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Abstract

This paper presents BertNet, a high-performance question answering system uti-
lizing BERT [2] language representation combined with QANet [10] inspired
RNN-free attention and encoder layers which trains faster than baseline BiDAF [7]
model. We design the final layer of of our model to work with SQuAD 2.0 1 to
effectively accommodate predictions on questions with no answers. This paper also
demonstrates additional improvement to the performance by using back translation
based data augmentation techniques. We used English-Arabic-English as back
translation languages for increasing training data and show significant performance
gain on "difficult" questions which the model otherwise doesn’t perform well on.
On SQuAD 2.0 data-set, our single model trained with data augmentation produces
an F1 Score of 77.15 on dev-set.

1 Introduction

With the prevalence of ChatBots and Conversational AI in a variety of businesses and consumer
use-cases, there is a growing interest in machine reading comprehension and automated question
answering systems. Most of the deep learning models for reading comprehension in the past used
shallow static word embedding (e.g. Word2Vec, GloVe [4]) and Recurrent Neural Networks to
process the sequential inputs. But with advances in using Attention Mechanism ("Attention is all you
need" [8]), newer "RNN free" approaches that take less training time are showing promising results.
Over the last year, we have also seen that deep language modeling based representational frameworks
such as ELMO [5], BERT [2] and ULMFIT [3] out-do traditional representations on multiple NLP
tasks. BERT for example presented state-of-the-art results in a wide variety of NLP tasks, including
Question Answering , Natural Language Inference (MNLI), and a few other.

Our approach combines BERT based language representation with QANet inspired Attention and
Encoder layers. We further demonstrate improvement in our model performance by incorporating
back translated questions in our training set from English to Arabic and back in English. We use
SQuAD 2.0 as our database for training and test.

2 Related Work

There has been a lot of work on using bidirectional deep embeddings in general and BERT in
particular for the SQuAD Dataset, as can be seen in the leaderboard 2. In addition to these pretrained
deep embeddings, top models utilize some form of attention mechanism, which has been proven
useful in improving accuracy in many NLP tasks. Attention mechanism initially became popular in
context of Neural Machine Translation [5], where it generates a translation word based on the whole
original sentence states, not just the last state. The idea is then applied to reading comprehension,

1https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/
2https://rajpurkar.github.io/SQuAD-explorer/
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Figure 1: Architecture

allowing the model to select a subset of context paragraph and a subset of question that are most
relevant. Data augmentation has also been explored in variety of areas within natural language
processing. Zhou et al. [11] improved the diversity of the SQuAD data by generating more questions.
Similarly QANet [10] paper shows performance improvement by using back translation to enrich
training data.

3 Approach

Here we describe our model’s architecture and layers.

3.1 Model

As described in figure 1, our model consists of following layers:

1. Embedding: BERT Embedding Layer for Query and Context sentences

2. Attention: Context Query Attention Layer

3. Encoders: Three Stacked Encoder layers

4. Output: Output pooled from three sub-output layers one each from StartSpan, EndSpan and
<No Answer>
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3.1.1 Embedding Layer

We use BERT pre-trained model to embed Context and Query. BERT uses positional embeddings
to encode the word sequences without a need for Recurrent Architecture. BERT embeddings are
generated using unsupervised learning based on Masked Language Models (MLM) and Next Sentence
Prediction (NSP). Masked Language Model approach makes it possible for BERT to use bidirectional
attention using transformer for a Language Modeling objective.

BERT Model expects sentences in one of two formats. If we have a context of King Phillip was
born in 1711 and ruled Wales from 1729 to 1734 and Query of Which year was king Phillip born?,
we can either encode it as a single input or two seperate inputs to the BERT Model as shown below.

<CLS><When><was><King><Phillip><born><SEP><King><Phillip>.....<1734><SEP> Or

<CLS><King><Phillip>.....<1734><SEP> and

<CLS><When><was><King><Phillip><born><SEP>

We provide Context and Query together in one sentence with query first followed by the context as
described in figure 1. Since BERT is trained on "next sentence prediction" outcome, we believe that
using this formulation will provide richer query and context embeddings. We make each sentence
of 384 words and Query portion being max of 64 words using padding at the end as required. We
experimented using both - only the top BERT layer vs. concatenation of all 12 layers of BERT as our
embedding layer. We used the latter in our final model. We also experimented with keeping static
BERT frozen embeddings vs. fine-tuning the BERT embedding for the downstream task. Our final
model uses fine-tuned BERT embeddings.

3.1.2 Attention Layer

We use a focused, Context-Query attention layer on top of the pre-trained BERT embeddings identical
to that of the QANet model. This module is standard in almost every previous reading comprehension
models such as Weissenborn et al. [9], Chen et al. [1] and QANet [10]. C is used to denote context
and Q for query. The context-to-query attention is constructed as follows:

• Compute similarities between each pair of context and query words that generates a similarity
matrix S ∈ Rn×m

• Normalize each row of S by applying softmax function

• Compute context-to-query attention A = S ·QT ∈ Rn×d

The similarity function used here is the trilinear function as mentioned in Seo et al. [7]:

f(q, c) =W0[q, c, q � c]

3.1.3 Encoder Layer

The encoder layer is a stack of the following basic building blocks of following layers:

[convolution-layer + self-attention-layer + feed-forward-layer]

Similar to QANet and Seo et al. [7], the input of this layer at each position is [c, a, c � a, c � b],
where a and b are respectively a row of attention matrix A and B. For the self-attention-layer, we’ve
adopted multi-head attention mechanism defined in Vaswani et al. [8] which, for each position in
the input, called the query, computes a weighted sum of all positions, or keys, in the input based on
the similarity between the query and key as measured by the dot product. We experimented with
different number of heads from 2 to 8. Each of these basic operations (conv/self-attention/ffn) is
placed inside a residual block.

3.1.4 Output Layer

Our output layer is similar to that of QANet with the addition of a stack of sub-output that predict
<No Answer>. For the training examples which have answers we use the standard strategy of Seo et
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al. [7] to predict the probability of each position in the context being the start or end of an answer
span. More specifically, the probabilities of the starting and ending position are modeled as:

p1 = softmax(W1[M0;M1])

p2 = softmax(W2[M0;M2])

where W1 and W2 are two trainable variables and M0,M1,M2 are respectively the outputs of
three model encoders, from bottom to top. Additionally we add another sub-output for <No Answer>
which is calculated as follows:

p3 = sigmoid(W3[M0;M1;M2])

where W3 is a trainable matrix.

The final loss is defined as:

L(θ) = − 1
N

∑N
i [(log(p1

y1
i
) + log(p2

y2
i
)) ∗ (1− y3i )/2 + (y3i ) ∗ log(p3y3

i
)]

Where y1 and y2 correspond to actual begin and end span, and y3 is a boolean flag to indicate whether
there is an answer to the question.

3.2 Data Augmentation

Taking inspiration from QANet [10], we used back-translation style data augmentation technique to
increase our training-set. We chose Arabic as back-translation language due to the fact that it has
wide variation on factors like grammar, syntax, morphology, writing style, phonology, alphabet, and
language root to that of English.

Arabic is part of Semitic Language family and has a three consonant root as its basis. All parts-of-
speech are formed by combining the three-root consonants. Arabic does not make the distinction
between actions completed in the past with/without a connection to the present. Also, there are
no modal verbs in Arabic. These differences add diversity to the paraphrasing effort and produces
syntactically variant phrase. Since the task at hand is Span labeling, we chose to augment our training
set by back-translating only questions and keeping the context as-is. Here is an example:

Original Question: is the avian flu a risk only to animals?

Back-translated Question: Is avian influenza a threat to animals only?

4 Experiments

To get benchmark and performance on our model, we conducted experiments on the SQuAD 2.0
dataset (Rajpurkar et al. [6]).

4.1 Data

SQuAD 2.0 is a reading comprehension dataset that consists of passages from Wikipedia and
associated questions whose answers span in the passage. It also has some questions that are designed
to be unanswerable. The task of our model is to do Span Labeling: given a passage, identifying a
span of text which contains an answer or predict <no answer> if the answer is not present. Formally,
given a passage P with tokens p1, . . . , pn and a question Q with tokens q1, . . . , qm such that for each
token pi, the goal is to compute the probability of pstart(i) and pend(i) marking the start and end of
the answer span.

4.2 Data Pre-processing and Training

We use ’BERT base uncased’ vocabulary and tokenizer provided by the authors of BERT and convert
the question and context to lower case before feeding it to the model. We use the huggingFace
repository that provides PyTorch version of BERT pretrained model. As described in section 3.1.1,
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Table 1: Model performance on dev set

Dev Set F1 (%) EM (%)

Human Performance 89.45 86.83
BERT-NET (Our Final Model with data augmentation) 77.15 74.07
BERT-NET - no data augmentation 76.27 73.21
BERT Base + output layer 75.94 72.74
BIDAF baseline 59.29 55.99

we feed the question and query together as one input to BERT model. We chose the maximum
combined sentence length to 384 and maximum question length to 64. For training we do layer by
layer training with fine-tuning of the network. We first train the BERT model for 2 epochs with just
the output layer. We then replace the output layer with an attention layer using the pretrained BERT
model and let it train for one more epoch. We then add the Encoder Layers on top and train for 1 more
epochs. For regularization we use dropout between layers setting the values with hyper-parameter
optimization. The layer wise training allows us to do quick experiments on top of pretrained BERT
layer where the F1/EM for the validation set goes up to above 70 quite quickly in quarter to half of
an epoch (approx. 30 to 60 minutes on NV12) and provides quick feedback on whats working and
whats not working.

4.3 Results

We conducted experiments on SQuAD 2.0 dataset sequentially starting with BiDAF as base-line and
then using BERT model and adding layers as described in section above. Along the way, we recorded
EM and F1 scores from our experiments. While we use F1 and Exact Match (EM) are two evaluation
metrics of accuracy for our model we have provided analysis of other factors in the next section.

As seen in table 1, BERT embedding based ’RNN free’ model provides a significant increase in F1
and EM metrics over our baseline BIDAF model. Additionally, our model runs in significantly less
time than the baseline model. While baseline model took approx. 11 hours to train, the BERT baseline
model trains in 100 - 130 minutes per epoch. Also the basic BERT model reaches a performance
of 75.9 F1 in just 2 epochs of training. But more importantly, taking BERT model fine-tuned for 2
epochs on SQUaD 2.0 allows us to do rapid experiments with additional layers where the performance
of the model quickly reaches above 70+ F1 score on an evaluation set in quarter to half of an epoch
(approx. 30 to 60 minutes on NV12). When used with differential learning rates (low learning rate
for BERT layer and higher rate for new layers), this provides quick feedback on efficacy of the newly
added layers.

Majority of the gain over the baseline model comes from BERT embedding layer with thin output
layer. Since we pass the question and context as one line to the embedding layer, BERT which was
pretrained with objective of next sentence prediction provide rich representations of Question and
Context. RNN Free Attention and Encoder Layers inspired by QANet provide additional performance
improvements without need for long training cycles. Data augmentation with back translation
provides only a slight incremental improvement in performance but more importantly it demonstrates
significant gain in answering a small class of "difficult" questions that the model otherwise does
poorly on. This is described further in the section on analysis.

5 Analysis

In this section, we preset quantitative as well as qualitative analysis of our model results. We provide
analysis on following aspects.

5.1 Analysis of Length of the answer

As the length of ground truth answer increased, our model’s performance decreased but since 95% of
answers in the dev set are less than 10 words long, our model’s overall performance is still decent.
Reduction in performance as a function of word length is an expected result because of the inherent
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Table 2: Model performance on various answer length on dev set

Ground truth Avg. answer length EM(%) F1(%) No. of questions
0 < len ≤ 5 79.04 83.54 2472
5 < len ≤ 10 59.37 74.76 416
10 < len ≤ 15 51.16 71.46 86
15 < len ≤ 20 35.71 49.16 14

20 < len 0.0 35.71 2

Table 3: Model performance based on question type

Question Type EM(%) F1(%) No. of questions
Which 77.38 80.34 274
When 77.36 79.10 561
What 74.61 77.59 3726
Who 74.93 76.99 714
How 71.07 75.37 605

Where 69.45 72.10 275
Why 55.43 68.40 92
Other 52.54 62.38 59

complexity in accurately choosing long span answers even for human evaluators. Our hypothesis is
that our approach of choosing the answer span using start and end pointers might be less suited for
longer answers. In future we look to experiment with additional ways of choosing spans within a
context.

5.2 Analysis on different question types

From a question category point of view, as the sementic complexity of the questions increased,
our model’s performance decreased. Our model performed best on four out of Five Ws 3 pattern
of questions. For what we call "difficult" question types (’Why’ type and ’Other’ interrogative
questions), our model didn’t perform as well since these type of questions are inherently hard to
comprehend and answer even for a human annotator. The model’s performance on different golden
answer length can be seen in Table 2. Also, typically ”when” questions have short answer length
(2.24 on average), whereas ”why” questions have higher answer length (6.87 on average).

5.3 Impact of data-augmentation on Model performance

Given the time and cost constraints of this project, we were able to only test data augmentation using
back translation of question using only one language (Arabic) with Google translate service. This
essentially doubled the size of our training set.Even though our model’s performance did not improve
significantly using this one set of augmented data, analysis of the errors shows promising results.

When trained with back-translation based data augmented training set as compared to non data-
augmented training set, Table 4 shows that back-translation improves the model’s performance on the
"difficult" questions ("Why" and the "Other" type of questions) which our model otherwise performs
poorly on. On the "Other" type of questions, for example, the F1 score goes up from 62.38 to 72.58.
When the questions are back-translated, this provides additional rephrasing of questions into a more
Canonical form of the question. Since these type of questions are relatively rare in our data set this
does not translate to significantly greater overall performance boost.

Following examples shows paraphrased questions4 and correctly predicted answer.

Context: Concepts of this network influenced later ARPANET architecture.
3https://en.wikipedia.org/wiki/Five_Ws
4We back-translated training set for learning. We didn’t back-translate dev set. The paraphrased question is

what we extrapolate our model interpreted this question as.
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Table 4: Model performance when trained with augmented data

Question Type EM/F1 no Data-Augment EM/F1 Data Augment
Which 77.38 / 80.34 76.27 / 79.26
When 77.36 / 79.10 75.40 / 77.32
What 74.61 / 77.59 74.12 / 77.15
Who 74.93 / 76.99 73.10 / 75.18
How 71.07 / 75.37 69.75 / 73.46

Where 69.45 / 72.10 66.18 / 69.76
Why 55.43 / 68.40 57.60 / 69.87

Other 52.54 / 62.38 64.40 / 72.58

Original Question: Telenet was sold to
Back-translated Question: Who was Telenet sold to?
Ground truth: GTE
Prediction (without Data-Augmentation): <Null>
Prediction (with Data-Augmentation): GTE

Context: Concepts of this network influenced later ARPANET architecture.
Original Question: The 4 sales and service centers are viewed as
Back-translated Question: 4 sales and service centers are viewed as what?
Ground truth: the world’s first commercial online service
Prediction (without Data-Augmentation): <Null>
Prediction (with Data-Augmentation): the world’s first commercial online service

5.4 Qualitative Analysis

5.4.1 Imprecise Span boundary

For most questions, our model was roughly correct but exhibited either too much span as compared
to the ground truth answer or not enough span that only partially overlapped the answer. One such
example is as follows:

Question: What are the two simple word responses to a decision problem?
Ground truth: yes or no
Prediction: yes or no, or alternately either 1 or 0

5.4.2 Incorrect Inference

In some cases, due to the length and semantic complexity of the question, our model missed the mark
and was unable to label correct answer span.

Context: Each of these models can be converted to another without providing any extra computa-
tional power. The time and memory consumption of these alternate models may vary.

Question: In considering Turing machines and alternate variables, what measurement left unaf-
fected by conversion between machine models?

Ground truth: computational power
Prediction: time and memory consumption

6 Conclusion and Future Work

In this report, we proposed a model architecture that uses language representation provided pre-
trained BERT [2] model with a top layers and data augmentation strategy inspired by QANet [10]
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to produce competitive results on SQUaD 2.0 data sets in much less training time than the baseline
BIDAF approach. We find that doing layer-wise training on top of fine-tuned BERT layer allows for
rapid experimentation. Additionally we show how the back translation based data augmentation has
the potential of standardizing text representation which helps in the difficult ( "Why" and "Other"
type) questions which have low F1 and EM scores otherwise.

Based on this work and analysis of the results, we believe that pretrained deep embeddings along
with "RNN Free" attention and CNN based methods provide a strong starting point for Question
Answering task. The analysis also suggest two avenues to improve the results further. Firstly,
experimenting with a final output layer that selects a full span and calculates loss based on full spans
as opposed to start span and stop span might potentially help with dealing with the weakness of our
model on longer answer spans. Secondly, having additional research on data augmentation using back
translation with the goal of standardizing the text representation of context and question at training
time has the potential to improve model performance on difficult and non-standard question. Test
time data augmentation of question and context using variety of languages has the potential to further
improve performance on these type questions and is an important area of future research.
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