
BERTNet

Hongtao Sun
s3sunht@stanford.edu

Brett Szalapski
brettski@stanford.edu

Yang Wang
leonwy12@stanford.edu

Abstract

The QANet architecture achieved state-of-art performance on the SQuaD 1.1 Q&A
challenge with only attention and convolution structures. The BERT model, which
creates pre-trained word-piece embeddings and requires simply fine-tuning task-
specific output layers, also achieved state-of-art performance on SQuAD 1.1 and
2.0. For this exploration, these two powerful models are combined to achieve higher
performance than either model did alone, with query and context embeddings from
BERT replacing the encoding layers of QANet. Finally, using just the Context-
Query Attention layer from BiDAF on top of BERT-large, an F1 score of 80.23
was achieved on the test set.

1 Introduction

The Question-Answering task (Q&A) is one of the most important Natural Language Processing
challenges of modern machine learning. In addition to being a proxy for how well a computer is
capable of understanding text, it can massively improve the response-time and user-experience of
information retrieval. The goal of a Q&A system is to take in a context paragraph or document,
receive a question about the context, and answer the question by selecting a span from the context.
For the development work in this paper, the SQuAD 2.0 data set created by Rajpurkar et al. is used
[Rajpurkar et al., 2018], slightly modified for the purposes of evaluating in the CS224N class setting.
Each row of the data consists of one context and one question, though it is easy to see how the
usefulness of this task could be extended to general information retrieval across many documents.

A recent trend on the SQuAD 2.0 leader board is the use of models with pre-trained contextual
embeddings (PCE) —rather than fixed embeddings such as GLoVe —combined with other successful
Q&A models. Among these entries are "BERT + MMFT + ADA", "BERT + N-Gram Masking +
Synthetic Self-Training", and "PAML + BERT" [Rajpurkar and Jia, 2019]. However, one of the most
successful models from the SQuAD 1.1 challenge, QANet, does not appear on the SQuAD 2.0 leader
board either independently or in conjunction with a PCE. One of the strongest advantages of QANet
is its ability to train much faster than other Q&A models [Yu et al., 2018], so the primary goal of the
model discussed in this paper is to demonstrate that the QANet model can be used in conjunction
with the powerful embeddings of BERT to achieve competitive results on the SQuAD 2.0 data set.

The structure of the remainder of the paper is as follows: in Section 2 discuss related works; Section
3 details the relevant model architectures; Section 4 outlines the experiments carried out, including
quantitative results; Section 5 discusses the quantitative and qualitative performance of the model;
and Section 6 highlights potential future work and concludes this exploration.

2 Related Work

The architecture of the model described in this paper is a combination of two previous architectures,
each known to perform very well on the SQuAD Q&A challenge. QANet [Yu et al., 2018], an
architecture that achieved state-of-the-art results on SQuAD 1.1, is altered for use with the SQuAD 2.0
data set, which includes unanswerable questions that were not part of the 1.1 challenge. Underneath
the QANet implementation, BERT [Devlin et al., 2018] is used to obtain contextual embeddings for



the passages and associated questions. It is believed that the combination of these two models can
produce state-of-the-art results, above and beyond either models’ capabilities in isolation. These
models are described next, followed by the specific modifications that allow them to be combined for
use with the SQuAD 2.0 challenge.

2.1 QANet

Figure 1: Original QANet structure

Similar to many other Q&A models, QANet
uses five major components: an embedding
layer, an embedding encoder layer, a context-
query attention layer, a model encoder layer,
and an output layer. The major difference is that
within each of these layers, only convolution and
self-attention mechanisms are applied without
recurrent structures. The architecture, as shown
in figure 1, consists of 5 layers:

The Input Embedding Layer, in the original
implementation of QANet, used the fixed, 300-
dimensional GloVe word embeddings. This im-
plementation will use the output of BERT for its
embeddings —more on this shortly.

The Embedding Encoder Layer consists of a
convolution layer, a self-attention layer, and a
feed-forward-layer. The convolution layer con-

sists of depth-wise separable convolutions for memory efficiency. The self-attention layer uses the
multi-headed attention structure, governed by the following equations:

Multihead(Q,K, V ) = Concat(head1, ..., headh)WO (1)

where headi = Attention(QWQ
i ,KWK

i , V WV
i ) (2)

and Q, K, and V are the query, key, and value matrices [Vaswani et al., 2017]. With this attention,
positional embeddings are encoded into QANet as each word in the input is compared to all of the
other input words [Yu et al., 2018].

In the Context-Query Attention Layer, QANet also uses a standard technique for context-query
attention, a context-query similarity matrix. The similarity function used is

f(q, c) = W0[q, c, q � c] (3)

where W0 is a trainable parameter.

In the Model Encoder Layer, the inputs are concatenated from the rows of attention matrices A
and B in the following fashion: [c, a, c � a, c � b]. The other layer parameters are similar to the
Embedding Encoder Layer.

The Output Layer is task specific. The strategy adopted in this paper for the SQuAD 1.1 dataset
was to predict the probability of each position in the context being the start or end of an answer span
Seo et al. [2016].

For the implementation of this paper’s architecture, QANet is recreated from scratch according to the
architecture described in Yu et al. [2018].

2.2 BERT

BERT is a "multi-layer bidirectional Transformer encoder" [Devlin et al., 2018] that draws on work
from Vaswani et al. [2017]. Using word-pieces (e.g. "playing" becomes "play" and "##ing") to
form pairs of sentences, BERT is used to pre-train contextual word embeddings which can then be
fed into task-specific architectures. The embedding scheme is a concatenation of three parts: token
embeddings, segment embeddings (e.g. Question or Context segment), and position embeddings
(see Figure 2). The embeddings are trained on two unsupervised prediction tasks: Masked Language
Modeling (MLM) and Next Sentence Prediction. MLM involves masking out a word at random

2



and having the model predict the word that should be behind the mask. This helps prevent word
fromsattending to themselves, a common pitfall of the bidirectional structure of the model. Next
Sentence Prediction involves feeding the model two sentences from a large corpus. Half of the time,
the sentences are sequential, and half of the time, the second sentence is a random sentence from the
corpus. The model attempts to predict whether sentence two follows sentence one or not.

Figure 2: BERT Embedding Structure

Once the embedding weights have been trained, they can be used in a variety of language tasks,
including SQuAD Q&A. Upon its release, BERT surpassed the then-state-of-the-art models by a
wide margin on SQuAD 1.1. It has since been used both independently and in conjunction with a
variety of architectures on SQuAD 2.0 as well, as seen on the SQuAD 2.0 leaderboard. To do so, the
pre-trained embeddings are fed into, at a minimum, a task-specific output layer. The BERT weights
can be trained on the task-specific data along with the output layer, or can be frozen to tune only
the output layer itself. For the implementation of this paper’s architecture, the Wolf et al. [2019]
Huggingface code base is used.

3 Approach

In order to combine the two models outlined in Section 2, some modifications were needed. In
addition, a subset of the layers from QANet, the Context-Query Attention layer, was used as the
output layer for BERT. Next, the hybridization scheme is described, followe by a simpler hybrid
model.

3.1 Hybrid Model

In order to combine these two architectures, some modifications must be made. First of all, as can
be seen in figure 1), QANet expects to receive two separate blocks of batched inputs: the batch of
queries, Q, and the batch of context paragraphs, C. However, the output of BERT is an embedding of
the form

[CLS]qqq...qqq[SEP]ccc...cccc<PAD>...<PAD>

for a single example (see Figure 2). However, QANet was designed to take the query and context as
separate blocks. Several different methods of resolving this difference were explored. The results of
these methods can be seen in Table 1 found in Section 4.3:

• QANet w/ BERT-small, padding between C/Q (Not included in the results table due to
poor performance): Individually split question from context after obtaining the BERT
embeddings and pad both to appropriate matching lengths before feeding them into QANet.
Zeros are used for padding, without applying BERT contextual embeddings to these tokens.

• QANet w/ BERT-small, padding between C/Q: Pad each question to a pre-determined
maximum length before the BERT structure. This allows for easy separation of the question
and context sequences after applying BERT to obtain the contextual embeddings. This
resolves the concern of missing BERT embeddings on the pad tokens.

• QANet w/ Sep. BERT for Query and Context: Similar to the above approach, put the
pre-padded, separate question and context blocks through two separate BERT models to
obtain prior to feeding into QANet. The drawback of this approach is that the contextual
word embeddings are not shared between question and context blocks.

• QANet w/ BERT-{small, large}: Use two copies of the original post-BERT sequence for
both the question and context blocks of QANet, but with masking to view only the question
or context as appropriate.

3



Ultimately, the final option was selected, so the question and context blocks in QANet are each
given a copy of the full BERT embedding along with masks that isolate the question and the context
appropriately. The resulting architecture is shown in Figure 3.

Figure 3: QANet + BERT Architecture

Additionally, because QANet was originally im-
plemented on SQuAD 1.1, which always had an
answer, the model must be modified to enable
predicting No Answer. To supply a No Answer,
the start and end positions are set to 0, predicting
the <CLS> token. This has proven to allow the
model make No Answer predictions.

3.2 BERT with Context-Query Attention

Because BERT is a pre-trained contextual em-
bedding, it has already performed some of the
tasks included in the layers of QANet, such as
the stacked model encoder blocks. As such,
a simpler model was implemented using only
the context-query attention layer from BiDAF
followed by a linear output and softmax layer
—CQ-BERT. This architecture significantly de-
creases model complexity and improves train-
ing speed. The result of this modification also
proves superior to the entire QANet structure,
most likely due to less over-fitting over the train-
ing data. The BiDAF attention module from
Chute [2019] provides a memory-efficient im-
plementation for a context-query attention layer.

4 Experiments

4.1 Data and Evaluation

The dataset is the SQuAD 2.0 labeled dataset,
modified slightly for the purposes of the Stanford course CS224n so that validation data can be used
for testing. It consists of paragraphs and associated questions along with answers to these questions
(or No Answer, as appropriate). The sample test-set, drawn from the production validation data, is
augmented with additional hand-crafted examples. This data requires no pre-processing and consists
of over 150,000 questions, both answerable and unanswerable.

The typical metrics applied to SQuAD performance are used for evaluation: F1 and EM Scores.

4.2 Experimental Details

Three different single-model experiments were run so as to establish appropriate baselines: QANet,
BERT-small, and BERT-large. QANet used the framework code from Chute [2019], while the BERT
models used the Wolf et al. [2019] base code. Both large and small used a single linear output layer
to adapt them to the Q&A task.

Next, two variations on BERT-small were trained to gain insight into working with BERT and expand
on the base model. Neither outperformed the baseline. One variation built on the BERT baseline
model with the last two embedding layers concatenated to form each word’s embedding. The other
was the baseline model with the last three embedding layers concatenated, as well as two output
hidden layers with ReLU activations and dropout applied. Dropout rate was set to 0.1.

Following these initial experiments, the combined architecture using QANet and BERT was run,
using the QANet implementation from Hackiey [2019], replacing the Context-Query Attention layer
with the memory-efficient version from Chute [2019]. QANet experiments were carried out using
both BERT-small and BERT-large. In addition, the padding methods outlined in Section 3.1 were

4



each carried out in conjunction with BERT-small. Dropout was tuned at values of 0.1, 0.2, and 0.3,
with optimal performance at 0.1.

Finally, the Context-Query Attention output layer described in Section 3.2 was trained along with
BERT-small and BERT-large. The dropout hyperparameter was tuned with values of 0.1, 0.2, and 0.3,
with optimal performance at a value of 0.2.

The results of all of these models are summarized in Table 1.

Each of the models using BERT-small, excluding QANet, was trained on a P100 for two to three
epochs at a rate of 1.6 hours per epoch. The QANet + BERT-small model was trained on a P100 at
four hours per epoch and achieved optimal performance at two epochs.

BERT-large models were trained on a V100. Non-QANet models trained at a rate of 1.5 hours per
epoch and achieved optimal performance around two to three epochs. QANet + BERT-large took 4
hours per epoch and achieved optimal performance at two epochs.

4.3 Results

Table 1: Full Results

Model
Dev Test

EM F1 AVNA EM F1

QANet 57.44 60.97 68.22 x x

BERT-small 72.97 76.41 80.40 x x

BERT-small, 2 embedding layers 72.06 75.54 79.62 x x

BERT-small, 3 embedding layers, 2 output layers 68.28 72.07 76.18 x x

BERT-small 72.97 76.41 80.40 x x

QANet w/ sep. BERT for Query and Context 35.64 36.58 61.30 x x

QANet w/ BERT-small, padding between C/Q 43.58 44.43 70.80 x x

QANet w/ BERT-small 74.50 77.34 80.49 x x

CQ-BERT-small 74.38 77.98 81.67 x x

BERT-large 78.89 82.18 85.29 77.38 81.10

CQ-BERT-large, Dropout = 0.1 77.90 80.81 83.81 77.31 80.23

CQ-BERT-large, Dropout = 0.2 77.90 81.01 84.17 x x

QANet w/ BERT-large 77.34 80.21 83.46 73.76 76.96

CQ-BERT and QANet + BERT narrowly outperformed BERT-small, though the results for QANet
were not quite as strong as expected. This is attributable to two factors. First, the propensity for
over-fitting. Between the embedding parameters in BERT and the number of parameters included in
the QANet module, this architecture has a massive amount of representation power. Furthermore, this
exploration did not recreate the language-translation data augmentation carried out by the original
QANet paper Yu et al. [2018], in which Wei Yu et. al. used a Neural Machine Translation to translate
the data from English to a foreign language, and then back to English, resulting in paraphrased
versions of the original context and query. This paraphrase could then be used as an additional
example, increasing the size of the training data. The strong results from CQ-BERT were a surprise,
demonstrating the power of that individual layer.

5



Though the models surpassed the BERT-small benchmark, they were unable to outperform vanilla
BERT-large. This is primarily due to lack of time and training resources with which to tune hy-
perparameters, as well as the issues mentioned above for QANet. The volatility of the loss curves
in Figures 4b and 4c are a strong indicator that these models would have benefited from further
hyperparameter tuning.

(a) BERT-large (b) QANet + BERT-large (c) C-Q Attention w/ BERT-large

Figure 4: Training Loss Plots for Different Models

5 Analysis

5.1 Different Methods to Split Context and Query

Three different methods were used to split the context from the query to make the output of BERT
compatible with the inputs of QANet. As previously discussed, it was necessary to successfully
separate the query from the context in order to have fixed-length inputs for the context and query
batches fed into QANet. Adding additional padding and training two separate BERT models produced
unsatisfactory performance. Ultimately, providing two copies from the output of BERT along with
appropriate masks resulted in the best performance.

The first method, which operated on the data after it had passed through the BERT module, padding
zeros between the context and the query, produced the worst results with an F1-score of 44.43. This is
because the BERT model was trained on contiguous texts with padding after the context. Artificially
adding zeros in between the context and the query does not allow for the contextual embedding
scheme that gives BERT its success.

A second method explored for splitting context and query was to train two BERT models separately,
one each for query embeddings and context embeddings. This method was the most similar to
the original QANet structure, which encoded the query and the context separately. However, this
approach resulted in a paltry F1-score of 36.58. The failure of this approach was due to lack of
contextual representation shared between context and query, which is one of the strongest advantages
of BERT. Because the embeddings for each were learned separately, the model was unable to reconcile
the embeddings of the query and the context.

As discussed previously, the simplest method was the most effective. Passing the full BERT embed-
ding to both the query and the context blocks of QANet, along with a mask to mask out the query
and context where required, proved most successful. One additional change was required to allow for
no-answer predictions —the [CLS] token was grouped with the context block, rather than the query
block. In this way, the model was able to select the [CLS] span for a No Answer response.

5.2 Performance Analysis

Table 1 shows that the Context-Query Attention + BERT-small and QANet + BERT-small models
both outperformed the baseline BERT-small. This vanilla BERT-small model turned out to be a
difficult baseline to surpass according to both the leaderboard and discussion with peers.

The original BERT computes interactions between all words in the input. However, for Q&A, the
interactions between context and query as separate groups may require more emphasis. Thus, the
Context-Query attention layer from Seo et al. [2016] was adapted, with the flow of attention calculated
in both directions. With this succinct modification, model performance increased over BERT-small
from F1 of 76.41 to 77.98. With the additional layers from the QANet module added on top of the
Context-Query attention layer, the F1 was still higher than that of BERT-small, at 77.34, though

6



not as high as BERT with the Context-Query attention layer. As discussed in section 4.3, this may
have promoted overfitting, hurting development and test set performance. However, with further
hyperparameter tuning, and especially with the data augmentation techniques used by the original
QANet implementation, the team believes that these models could be further improved.

In contrast to the results over the BERT-small baseline, the BERT-large baseline was unbeatable.
Again, with more resources to perform further hyperparameter tuning and the additional implementa-
tion of the data augmentation technique for QANet, it is likely that this result could be overturned.

5.3 Other Observations

One last observation drawn from analyzing missed examples is that C-Q Attention BERT is more
likely to predict an answer when it should not, whereas BERT-large tends towards errant No Answer
predictions. Further analysis of this trend is left to future work.

6 Conclusion

In summary, QANet and BERT can be combined to achieve near-state-of-the-art results on the
SQuAD 2.0 Q&A challenge, although using Context-Query Attention as the output layer for BERT
may be even more powerful. With an F1-score of 80.23, this model places 5th on the CS224N
2019 Winter class leader board. A couple of avenues exist for expanding on this work, including a
more thorough exploration of possible hyperparameters used, especially for the models that include
BERT-large, as well as augmenting the QANet data set according to the translation paraphrasing
performed by the original QANet implementation used on the SQuAD 1.1 challenge.

7



References
Chris Chute. Starter code for stanford cs224n default final project on squad 2.0. https://github.
com/chrischute/squad, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Hackiey. A pytorch implementation of qanet. https://github.com/hackiey/QAnet-pytorch,
2019.

Pranav Rajpurkar and Robin Jia. Squad2.0 the stanford question answering dataset. https://
github.com/huggingface/pytorch-pretrained-BERT, March 2019.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. CoRR, abs/1806.03822, 2018. URL http://arxiv.org/abs/1806.03822.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. CoRR, abs/1611.01603, 2016. URL http://arxiv.org/abs/
1611.01603.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Thomas Wolf, Victor Sanh, and Gregory Chatel et al. Pytorch pretrained bert: The big
& extending repository of pretrained transformers. https://github.com/huggingface/
pytorch-pretrained-BERT, 2019.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading
comprehension. CoRR, abs/1804.09541, 2018. URL http://arxiv.org/abs/1804.09541.

8

https://github.com/chrischute/squad
https://github.com/chrischute/squad
http://arxiv.org/abs/1810.04805
https://github.com/hackiey/QAnet-pytorch
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1706.03762
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
http://arxiv.org/abs/1804.09541

	Introduction
	Related Work
	QANet
	BERT

	Approach
	Hybrid Model
	BERT with Context-Query Attention

	Experiments
	Data and Evaluation
	Experimental Details
	Results

	Analysis
	Different Methods to Split Context and Query
	Performance Analysis
	Other Observations

	Conclusion

