function.

3.3 Model ensemble

We also implement model ensemble during evaluation and test. We give random initialization of 9 primary
models and train each of them using different hyperparameters such as learning rate, batch size, whether using
learning rate warm up or not and take the max vote of start and end index. If after max vote, the start index is
larger than end index, then we treat the prediction as no answer.

4 Experiment

In this section, we will describe the dataset we are using, show the results of our data analysis, describe the
evaluation metric, give experimental details and results.

3



4.1 Dataset

SQuAD 2.0 is a new reading comprehension dataset that combines 100,000 answerable questions from
previous version SQuAD 1.1 with 53,775 new, unanswerable questions about the same paragraphs. We use the
custom train and dev set which contains 130319 and 6078 examples respectively for tuning and evaluating
model performance.

Before building models, we analyze data which can help us get a general understanding of the dis-
tribution of question and context. The following analysis is based on our training dataset. Figure 2 is a
histogram plot of the number of tokens for context, question and answer. From the graph it can be seen that
the mode length of context is 87 and 8 for question. In terms of question type, as Figure 3 shows, among the
66.63% answerable questions almost half are interested in "What" questions.

(a) Context Length (b) Question Length (c) Answer Length

Figure 2: Histogram plot of the number of tokens for context, question, answer in the training dataset

Figure 3: Question type distribution

4.2 Evaluation method

The main evaluation metric we used are EM and F1 score which is standard for SQuAD dataset. The starter
code also provides a metric named AvNA (Answer vs. No Answer) which measures the classification accuracy
in determining having answer and no-answer predictions.

4.3 Experiment details

We ran the experiments many times with details shown below:

1. We ran the pure baseline model using default configurations (learning rate = 0.5, batch size = 64,
epochs = 30) on Azure NV6 instance. It takes about 22 minutes to train a epoch.

2. We ran the baseline with character-based embedding using default configurations same as above on
Azure NV6 instance. It takes about 30 minutes to train a epoch.

3. We ran our primary model on Azure NV6. It takes about 50 minutes to train a epoch.
4. In order to do model ensemble, we also ran our primary model on Amazon EC2 p2.xlarge for many

times with differnt hyperparameters (it takes about an hour to run a epoch). For instance, we change
the learning rate from default 0.5 to 0.3, batch size varies from 16 to 128 and whether using learning
rate warm up or not. We also tried to use Adam optimizer but the performance is worse than Adadelta.
For each model we run at least 30 epoches and might continue to run if the performance still improve.

4



5 Results and Analysis

5.1 Model performance

We are in the non-PCE track. The F1 and EM results in the development set are listed in Table 1 below:

Table 1: F1 and EM results
EM F1 AvNA

pure baseline 57.82 61.03 67.65
extend baseline 60.091 63.285 69.92

Single primary model 62.91 66.38 73.04
Ensemble primary model 65.65 68.79 74.01

We do expect baseline with character-based embedding beats the pure baseline model. Because character-based
embedding gives the model insight to each character of word in both question and context and the 1D CNN can
learn features across several characters which can lead to better performance in deal with compound word. We
do expect our single primary model beat the extend baseline because our encoder block is more complex than
simple bi-directional LSTM and can get better representation of temporal interactions between words. Also as
mentioned in section 3.2.4, self attention can give the model better knowledge of surrounding context. We do
expect the ensemble model to beat single primary model because combining the advantages of each model can
lead to better result. What we did not expect is that by ensemble 9 models both EM and F1 improves quite
a lot. Base on the results, our approach is reasonable and we improve our model step by step through this
project.

5.2 Attention visualization

As mentioned in secton 3.2.3, Q2C attention signifies which context words have the closet similarity to the
question words. In Figure 4 we show the Q2C attention matrix of 37th example in dev_eval.json.

The question is: What was one of the Norman’s major exports?
The context is: The Normans thereafter adopted the growing feudal doctrines of the rest of France, and
worked them into a functional hierarchical system in both Normandy and in England. The new Norman
rulers were culturally and ethnically distinct from the old French aristocracy, most of whom traced their
lineage to Franks of the Carolingian dynasty. Most Norman knights remained poor and land-hungry, and by
1066 Normandy had been exporting fighting horsemen for more than a generation. Many Normans of Italy,
France and England eventually served as avid Crusaders under the Italo-Norman prince Bohemund I and the
Anglo-Norman king Richard the Lion-Heart.
The answer is: fighting horsemen

Our attention mechanism can successfully capture the word "horsemen" in the context which correspond
to exports in the question. The answer to this question is "fighting horsemen". The attention also captures
other words such as French because it is highly related to the word major in the question. This might
lead to a wrong prediction of our model since our model thinks major and French is highly correlated,
but French is not related to the answer in this question. The high correlation might come from word embedding.

C2Q attention signifies which question words are most relevant to each context word. As Figure 5
shows, the word "Normans", "major", "exports" are relevant to the context word which is correct in this
example.

5.3 Error analysis

5.3.1 Quantitative error analysis

To gain deeper understanding of the model performance, we divide the questions into different types based on
the start word in questions and visualize average EM scores on it, as Figure 6(a) shown. We notice our model
preforms best on questions start with "when", but provide worst results on questions start with "why". One
reason we think about it is questions which relate to time tend to have short and relatively obvious answer
which are easy to locate in context, while questions interested in reason usually have relative long and complex
answers.

5



Figure 4: Q2C example (37th) in the dev set

Figure 5: C2Q example (37th) in the dev set

To further verify our assumption, we analyze EM score on different answer length based on characters in
Figure 6(b). As the answer length increases, the model gives worse performance. We also try to explore the
relationship between EM and question length in Figure 6(c), which doesn’t provide too much useful pattern
except that it shows we have the highest EM in the second last bucket.

5.3.2 Qualitative error analysis

We provide two representative examples to illustrate the future improvement of our model. As shown in Figure
7, our model does not capture the word in the latter half which is "and also by Cherokee". This suggests
that our model needs improvement in understanding the context information better. Although self attention
can give certain knowledge to surrounding context, it is not enough in this case. A more complex attention

6



(a) EM by question types (b) EM by answer length (c) EM by question length

Figure 6: EM score by different question types, answer length and question length

mechanism is required.
Another representative example is in Figure 8. Our model extracts the only year information in the context
which is 1643. But it is not the year that Cambridge is founded. With part-of-speech tagging, our model can
learn that 1643 is a modifier of an noun "publication". But we should find a year that is a modifier of a verb
"founded".

Figure 7: Wrong prediction due to shortsightness

Figure 8: Wrong prediction due to lack of part-of-speech tagging

6 Conclusion

In this project, we implemented several end-to-end models to perform automated question answering based
on the given context. Our best model combines idea from BiDAF, QANet, R-NET and our ensemble model
achieves EM 65.65, F1 68.79 and is rank top 10 in the development set as of March 18. From the error analysis,
we find our model has bad performance when dealing with long contexts and long answers. This is a future
improvement of our model.

Acknowledgments

We thank all the instructors of CS224N for bringing us such a meaningful experience during this quarter.

7



References

[1] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

[2] Yu, Adams Wei, et al. "Qanet: Combining local convolution with global self-attention for reading
comprehension." arXiv preprint arXiv:1804.09541 (2018).

[3] Wang, Wenhui, et al. "Gated self-matching networks for reading comprehension and question
answering." Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Vol. 1. 2017.

[4] Seo, Minjoon, et al. "Bidirectional attention flow for machine comprehension." arXiv preprint
arXiv:1611.01603 (2016).

[5] Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber. "Highway networks." arXiv
preprint arXiv:1505.00387 (2015).

[6] Luong, Minh-Thang, and Christopher D. Manning. "Achieving open vocabulary neural machine
translation with hybrid word-character models." arXiv preprint arXiv:1604.00788 (2016).

[7] Vaswani, Ashish, et al. "Attention is all you need." Advances in Neural Information Processing
Systems. 2017.

[8] Web.Stanford.Edu, 2019, https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/reports/6878267.pdf.

8


	Introduction
	Related Work
	Approach
	Baseline model
	Primary model
	Input Embedding layer
	Encoder layer
	Bidirectional attention layer
	Self-matching attention layer
	Modeling and Output layer

	Model ensemble

	Experiment
	Dataset
	Evaluation method
	Experiment details

	Results and Analysis
	Model performance
	Attention visualization
	Error analysis
	Quantitative error analysis
	Qualitative error analysis


	Conclusion

