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Abstract

Current end-to-end machine question answering models often use recurrent neural
networks (RNNs) to encode sequential information within texts. However, due to
their sequential nature, RNNs, especially when layered together, can be difficult
to train and scale up. We propose a new question answering architecture that
combines RNNs with self-attention and residual connections to speed up learning
as well as improve the model performance. On the SQuAD2.0 dataset, our model
achieves 60.90 F1 score after 1.5M training steps, which is better than our baseline
BiDAF model that achieves a 59.92 F1 score after 3.9M training steps.

1 Introduction

Machine question answering has been an area that attracts a large amount of interests and work.
Over the past few years, a number of models have been built that show significant performance
improvement on question answering tasks. One such example is the BiDAF model (Seo et al., 2016)
that uses both RNNs and context-query attention to achieve 59.92 F1 score on the SQuAD2.0 dataset.
However, due to the sequential nature of RNNs, models that rely heavily on RNNs can be difficult to
train and scale up especially when multiple RNN layers are used together. In the field of NLP where
training examples are scarce compared to other fields, models that converge faster and learn more
quickly would make more efficient use of training examples and thus potential for more performance
improvements.

Recent development of self-attention and transformers (Vaswani et al., 2017) have suggested models
that have both high parellelism and high performance. In this paper, we propose a model that learns
more quickly and achieves higher performance by adding recurrency-free encoder blocks on top
of RNNs. We then combine the output of RNNs and the encoder blocks with learnable residual
connections. The resulting architecture can be found in Figure 1.

The main motivation behind our design is that 1) Given the large number of work that shows
the success of RNNs in question answering, we want to use RNNs to encode sequential data. 2)
Instead of adding more RNNs to the model to improve performance, we use stacked recurrency-free
encoders because its parallelism has better training behaviour than RNNs. 3) We finall build residual
connections within our model so that there are shortcuts from input to output and the model can thus
learn faster.

2 Related Work

There have been large amounts of work showing great results on NLP tasks with or without RNNs. On
one hand, models like BiDAF (Seo et al., 2016) uses RNNs to encode context and query embeddings



Figure 1: Model architecture

as well as the output of context-query attention. The r-net by Microsoft (2017)1 shows a similar
idea while also adding self-attention on top of RNN layers. On the other hand, the introduction
of transformers (Vaswani et al., 2017), which uses multi-head self-attention and position encoding
to replace RNNs, shows that recurrency-free models can achieve high performance on tasks like
machine translation. The QANet paper (Yu et al., 2018) then builds on top of self-attention and uses
both convolution and self-attention to build a recurrency-free question answering model. Our idea is
thus to combine both RNN and self-attention and use residual connections to expediate the training
of a deep network.

3 Approach

In this section, we first formulate the question answering problem as proposed by the SQuAD2.0
dataset (Rajpurkar et al., 2018). We then discuss our baseline model and the structure of our new
model.

3.1 Question Answering and SQuAD2.0

SQuAD2.0 is a reading comprehension dataset consisting of questions proposed by crowdworkers on
a set of Wikipedia articles. For each problem, the context is a piece of texts from a Wikipedia article
and there is either no answer to the question or the answer must be a span of texts from the context.

Formally, given a context paragraph with n words, C = {c1, c2, ..., cn}, and a question with m
words, Q = {q1, ..., qm}, the output is either no answer or a span S = {si, si+1, ..., si+j} from the
context C.

3.2 Baseline

We use the BiDAF model by Seo et al. (2016) as our baseline model.

1https://www.microsoft.com/en-us/research/wp- content/uploads/2017/05/r- net.pdf
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3.3 The Model

At a high level, our model has in total 5 layers: 1) the context and question embedding layer 2) the
embedding encoder layer 3) the context-query attention layer 4) the model encoder layer and 5) the
output layer. We use both RNN and self-attention at the embedding encoder and model encoder
layers. As proposed by QANet, our self-attention layer is encapsulated inside a encoder block, which
also has convolution layers at its input and feed foward layers at its output. We then use learnable
residual connections to combine the output of RNN and encoder blocks.

1. Input Embedding Layer The model builds embedding for each word by combining its word
level and character level embeddings. The word level embeddings come from the 300 dimensional
pretrained GloVe word vector and are fixed during training. Unknown words are mapped to a special
<unk> token. Each character is mapped to a 64 dimensional pre-initialized embedding that are
trainable. For each word w of lengh l, we obtain its character embedding ec ∈ Rl×64, which is
then passed into a depthwise separable convolutional layer followed by a maxpool layer to obtain
xc = MaxPool(Conv(ec)) ∈ R200. We then concatenate the word level embedding xw and
character level embedding xc to produce [xw;xc] ∈ R500, which is then passed into a linear layer
followed by two highway network to output x ∈ Rh where h = 100.

2. Embedding Encoder Layer The first part of the this layer is a bidirectional single layer RNN
whose output is of size 2h. The output is then fed into an encoder block that is similar to the
one proposed in QANet (YU et al., 2018). In our model, each encoder block has two depthwise
separable convolution layers followed by a 2-head self-attention layer and then a feed forward layer.
Each convolution layer has kernel size 7. We apply layer normalization before each of these layers.
Each operation (layer normalization plus convolution/self-attention/feed-forward) is placed inside a
learnable residual connection as shown in Figure 1. Let a be the input to an operation f , then the
output o = res(a, f(a)) is calculated as follows.

ga = σ(ff1(a))
go = σ(ff2(f(a)))

o = ff3(ga � a + go � f(a))

Here σ is the sigmoid operation and ff1, ff2, ff3 are feed forward layers. Each residual connection
inside an encoder block has individual weights which are not shared. We add a sinusoid position
encoder at bottom of each encoder block and the entire encoder block is then placed within another
residual connection. If we denote the encoder block as enc, the input to this layer as X , the residual
connection as res, then the output of this layer E is computed by.

X ′ = rnn(X)
E = res(X ′, enc(X ′))

3. Context-Query Attention Layer We use the same context-query attention layer proposed by
QANet to produce two similarity matrices A and B.

4. Model Encoder Layer The input to this layer at each position has size 8h and can be denoted
by [c, a, c � a, c � b] where a, b are corresponding rows of A and B. The input is first fed into a
2-layer bidirectional RNN and then, similar to the embedding encoder layer, the output from RNN is
then fed into encoder blocks. In this layer we use 5 encoder blocks stacked together and each encoder
block is placed within a learnable residual connection. Each encoder block has the same parameters
as the encoders in the embedding encoder layer. The output of this layer at each position has size 2h.

5. Output Layer We use the same output layer as proposed by the BiDAF model.

Loss Function We prepend each context paragraph with a start-of-paragraph token at index 0 and
the model predicts no answer by predicting that both the start and end of the answer span are at index
0. The loss function is defined as the negative log likelihood of predicted distributions indexed by
gold start and end indices, averaged over all examples.

L = − 1
N

N∑
1
(−log(pstart(i)− log(pend(j))))
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where N is batch size and i, j are gold start and end indices respectively.

Inference The model predicts start and end of the span, i and j, by maximizing pstart(i)× pend(j)
under the constraint that i ≤ j and j− i+1 ≤ Lmax = 15. As discussed above, predicting i = j = 0
will generate a no-answer output.

3.4 My Contributions and Code

I built three major models for this project. The first one is a full QANet implementatin based on the
paper, but the evaluation results of my QANet are lower than the baseline model. I then built a larger
BiDAF model by basically adding more RNN layers and some feed forward layers in between. That
model has worse evaluation results than the baseline as well. The last major model I built is the one I
discussed in this paper. More evaluation results will be discussed in later sections.

I have also tried a number variants of each of these three major models and the model described here
is the one with best results. The only layers I used from starter code are the context-query attention
layer and the BiDAF output layer.

4 Experiments

4.1 Data

As discussed, we train the baseline and our model using the SQuAD2.0 dataset. In particular, there
are 129,941 examples in the training set, 6078 examples in the dev set and 5921 examples in the test
set.

4.2 Evaluation Metrics

We evaluate our model using both exact match (EM) and F1 scores. When a question has no answer,
both EM and F1 are 1 if our model predicts no answer and 0 otherwise. When a model has answer,
the maximum EM and F1 score based across three human provided answers are used. The final EM
and F1 scores are calculated as the average across all examples.

4.3 Training Details

When training the model, we use L2 weight decay with λ = 3× 10−7 and dropout between layers
for regularization. The batch size is 32. We use a learing rate warmup schedule with an inverse
exponential increase to 0.0006 within the first 1000 batches. The learning rate then stays constant at
0.0006 until an exponential decay to 0.0003 starting from the 8000th batch and ending at the 62500th
batch.

We use an Adam optimizer with β1 = 0.9, β2 = 0.999 and ε = 10−7. The model reaches maximum
dev F1 score and minimum dev loss after around 1.5M batches before it starts overfitting to the
training data.

4.4 Results

Table 1 compares the EM and F1 score of our model with that of other models. We also compare
the number of samples it takes for each model to reach the reported F1 score. BiDAF-Large is a
model we built by adding more RNN layers and feedforward layers in between to the baseline BiDAF.
We trained the baseline and BiDAF-Large with the same hyperparameters. In particular, we used
Adadelta with learning rate 0.5, rho 0.9 and ε = 10−6. Our Model-Small is a variation of our model
where we reduced the number of encoder blocks in the model encoder layer from 5 to 3. The results
for our model are obtained from non-PCE leaderboard.

Figure 2 shows the dev F1 score versus training step plot. BiDAF-Self-Attention is a model we built
by adding character embedding and only self-attention layers to the baseline model without residual
connections. The result shows that our model converges to a higher F1 score much more quickly
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Dev EM Dev F1 Test EM Test F1 Training Steps

BiDAF Baseline 56.43 60.01 56.30 59.92 ∼3.9M
BiDAF-Large 54.55 57.94 - - ∼3.0M
Our Model-Small 58.19 61.35 - - ∼1.5M
Our Model 59.22 62.54 57.36 60.90 ∼1.5M

Table 1: EM and F1 scores

Figure 2: F1 score versus training steps.

than the baseline does. The addition of encoder blocks could contribute to the higher performance
as Our Model-Small and BiDAF-Self-Attention both both obtain a lower F1 score. The residual
connections also seem to expediate learning process as the BiDAF-Self-Attention model, which does
not have residual connections, experiences a similar convergence rate as the baseline model. It is
also interesting to observe that the addition of more RNN layers in the BiDAF-L model produces
worse results than the baseline, which may suggest that stacked RNN layers can be harder to train
and needs finer tuing of hyperparameters.

Even though my model shows improvements over the baseline both in performance and learning
speed, the results are actually worse than what I expected. Given the high performance of a single
QANet model, I would expect my model to achieve higher EM and F1 scores. I have written different
tests and checked my QANet module implementation multiple times, so I think the problem is more
likely to be caused by non-optimal hyperparameters. The limitations of the residual connections
themselves may also contribute to the result because ultimately the residual connection is only a
weighted linear combination of its input elements. I think one problem I had during the project is
that I tried to switch and change the models themselves too often. I should have probably spent
more time tuining a particular model rather than trying various models but only one or two set of
hyperparameters for each one.

5 Analysis

5.1 Context and Question Lengths

In this section we explore the influence of context and question lengths to the correctness of our
model and the baseline. In particular, for each length of context and question, we count the number of
correctly and incorrectly predicted answers based on exact match from the dev set. We then remove
any length that has 20 or less samples.

Figure 3 and Figure 4 show the percent of incorrect predictions, based on exact match, against
different context and question lengths of our model and the baseline. It is quite surprising that both
models are insensitive to the context and question lengths even though there are slightly more incorrect
predictions at both ends of the question length. The use of bidirectional RNNs and context-query
attention may help explain the models’ abilities to process long inputs. Another possible explanation
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Figure 3: Percent of incorrect predictions vs context length

Figure 4: Percent of incorrect predictions vs context length

is that the EM scores of both models are not high to start with and are binary in its nature. Future
work could explore how the context and questions lengths influence F1 scores of the predictions.

5.2 End of Span Predictions

In this section we explore the percent of answerable questions that our model and the baseline predict
the correct starting position but incorrect ending position. Table 2 summarizes the result.

It can be observed that our model has a slightly lower percent of error probably because the intro-
duction of encoder blocks into the model help enhance the representation of context-query attention
encoding before it passes through the RNN in the output layer. However, the numbers are relatively
close between our model and the baseline because our model uses the same output layer as the
baseline BiDAF model. Future work could explore the effectiveness of different output architectures.

Percent

BiDAF Baseline 24.40%
Our Model 23.26%

Table 2: Percent of answerable questions with correct start and incorrect end position predictions
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6 Conclusion

We propose a machine question answering model that combines the benefits of RNN and self-attention
using residual connections. The resulting model achieves higher EM and F1 scores than our baseline
BiDAF model and also learns much more quickly than the baseline. We also test some variations of
our model and the baseline, which suggests that residual connections could help expediate learning
and the encoder blocks could bring performance improvements to the model.

We also explore the sentivity of our model to question nd context lengths as well as the percent of
answerable questions that our model predicts the correct start position but incorrect end position.
Both the baseline and our model are relatively insensitive to context and question lengths probably
because of bidirectional RNNs and context-query attentions. The percent of answerable questions
that the models predict correct start but incorrect end positions suggests a potential to work on the
output layer of the model.

During this project, we have tried variations of different models. However, looking back, we think
we should have explored more hyperparameter tuning for each model rather than changing the model
constantly. Given the high performance of single QANet models, our model actually does not achieve
our expectation in terms of the metrics. The early overfitting of our model suggests that further
hyperparameter tuning might produce better results. Future work could explore the weights each
residual connection assigns to its inputs and the types of features that RNNs and encoder blocks focus
on in similar models.
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