Positioning Self in SQuAD

Ankit Baghel Neel Yerneni
abaghel@stanford.edu nyerneni@stanford.edu

Abstract

Current state of the art NLP models for reading comprehension tasks entail ex-
tremely large and complex neural architectures to achieve optimal performance.
Many of these models capitalize on the sequential nature of language by employing
RNNSs to encode and capture meaning in the input space. However, these models
have been shown to be relatively slow, limiting both training and performance
speeds. More specifically, much of contemporary research has focused on abandon-
ing recurrent models in favor of ones that scale more efficiently as the training data
or input size grows [[6]. Our paper focuses on building a question answering system
that is both accurate and efficient so that its knowledge can grow unimpeded by
computational costs. We build on the already proofed BiDAF architecture while
building towards swapping out the usage of RNN-based encoding layers with
other types of encoding blocks. We take inspiration from QANET and BERT that
primarily make use of convolutional and attention based frameworks. Our aim is
to significantly improve both the efficiency and accuracy of the baseline BIDAF
model. We found that replacing encoding blocks with GRU’s instead of LSTM’s
not only improved performance speed but also improved accuracy. Incorporating
self-attention into the BiDAF framework in addition to positional encodings signifi-
cantly improved F1 and EM scores on the dev and test sets as well. We conclude by
analyzing both the quantitative results and the qualitative implications with respect
to our final model architecture.

1 Introduction

Our paper focuses on the NLP task commonly referred to as either question answering or reading
comprehension. Given two pieces of text, one representing the query and the other the context
paragraph, a model must identify the location of the answer to the query within the context paragraph.
Traditionally, the model learns to output the start and end indices of the section of words corresponding
to the answer in the context paragraph. There are many potential sources of complexity in this
problem with respect to the large degree of variation possible in the query and context. This makes it
particularly difficult to build a model that generalizes well. As mentioned, state of the art models
entail extremely complex and deep architectures to properly learn the relationships necessary to
perform the task well. Newer methods have placed an increased focus on scalability- turning away
from slower-to-train recurrent architectures. We will describe some of the techniques used and how
we build our models off of them.

2 Related Work

Our baseline consists of the BIDAF model as introduced in [3]. In particular, this paper makes strong
use of a mechanism commonly used for NLP tasks known as attention whereby models are trained to
learn to focus on more relevant portions of one input with respect to another input. Specifically in
this paper, the authors focus on producing attention weighted representations of both the context and
the question with respect to one another allowing them to obtain very strong results. Following the

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

development in the use of attention, we also look at R-Net, which introduces the idea of self-attention-
to better and more richly capture the notion that certain parts of a context passage shed light on other
parts with respect to a question. They proceeded under the idea that an encoding, as done in [3]], for
example, may not effectively capture longer dependencies between portions of the context passage.

The models from these papers make heavy use of recurrent neural networks to produce encodings
of inputs at various steps in the model. QANet was a recently introduced model that experienced
a significant speed increase in performance by forsaking RNNs in exchange for CNNs and self-
attention. QANET uses repeated "encoder blocks" throughout its model. These encoder blocks
contain convolutional layers, self-attention layers, and feed-forward layers which are repeated,
stacked, and connected through residual connections [6]. Google’s BERT model takes a similar
approach in moving away from recurrent encodings of a passage in developing a transformer. [1]]
This type of transformer has been shown to be extremely promising for reading comprehension tasks.
It is made up of a multi-headed self-attention layer followed by a fully connected feed-forward layer
and grouted with layer normalizations and residual connections.

3 Approach

We set out to extend the baseline BIDAF model for SQuAD using ideas such as, but not limited to,
self-attention, convolutional layers, and positional encodings to improve not only F1 and EM scores
but also the speed of training and prediction. We do this by approaching our implementations from
two fronts. The first front focuses on building up the accuracy of our SQuUAD answering model.
The second focuses on building tools such as QANET derived encoding "blocks" to replace RNNs
and other computationally expensive aspects of these implementations to speed up training while
preserving accuracy.

3.1 Character Level Embeddings

The baseline model uses only pretrained GloVe word-level embeddings. Our first step, therefore,
was to add character level embeddings. Fortunately, pretrained character-level embeddings are
provided as a json file. Similar to how the baseline uses the provide word-level embeddings file, we
load in the pretrained character embedding layer without freezing it, run the context and question
character indices through the embedding layer to create a tensor of shape (batch_size, seq_len,
char_embed_size), and then use 1D convolutions to convert the character level embeddings to shape
(batch_size, seq_len, word_embed_size). The word-level and character-level embeddings are then
concatenated along the last axis to create a final embedding of shape (batch_size, seq_len, 2 X
word_embed_size). The following linear projection and highway encoder layers then convert this
tensor to a final embedding of shape (batch_size, seq_len, hidden_size).

3.2 Self-Attention

Our next goal was to add the mechanism of self-attention to our model as originally described in the
R-NET paper to better and more richly capture the notion that certain parts of a context passage shed
light on others with respect to a question.[2] We chose to implement additive attention whereby the
attention weight matrix a is computed by summing two products each consisting of the input and
a learned weight matrix which is then followed by another multiplication with the input and then
softmax over the last dimension. We then multiply this matrix with the original input to obtain an
attention weighted representation of said input.

s =p" (Wip+ Wap)
a = SoftMax(s)
qg=ap

We finally concatenate the original input to the output and gate it with a learned gate g.

[p, q]
Wgo)
g

|

o
g=0
o

’
* 0

In later models, we add positional encodings as described in [S]. The following is added to the inputs
of the self-attention layer before applying the vanilla self-attention

pos
10000 dimodel
pos

—)
10000 Tmodet

PE(pos,Qi) = SZT?,(

PE(pos,Qi—i—l) = COS(

where pos is the position of the word in the sequence, d,,oq¢; 1s the hidden size of the model, and i is
the relative position in the embedding dimension (which has length hidden size).

3.3 QANET Encoder Block

Our "EncoderBlock" starts by adding a fixed positional encoding to the input as described in Vaswani
et. al..[5]] The input is then passed through stacked layer norm plus depth-wise separable convolutional
layers. Depth-wise separable convolutional layers were used to reduce computational costs [6]. The
number of stacked layer norm and convolutional layers varies depending on whether the EncoderBlock
is applied before or after BIDAF attention. Four are stacked if before and two are stacked if after
to allow more information to pass through the bidirectional attention layer. Dropout is also applied
after every other stacked layer norm and convolutional layer. Residual connections feed-forward the
positional-encoding-added input to the output of the stacked layer norm and convolutional layers.
Layer dropout as described in [6]] is also used in every residual block whereby the output of some
residual block has a probability of being ignored proportional to the number of layers in the model.

The output of the stacks are then put through a self-attention layer that uses multi-headed self-attention
[S]] using one or four heads. Lastly, two feed-forward layers are applied followed by one last layer
norm. Similar to the stacked convolutions, the self attention and feed-forward components each
respectively have residual connections from their input to their output along with the associated layer
dropout. The EncoderBlock ultimately produces output with the same shape as the initial input.

3.4 QANET Model Encoder and Output

Seven stacked EncoderBlocks with two convolutions per block is run over the output of the con-
text2query attention layer (we used the baseline BiDAF attention layer) three times using the same
shared weights each time. The outputs of each model encoding are M1, M2, and M3 respectively.
In the output layer, M1 and M2 are concatenated along the hidden size dimension, are run through
a 1D convolutional layer that changes the last dimension to size one, and are then run through a
log_softmax to produce the prediction for the start of the answer span. Similarly, M1 and M3 are
concatenated and are used to produce the prediction for the end of the answer span.

3.5 Integration of QANET into BiDAF

Our goal was to test to see if including encoder blocks in place of some RNNs can preserve accuracy
while speeding up training and performance. Encoder RNNs before the baseline BiDAF attention layer
would each be replaced with a single EncoderBlock for both context and question. The output of these
two EncoderBlocks would then feed into the BiDAF attention layer. The RNNEncoder immediately
after the BiDAF attention layer would then be replaced with a one-dimensional convolutional layer to
change dimensions of the output followed by seven stacked EncoderBlocks (QANET Model Encoding
Block). The output from these stacked EncoderBlocks is then run through the BIDAFOutput layer.
We developed the model using this integration scheme but were ultimately unable to test it due to
difficulties verifying correct implementation of the encoder block.

3.6 Other layers

Other layers such as the BiDAF attention, RNN_Encoder, and BiDAF Output are left unaltered with
the exception of swapping any LSTMs in the RNN_Encoders and BiDAF Output layers with GRUs.

It should also be noted that all additions to the provided baseline BiDAF model have been im-
plemented by us using descriptions of self-attention, transformers, and QANET’s convolutional
transformer variant in their respective cited literature. The only exception to this is the use of
positional encodings and multi-headed attention, which we implemented while referencing the Trans-
former repo (https://github.com/jadore801120/attention-is-all-you-need-pytorch) that was written for
the WMT 2014 English-to-German translation task and not for SQuAD. As such, significant time
was required to debug and test new layers before adding them to our models.

4 Experiments

4.1 Data

As described in the default project handout, the dataset we are using is roughly 150,000 questions
associated with paragraphs from Wikipedia. About half of the questions are unanswerable if using
only their associated paragraphs. Our SQUAD models are meant to predict whether the answer to the
question is within the paragraph and if it is, point to the span of text containing the answer. [4]]

4.2 Models

The "Baseline" model is a vanilla BIDAF model without character-level embeddings as described in
[4]]. The "Baseline + Char Level Embeddings" model is this same baseline except with character level
embeddings concatenated onto the word-level embeddings before being run through the highway
encoder. This model is meant to resemeble the "BiDAF-No-Answer (single model)" on the Squad 2.0
leaderboard.

Next, we augmented this model by incorporating self attention as described in the R-Net paper. [2]
This was done by adding a self-attention layer followed by an RNNEncoder layer in one of two
locations within the BiDAF model. In the "Self_Attention_Before_ BiDAF" model, this addition is
inserted right before the BiDAF attention layer. In the "Self_Attention_After BiDAF" model, the
addition is inserted after the Modeling layer of the vanilla BiDAF. Since both of these models add an
RNN to the vanilla BiDAF to process the output of self-attention, we decided to convert all LSTMs
within the model to GRUs to limit the increase in computational costs. In our results, we discuss the
relative performance of using LSTMs or GRU and find that GRUs outperform LSTMs. We also add
positional encodings to the self-attention layer in the second phase of experiments.

We were also interested in adding QANET encoder blocks to our BIDAF model to determine if
the switch from RNN to convolutions would speed up training. However, in order to test our
implementation of the encoder blocks, we decided to implement the vanilla QANET as described in
[6]] and see if it performs as expected.

4.3 Experiment Details and Evaluation Methods

Training experiments generally ran for thirty epochs except in later experiments where early stopping
was utilized when metrics have converged. An Azure NV6 was used to run all experiments. BiDAF
was trained with a learning rate of 0.5, a hidden dimension of 100, and a dropout probability of 0.2.
All other hyperparameters are as described in [4].

Our QANET model was run with the hyperparameters described in [6] with the exception of hidden
size 96, number of heads for multi-headed attention being either one or four, and a learning rate of
0.001 or 0.0005 (default learning rate = 0.001).

We evaluated the model using F1, EM, and AvNA scores. The F1 score computes a harmonic mean
between the precision and recall scores using the overlap of words between the prediction and ground
truth; the EM score measures the percentage of exact matches to the ground truth data. Given that the
data contains queries with no answer, the AvNA score computes classification accuracy only with
respect to whether the existence of an answer was correctly predicted. As efficiency of our model

is another axis we hope to optimize, we also want to log training time per epoch. We use and track
the sum of negative log-likelihood loss (NLL) of the predicted start and end points of answer spans
during training.

Output Block A
|
GRU Encoder Block
|
| Self-Attention Block w/ Pos Enc.
|
GRU Encoder Block
|

Model
| BiDAF Attention Block Flow

GRU Encoder Block
|
Char+Word Emb

|

Figure 1: Final BiDAF Model

4.4 Results

In the first phase of our project, we experimented with the addition of character-level embeddings
and self-attention. We observed the following results on the Dev Non PCE Leaderboard:

Model Epoch Training Time | Dev F1 | Dev EM | Dev AvNA | Dev NLL
Baseline 18 min 61.29 57.79 68.38 3.1
Baseline + Char Level Embeddings 24 min 63.78 60.19 70.69 3.13
Self_Attention_Before_BiDAF 49 min 63.62 59.74 70.43 3.01
Self _Attention_After BiDAF 41 min 65.07 61.75 71.4 2.79

Table 1: Phase 1 Results for Dev Set. (Submitted to the Dev Non-PCE Leaderboard)

As expected, all three implemented models were able to outperform the baseline on F1, EM, and
AvNA scores. However, since these improvements required increasing the number of trainable
parameters, the training time per epochs increased significantly across all models. The biggest
increase in training time came with the addition of self-attention, which is expected since adding
self-attention requires the addition of a relatively large bidirectional RNN. Self-attention itself adds a
few linear layers to the model as well, but the parameters from this addition is small compared to the
parameters added by the RNN.

An interesting finding was that while both self-attention layers had large training times,
"Self_Attention_Before_ BIDAF" took an extra 8 minutes per epoch to train compared to
"Self_Attention_After_BiDAF". This is unexpected since the self-attention and subsequent RNNEn-
coder layer added to both models were initialized identically. The only difference was their placement
within the overall model.

Observing our experiments using Tensorboard (please see Appendix for figures), we can note that our
three implemented models surpass the baseline model by the 1.000M mark across all metrics. While
a significant gain in performance can be attributed to the inclusion of character-level embeddings, we
observe that the inclusion of self-attention reduces the number of steps needed to reach improved
scores regardless of placement before or after the BiDAF attention layer. This is a promising
result since it indicates that self-attention models may need fewer overall epochs to reach their best
checkpoint. This idea is further supported by the fact that the "Self_Attention_After BiDAF" model
reaches its best check point at around the 2.000M mark and declines slightly in performance thereafter.
Because of this, we used early stopping in later improvements of this model.

In the second phase of our project, we explored ideas related to transformers [S)]. We first implemented
positional encodings as described in [5]]. These were then added to the self-attention layer. We then
tested two versions of the Self_Attention_Pos_Encoding_BiDAF model: one using GRUs and another

using LSTMs. We found that using GRUs instead of LSTMs resulted not only in slightly faster
training times but also had better F1 scores. Because of this result, we elected to use GRU as the only
type of RNN in later models.

dev/F1

000C 2000k 4000k BODOK S000K 1000M 1200M 1.400M 1.600M 1.8C0M 2000M 2200M 2.400M 2.800M

Figure 2: F1 Scores between Self_Attention_Pos_Encoding_BiDAF models: blue is the GRU model
and red is the LSTM model.

Our implementation of QANET [6] was plagued by many iterative rounds of testing and debugging.
During this process, we were able to experiment with some of the hyperparameters and their effect
on training performance. Consider the following three versions of QANET

Model | Learning Rate | Num Heads
QA_1 0.001 1
QA2 0.001 4
QA_3 0.0005 4

Table 2: Hyperparameter tuning of QANET

dev/F1

e

0000 2000k 4000k B0k BOOGk 1.000M 1.200M 1.400M 160CM 1.800M 2000M 2200M 2.400M

Figure 3: F1 Scores between QA models: grey is the QA_1, orange is QA_2, and blue is QA_3.

We observe an increase in F1 score when increasing the number of attention heads from one to four.
This is as expected since increasing the number of attention heads allows the model to attend to
information from even more subspaces of representation.

We also observe a significant increase in F1 score when dividing the vanilla QANET learning rate by
two. The reason for this increase is likely due to a caught bug by which parameters were normalized
and layers were dropped too often. This results in a smaller learning rate being required in order to
stabilize learning and avoid the spikes seen in QA_1 and QA_2.

4.5 Final BiDAF Model Results

Model Epoch Training Time

Dev F1/EM

Test F1/EM

Self_Attention_Pos_Encoding_BiDAF 41 min

65.528/62.040

64.074/60.575

Table 3: Final Model Results on Non-PCE Leaderboards

We find that the addition of positional encodings increases metrics without adding any significant
training time to the model. This makes sense as positonal encodings for all training examples is
precomputed during initialization and stored, indicating that taking inspiration from transformers to
improve BiDAF was a good approach.

5 Analysis of Final BiDAF Model

5.1 Question and Context Lengths

We first explored the effect question length and context length had on dev set scores. We found that
there was no clear correlation between length and metrics for either length. Please see the Appendix
for figures and discussion.

5.2 Answer Length

Next, we explored the effect true answer length had on our metrics.

Metrics Conditioned on Answer Length

05
04
03
02
} | |
0
1 2 3 4 s 6 7 8 9 10 1 12 13 14 15 16 20

0

mEM mF1 BAWNA

Figure 4: Average scores subsetted on answer length. EM is in blue. F1 is in red. AvNA is in grey.

Here, we observe a downward trend in all metrics as the length of the true answer increases. This
makes sense due to how RNNs and even self/multi-headed attention mechanisms have a limited
window in which pertinent information can flow in a sequence. If an answer span is relatively long,
then it is difficult for attention mechanisms to place the correct amount of attention on far away
words from the current center word. It is likely that increasing the number of self attention layers or
increasing to eight heads of attention would help this issue in future models.

5.3 Error Analysis

Lastly, we analyze questions that our final BIDAF model gets wrong as well as questions its outper-
forms on compared to the baseline in order to better understand how to improve models in the future.
First consider the following question that our final BiDAF model gets wrong.

¢ Question: A forced trade agreement between two countries would be an example of what?

o Context: The definition of imperialism has not been finalized for centuries and was confusedly seen to represent
the policies of major powers, or simply, general-purpose aggressiveness. Further on, some writers[who?] used the
term imperialism, in slightly more discriminating fashion, to mean all kinds of domination or control by a group of
people over another. To clear out this confusion about the definition of imperialism one could speak of "formal”
and [informal" imperialism]the first meaning physical control or "full-fledged colonial rule" while the second implied
less direct rule though still containing perceivable kinds of dominance. Informal rule is generally less costly than
taking over territories formally. This is because, with informal rule, the control is spread more subtly through
technological superiority, enforcing land officials into large debts that cannot be repaid, ownership of private
industries thus expanding the controlled area, or having countries agree to unevenitrade agreements forcefullyl

o Answer: "informal" imperialism

¢ Prediction: N/A

In this question, the correct answer is "informal imperialism", but our model predicts no answer. The
reason for this is that the phrases "informal imperialism" and "uneven trade agreements forcefully"
are located far apart within the sequence. While RNNs can capture sequential information, they can
only capture a finite length away from the query word. The addition of self-attention likely improves
upon this issue, but further models would certain benefit from multi-headed attention, which provides
a more "global" version of self attention that provides more rich sequential information than RNN
and self attention alone.

Now consider the following question:

¢ Question: How long does it take to know the outcome of a division?

e Context: Each sitting day, normally at 5 pm, MSPs decide on all the motions and amendments that have been
moved that day. This "Decision Time" is heralded by the sounding of the division bell, which is heard throughout the
Parliamentary campus and alerts MSPs who are not in the chamber to return and vote. At Decision Time, the
Presiding Officer puts questions on the motions and amendments by reading out the name of the motion or
amendment as well as the proposer and asking "Are we all agreed?", to which the chamber first votes orally. If there
is audible dissent, the Presiding Officer announces "There will bend members vote by means of

electronic consoles on their desks. Each MSP has a unique access card with a microchip which, when inserted into
the console, identifies them and allows them to vote. As a result, the outcome o is known in

seconds.
o Answer: seconds

e Prediction: N/A

In this question, the baseline could not find the correct answer, so it predicted no answer. Our final
BiDAF model, however, was able to predict the correct answer. The reason the baseline fails is likely
due to the phrasing of the two instances the word "division" appears in the context. In the first, it
is "a division" and in the second, it is "each division." Because the question states "a division", the
baseline model likely focuses in on "a division" as the center word to look at when in reality, the
answer is located near "each division." Our BiDAF model correctly predicts the answer because it
implements self-attention, which allows it to better evaluate the relative importance of words in the
context. Therefore, it can detect that while "each division" does not match the question stem, it is
located right next to the answer.

6 Conclusion

In this study, we were able to improve upon the vanilla BIDAF model by experimenting with self
attention and positional encodings. We were also able to improve performance while minimizing
the increase in computational costs by using GRUs instead of LSTMs within our model. We were
also able to make a decent improvement in performance using positional encodings with virtually no
increase in training time.

While it is unfortunate that we were unable to fully implement the vanilla QANET, we were able
to borrow ideas from it such as positional encodings to improve our self-attention BiDAF models.
We were also able to make incremental improvements on our QANET implementation through
debugging and through hyperparameter tuning. As of writing this paper, we have implemented a
version of QANET whose score metrics grow more smoothly. (Please see appendix for F1 score
graph) It still does not beat baseline BiDAF, but debugging it this far has been a worthwhile exercise
in implementing machine learning algorithms on PyTorch and in experimenting with multi-headed
attention and layer dropout hyperparameters.

A limitation of this study is that it improves performance at the cost of speed. Once we fix our
QANET implementation, we will be able to explore how convolutional stacks can improve the speed
of our BiDAF model. We also spent some time implementing the layers needed for the traditional
Transformer in [5]] but put it aside in order to focus on the QANET debugging. We plan on returning
to the tradtional Transformer so we can use it to evaluate the speed increases provided by QANET
integration into BiDAF. Ultimately, the addition of "traditional" transformers or EncoderBlocks will
provide us with the opportunity to thoroughly explore the trade-off between accuracy and efficiency
within the BiDAF architecture.

References

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[2] Microsoft Research Asia Natural Language Computing Group. R-net: Machine reading compre-
hension with self-matching networks. May 2017.

[3] Minjoon Sero, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidrectional
attention flow for machine comprehension. /CLR 2017, 2017.

[4] CS224n Teaching Staff. "cs 224n default final project: Question answering on squad 2.0", 2019.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[6] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi,
and Quoc V. Le. Qanet: Combining local convolution with global self-attention for reading
comprehension, 2018.

7 Appendix

7.1 Phase 1 Models Training Metrics

dev/F1
dev/EM

66.0
62.0

62.0
58.0

58.0
54.0 54.0
50.0 50.0

0.000 1.000M 2.,000M 3.000M 0000 1.000M 2.000M 3.000M
(a) Dev F1 (b) Dev EM
dev/AvNA
dev/NLL

72.0
4.60
68.0 400
64.0 -
60.0 3.40
56.0 3.00
52.0 2.60

0.000 1.000M 2.,000M 3.000M 0000 1.000M 2,000M 3.000M
(c) Dev AYNA (d) Dev NLL

Figure 5: Phase 1 Training Metrics: The orange line represents the Baseline model. The red
line represents the Baseline + Char Level Embeddings Model. The grey line represent the
Self_Attention_Before_ BiDAF model. The magenta line represent the Self_Attention_Before_BiDAF
model.

7.2 Question Length Metrics

Metrics Conditioned on Question Length

0.9
0.8
0.7

0.6
0.5
0.4
0.3
0.2
0.1

4 56 7 8 9101112131415161718192021222324252627282935

HEM mF1 mAvVNA

Figure 6: Average scores conditioned on question length. EM is blue. F1 is red. AvNA is grey

We observed that there is no significant trends any of the metrics measured. There is a slight
improvement in EM and F1 when considering shorter length questions however. While it appears
that question length 35 is associated with a AvNA score of 1.0, there was only one question in the
dev set that was this long. This brings up a limitation of this figure since the length of questions is
sparse in the dev set. A future analysis we would like to do would be to generate this figure from the
training set, which has significantly more examples.

7.3 Context Length Metrics

Metrics Conditioned on Context Length

o

.8

o

.7

.6
0

30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 370 380

o

o

o
=

)
w

o
R

o
o

EMEM mF1 mAVNA

Figure 7: Average scores conditioned on context length. Lengths are rounded down to the tens place.
EM is blue. F1 is red. AvNA is grey

Similar to question length, context length appears to have no clear correlation with any of our metrics.
There appears to be high scores for the longest contexts, but this is mostly due to sparsity of the dev
set context lengths. Our model appears to perform equally well on all context lengths.

10

7.4 Final QA Model

2000k 400.0k £00.0k 800.0x 1.000M 1.200M 1.400M 1800 1.800M

Figure 8: The F1 score of the final QANET implementation during training. While the performance
does not coverge to or above the baseline’s, it does have a much more smooth learning curve compared
to previous iterations of the model, indicating that future work on this model is promising.

11

	Introduction
	Related Work
	Approach
	Character Level Embeddings
	Self-Attention
	QANET Encoder Block
	QANET Model Encoder and Output
	Integration of QANET into BiDAF
	Other layers

	Experiments
	Data
	Models
	Experiment Details and Evaluation Methods
	Results
	Final BiDAF Model Results

	Analysis of Final BiDAF Model
	Question and Context Lengths
	Answer Length
	Error Analysis

	Conclusion
	Appendix
	Phase 1 Models Training Metrics
	Question Length Metrics
	Context Length Metrics
	Final QA Model

