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Abstract

Significant advances have been made recently in NLP in the area of reading compre-
hension which is useful in machine translation, question answering, summarization
and other NLP tasks. Most of these models use an RNN which, though success-
ful, have well documented downsides. A model, called the QANet architecture
using only CNNs and attention ( and based on the Transformer architecture ) has
been proposed that does not suffer from these downsides. This paper implements
the QANet architecture and analyses the results of evaluation on the SQuAD 2.0
dataset. In addition, aspects of the transformerXL architecture are added with a
goal to further enhance model performance.

1 Introduction

Most models in NLP used for reading comprehension ( including question answering ) use recurrent
neural networks ( RNN ). The QANet model ( Yu et al 2018 [1]) instead, uses convolutional neural
networks ( CNN ) and attention mechanisms like multi-head attention ( Vaswani et al 2016 [2] ) for
self-attention and standard attention ( Seo et al 2016 [3] ) for C2Q and Q2C attention. The main
reason for choosing CNNs over RNNs is the speedup achieved during training.

In addition to the QANet architecture, Yu et al 2018 also proposed a novel idea for training on
SQuAD question answering dataset whereby they implemented a data augmentation technique. In
this technique, the standard SQuAD dataset is augmented by first translating the dataset to a different
language (French in this case ) and then back to English. This allows the model to learn different
variations of the same sentence. It is shown that this does indeed help to create a better model by
using this augmented data for training.

The aim of this paper is to

• Implement the QANet architecture in PyTorch
• Make modifications to add a ‘noAnswer’ option
• Evaluate the performance of the model on the SQuAD 2.0 dataset
• Apply aspects of Transformers XL ( Dai, Zihang et al 2019 [4] ) and re-evaluate performance

The QANet performance is evaluated against the given baseline which is a modified BIDAF model
( Seo et. al 2016 [3] ) without the character embedding and with a no-answer prediction extension
required for the SQuAD 2.0 dataset.

2 Related Work

Question answering in NLP has wide applications for retrieving information. Traditionally, this has
been implemented using separate components like part-of-speech tagging, sentiment analysis and
others. In the past few years, neural network models have been shown to be performant for NLP
tasks.



Figure 1: QAnet architecture from [1]

RNNs remain popular in architectures for NLP tasks but a number of efforts have attempted to
tackle the vanishing gradient problem ( [5] ) using weight initialization ( [6] ) etc. Vaswani et
al [2] introduced the transformer which removed dependency on RNNs, opting only for attention
mechanisms. The QANet architecture [1] brought back CNNs along with the attention mechanism
and the TransformerXL [4] introduced longer term dependency learning with extended context.

Other recent developments include development of a single architecture for multiple tasks like
decaNLP [7] which uses the same architecture for question answering, summarization, sentiment
analysis etc. Indeed, all these tasks are achieved using the question answering paradigm. Another
recent development is the use of pre-trained contextual embeddings like ELMo [8] and BERT [9] that
can also be easily adapted for question answering.

3 Model

The model architecture is described here and is depicted in Figure 3.

3.1 Input Embedding Layer

Each word from the context and questions is converted to a vector v ε R500 by concatenating a
GLoVE word embedding ε R300 and a character embedding εR200 or, x = [ xw ; xc ]

A two-layer highway network ( Srivastava et al 2015 [10] ) is used as the final output ‘x’ of this layer
where, x ε R500
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3.2 Embedding Encoding Layer

This layer consists of one block within which there are 3 types of sub-layers - a convolution layer
followed by a self-attention layer followed by a feed-forward layer. The convolution layer is a
depthwise separable convolution ( Kaiser et al 2017 ). The self-attention is a multi-head attention
mechanism ( Vaswani et al 2017 [2] ). For each operation ‘f’ ( conv/self-attention/ffn), it is performed
as f( layernorm(x) ) + x ( there is a full identity path from input to output of each sub layer. Layernorm
is performed as in Ba et al. 2016 [11].

3.3 Context-Query Attention Layer

The matrix S ε Rnxm ( n = length of context, m = length of query ) is constructed. The entry Sij is
obtained using trilinear function

f(q, c) =W0[q, c, q � c] (1)
where � indicates elementwise multiplication

Context-To-Query attention
A = S.QT

where, S = softmax( row(S) )
Q = query embedding matrix

And, Query-To-Context attention

B = S . S
T
. CT

where, S = softmax( column(S) )
C = context embedding matrix

3.4 Model Encoder Layer

There are 3 model encoder layers = M0, M1 and M2, each encoding block is the same as
Embedding Encoder block ( with some differences in hyperparameters ). The input to each block is
[ c, a, c� a, c� b ]

3.5 Output Layer

The output layer calculates the following probabilities

pstart = softmax(W1[M0;M1])

pend = softmax(W1[M0;M1])

where, W1 and W2 are learnable weights. Score of a span is the product of its start and end
probabilities. The span with the highest score is chosen as the answer. The highest scoring scan is
computed as in the baseline.

3.6 Objective Function

Finally, the objective function is

L(θ) = − 1

N

N∑
i

[
log(p1y1

i
) + log(p2y2

i
)
]

(2)

where, y1i and y2i are respectively, the ground truth for the start and end positions for example i. An
Adam optimizer was used, more details in the next section.

3.7 No-answer Prediction

The procedure outlined in Omer Levy et al ( 2017 [12]) is used. An OOV token is introduced at the
start of each context, if pstart(0).pend(0) is greater than the predicted answer span then no-answer is
predicted.
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Figure 2: TransformerXL extension showing multihead attention with previous context and relative
positioning. Layernorm, dropout etc. not shown

3.8 TransformerXL extension

Dai, Zihang et al 2019 ([4]) introduced the TransformerXL with the ability to use the previous output
from each attention layer along with the current input. This allows the attention architecture to use
information seen previously when calculating the attention score. To allow this, it is also necessary to
have relative positioning.

The QANet implementation was extended by replacing the attention sublayer in each of the encoder
blocks in the QAnet architecture. The details of the attention sublayer are shown in Figure 2.

4 Experiments

4.1 Dataset

The SQuAD 2.0 question answering dataset was used ( Pranav Rajpurkar et al [13][14] ). The official
version was slightly modified ( details in baseline ), consisting of only the train and dev sets. The dev
set was pre-split into dev and test sets and the train and dev sets were provided. The context length
was set to 400 and question length was set to 50. Prediction length was set at 15.

4.2 Experimental Setup

All hyperparameter values were kept the same as the original QANet paper with the following
exceptions –

• The number of heads for multi-attention was 4 instead of 8 because of memory constraints
on the GPU

• The <UNK> token was not set to be trainable

• Dropout for every other layer was not implemented

• Batch size is 16 instead of 32 due to memory constraints on the GPU

The hyperparameters can be seen in Table 1
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Table 1: Model hyperparameters

Hyperparameter Original QANet Current Implementation with TransformerXL

Embedding Layer

Glove Word Embedding Size 300 300 Same
Char Embedding Size 200 200 Same
Word Embedding Dropout 0.1 0.1 Same
Char Embedding Dropout 0.05 0.05 Same

Embedding Encoder Layer

Number of Blocks 1 1 Same
Number of CNN layers 4 4 Same
Kernel Size ( CNN ) 7 7 Same
Number of filters (CNN) 128 128 Same
Number multi-attention heads 8 4 2
Attention dropout 0.1 0.1 Same
Hidden embed size ( d_model ) 128 128 Same
Layer dropout 0.1 0.1 Same

Model Encoder Layer

Number of blocks 7 7 1
Number of CNN layers 2 2 Same
Kernel size(CNN) 5 5 Same
All other parameters same as Em-
bedding Encoder Layer

Same Same

For TransformerXL

Number of Multihead attention lay-
ers

N/A N/A 4

Memory length N/A N/A 401 ( sentence length )

ADAM optimizer was used ( Kingma & Ba, 2014 [15] ). Stochastic depth method for layer dropout
was used (Huang et al 2016 [16]) as given below

pl = 1− 1

L

(
1− pL

)
(3)

where L is the last layer and pL = 0.9

Optimizer parameters are shown in Table 2

Table 2: Optimizer Parameters

Parameter Original Paper Current Paper

Optimizer Parameters

L2 weight decay(λ) 3× 10−7 3× 10−7

β1, β2 0.8,0.9999 0.8,0.999
ε 10−7 10−7

EMA decay rate 0.9999 0.9999

All training was done using a 2 GPU machine with a total of 16GB of GPU memory.
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4.3 Results

The EM/F1 scores are given in Table 3

Table 3: Results ( non-PCE )

Dev EM Dev F1 Test EM Test F1

QANet Score 64.208 67.722 56.230 60.332
QANet With Transformer XL 53.203 58.743 53.609 56.948
Baseline Score 55.991 59.291 56.298 59.920

See figures 3-6.

5 Analysis

The original QANet paper ( Yu et. al, 2018 ) was evaluated on the SQuAD 1.1 dataset. As far as can
be seen, there are no published results for SQuAD 2.0 for the QANet architecture. Therefore, as
stated previously, the comparison above is with the given baseline.

Progressive improvements in F1 scores was seen as the model was being built incrementally. The
optimizer was changed from Adagrad to ADAM. Dropout values were added as indicated in Table 1.

The dev NLL remained almost horizontal after hitting its lowest value unlike the baseline ( not shown
in figure ) which started to increase after reaching bottom. The training NLL decreased consistently
throughout.

Looking at the official SQuAD leaderboard it appears the expectation for a single model, non-PCE
implementation is to achieve an F1 score of at least 70 ( without data augmentation etc. ).

5.1 Analysis for QANet implementation

It is seen that the dev F1 score for the QANet architecture was easily higher than the baseline whereas
the test F1 score is just a bit higher than the test baseline ( see Figure 4 ). This drastic fall in F1 score
from dev to test for the QANet implementation could be caused by the following

• The distribution of the dev and test set could be very different. Note that there was no data
augmentation performed on either the training or dev set

• The dev model with the best F1 score was likely picked up from a region where the model
had started overfitting the data

Figure 3: EM
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Figure 4: F1

Figure 5: Dev Loss

Figure 6: Training Loss
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• The hyperparameters are tuned for the dev set and are not performing well on the test set

5.2 Analysis for QANet with TransformerXL extension

This extension to the QANet architecture underperformed more than expected. Some of the reasons
for the underperformance are as follows

• The training was only run once due to time constraints which did not permit hyperparameter
tuning

• Some debugging is needed to ensure all layers are contributing to expectation
• Some hyperparameter values were lowered ( as seen in Table 1 ) to overcome memory and

time constraints
• Decreased number of encoder blocks - the number was decreased from 7 to 1 and could

have been a major contributor to the lower F1 scores. This was done to avoid memory issues

Though the training and dev NLL matched the profile seen for QANet the values for NLL did not go
down to the extent seen with QANet due to reasons elaborated above.

6 Conclusion

Two models were implemented - a QANet implementation as well as a QANet implementation with
TransformerXL extensions. Code was written in pytorch and the models were evaluated using the
SQuAD 2.0 dataset.

Further tuning of the models can be done and requires higher GPU memory than was used in this paper.
Further, other techniques like data augmentation, use of pre-trained contextual word embeddings can
be incorporated to boost performance.
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