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Abstract

Question Answering (QA) represents one of the fundamental problems in Natural
Language Processing (NLP). In QA tasks, a model is given roughly a paragraph of
text (known as context) and is then asked a question about the text, with successful
models providing an appropriate answer, as predetermined by a human worker. A
system that could compete with human performance on this task would represent
an enormous leap forward in the field of artificial intelligence. One of the most
well-known and popular datasets for benchmarking of this task is the Stanford
Question Answering Dataset (SQuAD). Two key and related problems underlie
existing approaches – the first being that existing systems will occasionally focus
on irrelevant portions of the context passage, and the second being that not all
questions have a valid answer given some context. We aim to improve upon a
vanilla Bidirectional Attention Flow (BiDAF) based approach under both Exact
Match (EM) and F1 scores on the SQuAD 2.0 dataset, by contributing a model
that is focused on the questions of determining whether a relevant answer can be
found in the context, and if so where it can be found. We present Megatron, which
harnesses self-attended residual BiDAF to improve performance and reliability
over the baseline model. Additionally, we present an index of negative results,
particularly with term frequency-inverse document frequency weighting filters,
found during our investigations in an effort to hopefully assist future researchers.
Our findings show significant improvement over traditional BiDAF models and
hopefully will prove of use in the goal of advancing the field of NLP.

1 Introduction

Question-answering (QA) has been an important task and popular research topic of natural language
processing (NLP). There are various existing QA datasets available, among which the Stanford
Question Answering Dataset (SQuAD) is an state-of-the-art reading comprehension dataset for
training and evaluating QA systems [Rajpurkar et al., 2018].



In this project, we explore building and improving a system for the QA tasks defined by SQuAD 2.0,
in order to contribute to this popular research topic as well as gaining practical experiences and better
understanding of applying neural models to NLP tasks in general.

2 Related Work

2.1 Transformer

In preparing to work on our own model, we read and investigated the previous work of Vaswani
et al. [2017] on Transformer. The idea here is essentially to build upon a standard Transformer-
based approach by introducing recurrence into the self-attention network, reusing previous hidden
states from previous segments to build up a “memory” over time. Doing so in theory should be
substantially faster than “vanilla” Transformer, as we are not starting a new attention calculation
“from scratch” each time. Over time, attention length is iteratively increased until no (or very little)
incremental improvement is seen. More concretely, the approach is to re-parameterize to remove
absolute position information from our data, replacing it with a trainable parameter, and seeing how
that updates our attention distribution. Result-wise, Vaswani et al. [2017] found that this approach
significantly lowered perplexity compared to previous Transformer-based models and works much
faster comparatively, especially with longer attention parameters. This is particularly promising to us,
as considering several sentences (or even paragraphs) in context may yield additional information
not found in shorter contexts. For us, it could be useful to inspect whether this perplexity reduction
aspect has an impact on model performance on our dataset (which is comprised of relatively-short
passages).

2.2 TF-IDF

Another source of inspiration for us was that of Chen et al. [2017] on DrQA, a robust question-
answering (QA) system building upon a vanilla RNN. In essence, DrQA seeks to mitigate the
problem of determining the existence of, locating, and identifying relevant passages of text, which
can then be fed into a more traditional RNN-based QA system. Such an idea was inspired by the
immense breadth of Wikipedia – it would be far too computationally-intense to run an RNN over the
whole of the Wikipedia corpus for a single query – some efficient means is needed to find the most
relevant documents or paragraphs such that attention (figuratively, not neural-network attention) can
be focused there by the actual RNN.

The implementation of this system is fairly straightforward. Essentially, it utilized an inverted index
(an index that maps words or other similar features to documents/passages in which they are found)
with TF-IDF weighting in order to identify and extract the most relevant contexts. TF-IDF weighting
is a deterministic scoring system for relevance of a given search query – essentially, it computes
a weighted similarity score between queries and documents, with higher weightings given to less
common words found in both (e.g. amygdala), and lower weighting to more common words (e.g.
the). From there, the authors compared their results to those of actual Wikipedia search, and found
that they were able to obtain more relevant results in comparison – indicative of a reasonably-good
localizing system for finding relevant documents.

From there, their system largely looks like that given in the baseline BiDAF model (described in
further detail below), with the exception that the top 5 candidate documents/passages are fed in to the
RNN, instead of just a single passage as in the baseline. The model then sees if a suitable answer
is found, and if so, returns that answer. Our interest in [Chen et al., 2017]’s work, however, comes
from a slightly different angle. In the SQuAD 2.0 dataset, we need not search a context space for an
answer - instead, we only need to determine whether a given context has the answer to our question.
Thus, instead of scoring, ranking, and retrieving some set of documents, we were inspired to use
TF-IDF instead to help us identify and correctly answer "no-answer" results when appropriate.
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3 Approach

3.1 Baseline Model and Observations

The foundation of our work is built upon a BiDirectional Attention Flow implementation in PyTorch
[Seo et al., 2016]. From our initial evaluations of this model, we noted that two key challenges arose
that hurt model performance.

First, in SQuAD 2.0 [Rajpurkar et al., 2016], approximately 33% of questions were adversarially
generated by humans to appear similar to answerable questions for a given context, but in fact did
not have an answer given that context. Under the BiDAF default model we begin with, rudimentary
sanity checks are performed using existing techniques [Levy et al., 2017]. Specifically, an arbitrary
out-of-vocabulary token v is prepended to the beginning of each sequence, and we calculate softmax
over the full sequence, with some pstart and pend representing the softmax probability that the answer
starts or ends with a given word. If pstart[0]pend[0] > pstart[xi]pend[xj ] for all valid sequences of
words in x, then the model predicts no answer. This allows the model to predict that there is no
answer to the question in a given context, though since spurious low probabilities on start and end
tokens could still be higher than those of entirely out-of-vocabulary words, under this model we only
see no answer if the model is highly confident that the question cannot be answered from the context.
Thus, one of our primary motivations is to increase reliability of the model by having it not answer
invalid questions, while continuing to perform well on valid questions.

Second, in all versions of SQuAD, the baseline model at times returns irrelevant information. This
problem is related to the first one, as this will also sometimes occur when the correct answer would be
“N/A,” however the problem extends to scenarios in which there is in fact a valid answer embedded
in the context. In these scenarios, for one reason or another the BiDAF model attends to the wrong
sub-passage of the context, and thus returns nonsensical or irrelevant answers instead of the correct
answer. Our other guiding motivation, therefore, is to increase the performance of the model by
improving the attention mechanism to better focus answers on the true answer segments.

3.2 Our Experiment Models

Throughout the project, we experimented with many different modifications on top of the baseline
model, including:

• Transformer Model (Single & Double Transformer Models) (Section 3.2.1)
• BiDAF, with all LSTMs replaced by Transformers
• BiDAF, with bi-directional attention flow replaced by bi-linear attention
• Modified baseline, with embedding size increased from hidden_size to word_emb_size
• Cross-feeding transformer (Terminated due to high computation cost)
• Highway transformer
• Character-level Embedding (Section 3.2.2)
• Self-Attended Residual BiDAF (2 layers & 4 layers) (Section 3.2.3)
• Post-prediction filtering to mark no-answers using TF-IDF (Section 3.2.4)

In the sub-sections below, we highlight 3 different experiments that yielded significant improvements
over the original baseline. Some of the experiments did not perform well and were terminated early
due to observed mediocre performance.

3.2.1 Single Transformer Model

We experiment incorporating Transformer [Vaswani et al., 2017], the attention-based technique
previously introduced, to improve our model performance. As our first attempt, we replaced phase
word-embedding layer with Transformers.

3.2.2 Character-level Embedding

Inspired by Seo et al. [2016], we introduced subword (character-level) embedding to our model. For
each word, we concatenated together word-embedding and Convolutional Neural Network (CNN)-
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based char-embedding, and use the output as the final embedding being passed in to the rest of our
model.

3.2.3 Self-Attended Residual BiDAF (Res-BiDAF)

Figure 1: Architecture of our Residual BiDAF model.

In addition to previously described modifications to the baseline model, we propose a new architecture
named “Self-Attended Residual BiDAF” (also known as Res-BiDAF). This architecture makes use
of character-level embedding described in Section 3.2.2, and takes inspiration from ResNet [He
et al., 2016] and Highway Network [Srivastava et al., 2015]. Figure 1 provides a good illustration
of the model architecture. The context and the question are each taken in as word embedding and
character embedding concatenated together. After passing through the shared-weight LSTMs, and
combined through the initial BiDAF, the output is passed to a series of “Gated Residual Blocks”,
each consisting of an LSTM layer, a BiDAF, and a linear ReLU gate. The output is summed together
with a pass-through connection, and the sum will become the input of the next residual block (if any).
The part of the model after the last residual block output is identical with the baseline.

3.2.4 TF-IDF

TF-IDF is a numerical value to represent the relevance of a given document to a given word, by
computing the relative rarity of a word in the corpus compared to whether it appears in the target
document. Of course, this takes on even greater meaning if we search using full query strings instead
of single words, as the frequency element will significantly influence our score just from that word
alone. Mathematically, given some term t, we denote the number of times it occurs in document d
as f . We then define the term-frequency score to be tf(t, d) = 1 + log(f). The inverse-document
score is then given by idf(t) = log(1 + N

nt
), where N is the total number of documents and nt is

the number of documents containing term t. Finally, we compute tfidf(t, d) = tf(t, d)idf(t). Our
implementation was heavily modified and improved from basic TFIDF code we wrote ourselves as
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part of prior coursework1. For our purposes, we have implemented a TF-IDF system that computes idf
scores over the training dataset, then compute a length-normalized (average) TF-IDF score between
a given context sentence and a provided "query" string, either representing the query itself or our
candidate answer. To discount common words like "the," we compute this score over only values with
a specific rarity, by default words appearing in less than half of contexts. From here, we tested various
"filter" thresholds as hyperparameters, where the filter setting was the minimum average TF-IDF
score we’d accept, ignoring common words, over either the query or the candidate response. The
intention here was to remove those queries or answers that were asking non-specific and irrelevant
questions, as we found that this was a common failure mode of the baseline model. TF-IDF is not
intended to run as a standalone model - rather, it should be utilized as a pre- or post-processing filter
on some existing QA system.

3.3 Implementation

In our experiment, we reused the baseline starter code. For character-level embedding implementation,
we reused our solutions to the programming tasks in CS224N Assignment 5, whose core methods
we implemented ourselves. We had a basic working TF-IDF implementation that we previously
implemented for CS124, though significantly modified and improved it for usability and scalability
purposes.

We implemented the remaining portion of our modifications on top of the starter code, including
complete implementations of transformer (encoder and decoder) and other model variants, on our
own.

Our code is made available at: https://github.com/alongstar518/CS224N2019Final.

4 Experiments

4.1 Data

At the current step, we train our models using the standard SQuAD 2.0 training set, and evaluate
the models using the default project SQuAD 2.0 dev set, due to the fact that most models are
still experimental and need further polishing. Once we lock on several good-performing model
architectures, we will evaluate them using the test set.

4.2 Evaluation Methods

We use three metrics for evaluation: F1 score, Exact-Match score (EM score), and AvNA (Answer
versus No-Answer) to evaluate the implemented model. To calculate F1 score, we compute the
precision (P ) and recall (R) of our predictions:

P =
true positives

true positives + false positives
, R =

true positives
true positives + false negatives

And the F1 score is defined as:
F1 = 2

PR

P +R

To calculate the Exact-Match score (EM score), we compute the percentage of exactly matched
answers among all evaluated questions:

EM =
exactly matching answers
total evaluated questions

× 100

4.3 Experiment Details

The baseline model took 2.3M steps (17h 1min on an Azure NV6 virtual machine) to reach the peak
performance values.

The following 4 experiments yielded significant improvements over the baseline model:
1starter code at https://cs124.stanford.edu
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4.3.1 Single Transformer Model

We trained the model with the following tuned hyperparameters:
Transformer k = 64, q = 64, v = 64; Number of transformer heads = 8; Number of layers = 6;
Learning rate = 0.5 (flat rate); Dropout rate = 0.2; Batch size = 64.

The model took 1.25M steps (8h 1min on an Azure NV6 virtual machine) to reach the peak perfor-
mance values.

4.3.2 Character-level Embedding

We trained the model with the following tuned hyperparameters:
Learning rate = 0.5 (flat rate); Dropout rate = 0.2; Batch size = 64; Character embedding size = 100;
Character embedding CNN kernel size = 5.

The model took 1.4M steps (5h 48min on an Azure NV6 virtual machine) to reach the peak perfor-
mance values.

4.3.3 Self-Attended Residual BiDAF, Single Gated Residual Block

We trained the model with the following tuned hyperparameters:
Learning rate = 0.5 (flat rate); Dropout rate = 0.2; Batch size = 64; Character embedding size = 100;
Character embedding CNN kernel size = 5; Number of residual blocks = 1.

The model took 1.5M steps (9h 9min on an Azure NV6 virtual machine) to reach the peak performance
values.

4.3.4 Self-Attended Residual BiDAF, 2 Gated Residual Blocks

We trained the model with the following tuned hyperparameters:
Learning rate = 0.5 (flat rate); Dropout rate = 0.2; Batch size = 64; Character embedding size = 100;
Character embedding CNN kernel size = 5; Number of residual blocks = 2.

The model took 1.7M steps (13h 40min on an Azure NV6 virtual machine) to reach the peak
performance values.

4.3.5 TF-IDF

We tried applying TF-IDF score-based filtering to the model predictions, manually removing pre-
dictions that are and outputting N/A (empty string) instead. We calculate the additive IDF score of
the predictions (processed to be punctuation-stripped, case-insensitive), normalized to the sentence
length, and we completely ignore common words (defined by having a word IDF score lower than
1.0). We filter our all predictions of additive IDF score lower than 2.0 using this metric.

Model F1 Score EM Score AvNA Score
Baseline (Trained), no TF-IDF 61.13 57.97 67.84

Baseline (Trained), with TF-IDF 60.06 57.57 65.74
Char-Embedding, no TF-IDF 64.36 60.98 70.81

Char-Embedding, with TF-IDF 62.86 60.12 68.53
Res-BiDAF (2 blocks), no TF-IDF 67.69 64.48 73.40

Res-BiDAF (2 blocks), with TF-IDF 65.90 63.35 70.81
Table 1: Post-prediction TF-IDF filter experiment results

Table 1 shows the list of post-prediction TF-IDF filtering experiments. None of the experiment
produced positive results, so we eventually decided to not pursue improving our models with this
method. We believe a possible reason that this method did not work is that the trick questions in
SQuAD 2.0 dataset actually include key words that are infrequent and important from the context,
but are not applicable to the actual context due to more intricate meaning differences that TF-IDF
cannot capture simply by counting word frequency.
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4.4 Results

4.4.1 Training & Dev Set Evaluation Results

We trained each of our models over the SQuAD 2.0 training set, until the metrics start to decrease
and the loss start to increase, incidating overfitting. At the end of each training, we record down the
best evaluation performance on the dev set throughout the training process.

The evaluation results are as shown in Table 2.

Model F1 Score EM Score
Baseline (Given) 58.98 55.81

Single Transformer 59.70 57.18
Char-Embedding 64.36 60.98

Res-BiDAF (single block) 65.40 62.06
Res-BiDAF (2 blocks) 67.69 64.48

Table 2: Best Dev set evaluation performance of each model

It is apparent that each of our newer experiment obtains improved EM and F1 scores over the previous
model, and the final Res-BiDAF model with 2 residual blocks reached a 8.71 increase in F1 score
and 8.67 increase in EM score over the baseline evaluation results we are given.

The dev set evaluation score curves (monitored from TensorBoard) are shown in Figure 2. Note that
the baseline we trained reached slightly higher EM and F1 scores than the baseline evaluation results
we were provided with, due to extended training time.

Figure 2: AvNA, EM, F1, and Loss plots for the Baseline (orange), Single Transformer (dark blue),
Char-Embedding (red), single-block Res-BiDAF (baby blue), and 2-block Res-BiDAF (magenta).

4.5 Dev Non-PCE Leaderboard Results

We submitted our “Res-BiDAF (2 blocks)” model to the Dev non-PCE leaderboard, achieving an EM
score of 64.443 and a F1 score of 67.449.

4.5.1 Test Non-PCE Leaderboard Results

We made a total of 2 submissions to the “TEST NON-PCE SQuAD Leaderboard”:

• Res-BiDAF (single block), EM: 58.698, F1: 62.333
• Res-BiDAF (2 blocks), EM: 62.992, F1: 66.370

5 Analysis

In this section, we examine several question-answer examples to better understand performance
differences among the models. Note that the dataset gets shuffled differently among models, and only
a subset of questions were sampled and retained during evaluation, so we only compare among pairs
of models.

5.1 Example: Predictions across models

• Question: Economy, Energy and Tourism is one of the what?
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• Context: Subject Committees are established at the beginning of each parliamentary session,
and again the members on each committee reflect the balance of parties across Parliament.
Typically each committee corresponds with one (or more) of the departments (or ministries)
of the Scottish Government. The current Subject Committees in the fourth Session are:
Economy, Energy and Tourism; Education and Culture; Health and Sport; Justice; Local
Government and Regeneration; Rural Affairs, Climate Change and Environment; Welfare
Reform; and Infrastructure and Capital Investment.

• Correct Answer: current Subject Committees
• Prediction (Baseline): N/A
• Prediction (Single Transformer): The current Subject Committees
• Prediction (Char-Embedding): current Subject Committees
• Prediction (Res-BiDAF, single block): Subject Committees
• Prediction (Res-BiDAF, 2 blocks): current Subject Committees in the fourth Session

Here, the baseline failed to produce an answer to the question, while the Single Transformer model,
the Char-Embedding model, and the single-block Res-BiDAF model all produced satisfactory answers
to the question. What’s the most fascinating is the prediction of our 2-blocks Res-BiDAF model - it
is able to produce an answer that’s even more accurate and detailed than the expected answer key!

5.2 Example: Proper noun, word-based vs. sub-word embedding

• Question: Against whom did the Camisards rise up to fight?
• Context: After this, Huguenots (with estimates ranging from 200,000 to 1,000,000) fled to

surrounding Protestant countries: England, the Netherlands, Switzerland, Norway, Denmark,
and Prussia — whose Calvinist Great Elector Frederick William welcomed them to help
rebuild his war-ravaged and underpopulated country. Following this exodus, Huguenots
remained in large numbers in only one region of France: the rugged Cévennes region in
the south. In the early 18th century, a regional group known as the Camisards who were
Huguenots rioted against the Catholic Church in the region, burning churches and killing
clergy. It took French troops years to hunt down and destroy all the bands of Camisards,
between 1702 and 1709.

• Correct Answer: the Catholic Church in the region
• Prediction (Single Transformer): Frederick William
• Prediction (Char-Embedding): Catholic Church

Here we see the Character-Embedding model making the correct prediction, while the Single
Transformer model. We believe there are two possible reasons leading to this performance difference:
first, character embedding is able to gain better performance especially on proper nouns due to their
sub-word flexibility; second, character embedding allows the model to learn the embedding itself as a
part of the training process, instead of taking fixed word embedding values as input like other models
do.

6 Conclusion

In this project, we experimented with various modifications to the given BiDAF baseline model,
such as Transformers and character-level embedding. We also proposed a new architecture named
“Self-Attended Residual BiDAF” (Res-BiDAF), and successfully reached significant performance
improvements, over any other model we experimented with. However, given the limitation of non-
PCE models, our model cannot achieve the level of performance matching state-of-the-art PCE-based
models. If given more time and computing resources, we would extend our project by trying our
Res-BiDAF with a higher number of residual blocks, as well as its combination with various other
non-PCE techniques. We also believe it will be an exciting research topic to apply our Res-BiDAF to
PCE-based models for potential performance improvements.
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