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Abstract

Machine reading comprehension combined with unanswerable questions is a novel,
challenging task in the field of natural language processing, which motivated
the creation of the SQuAD 2.0 dataset. We experiment with implementing a
hierarchical attention fusion network to capture complex relationships between the
context and question. We also adopt a multi-task learning approach to the problem
by adding an answer verifier to the output of our model which predicts whether
or not a question is answerable, and further experiment with plausible answer
pointers as well. We built the architecture from scratch, replacing components of
the generously provided starter code framework of a BiDAF model. After model
tuning, we obtain an F1 score of 65.48 and an EM score of 63.06 on the held-out
test set, which ranks competitively on the class leaderboard. In our work, we use
ablative analysis to show the benefits of each component of our network, as well as
qualitative analysis of model predictions.

1 Introduction

Machine reading comprension (MRC) is a difficult task in the field of natural language processing. A
model must be able to process and understand a context and question in order to provide a reasonable
answer. After the success of the SQuAD challenge, with the most promising systems exceeding
human level performance, Rajpurkar et al. [4] developed the SQuAD 2.0 dataset, which incorporates
unanswerable questions in order to make the task of question answering more difficult.

In order to be successful in question answering with unanswerable questions, a model must be able to
distinguish whether or not a question is answerable while attempting to locate a plausible answer
span. Thus, we decompose the problem into the two main tasks of an answer pointer and an answer
verifier, which we refer to as a multi-task learning problem, inspired by Sun et. al [7].

We also experiment with hierarchical attention fusion networks using techniques proposed by Wang
et al [8]. The hierarchical attention layers leverage the benefits of both co-attention and self-attention
in order to gradually focus the attention on the optimal answer span with refined granularity.

On a high level, we can define our three main contributions as follows: (1) We use a mixture of word,
character, and manual features as input to improve performance. (2) We implement hierarchical
attention fusion layers from scratch to capture the complex relationship between the question and
context. (3) We adapt a modified answer verifier from scratch to formulate a multi-task learning
problem where we attempt to predict if a question is answerable whilst locating the answer span.

We show that with the aforementioned modifications, we achieve competitive metrics on the class
leaderboard based on F1 and EM scores, and we critically analyze our model’s performance through
quantitative and qualitative analysis.



2 Related Work

Most of the top models on the current SQuAD 2.0 leaderboard emphasize using unique attention
mechanisms to improve performance on question answering. Our provided baseline contains an
implementation of the Bi-Directional Attention Flow (BiDAF) [6], which produces a question-aware
context and a context-aware question from its attention layer, which has shown to be successful on
the SQuAD leaderboard.

Another promising approach to attention is the multi-granularity hierarchical attention fusion networks
proposed by Wang et al. [8]. The authors propose a hierarchical attention network to focus on the
answer span progressively with multi-level soft-alignment. On a high level, the attention approach
draws inspiration from typical human reading patterns. The authors claim that people first read
through the whole passage to capture a snapshot of the main body of the passage. Then, while
considering the question, people try to understand the main intent of the question related with the
passage’s theme. Next, a rough answer span is located in the passage and attention becomes focused
on the local context of that span. Finally, people will remind themselves of the question and select
the best answer according to the previously located answer span.

The high-level intuition seemed reasonable, and the proposed methods of using a hierarchical attention
network that can gradually focus the attention on the desired answer span seemed very promising,
so we chose to implement a version of the hierarchical attention network from scratch for our final
model. Although the original authors of the hierarchical attention fusion networks use pretrained
contextual embeddings in their final model, we show that with some modifications, the hierarchical
attention network performs well, even without pretrained contextual embeddings.

Beyond focusing on attention, we analyzed work done specifically to tackle the challenge of unan-
swerable questions. Sun. et al.’s U-Net [7] looked particularly promising, as the authors propose
to reframe the machine reading comprehension problem as a multi-task learning problem with an
answer pointer, plausible answer pointer, and answer verifier. Since the hierarchical attention network
used a simpler output layer than BiDAF, we reasoned that perhaps using a more expressive layer
would yield better results. We found the answer verifier to be the most beneficial, both empirically
and intuitively, as it seeks to predict whether or not a question is answerable, which influences the
optimization of the overall model.

3 Approach

3.1 Main Approach and Architecture

In Figure 1, we display our final model architecture, which can be summarized as three main
components. First, we have an embedding layer, which is detailed in Section 3.2. Second, we have
our hierarchical attention layer, described in Section 3.3. Finally, we have our output layer, which
includes an answer verifier and is described in Section 3.4.

We can formally define our problem as follows: given a set of tuples (Q,P,A), where Q =
(q1, q2, ...qm) denotes a question of length m words, P = (p0, p1, p2, ...pn) denotes a context
passage with length n words, and A = (rs, re) denotes the true start and end indices of the answer
in the passage, our model must learn a function f : (Q,P ) → (r̂s, r̂e), where (r̂s, r̂e) represents
the prediction of the start and end index of the answer span (note that we append a p0 token at the
beginning of each passage to represent a no-answer token). The constraints on our answer span are
that 0 ≤ r̂s ≤ r̂e, and r̂e − r̂s + 1 ≤ Lmax, where Lmax = 15 represents the maximum length of an
answer span prediction.

3.2 Embedding Layer

The embedding layer takes input representations of a question Q and context passage P and
produces embedded representations of the question Q̃e = (q̃1, q̃2, ...q̃m) and context passage
P̃e = (p̃0, p̃1, p̃2, ...p̃n). For each word in the question and context, we look up a word embed-
ding wi ∈ RDw and character-level embedding ci ∈ Rlen(word)×Dc , where Dw and Dc are the word
and character embedding sizes, respectively. We then feed each ci through a 1D convolution to
produce c̃i ∈ RDw . We then concatenate the ExactMatch features denoted as fEM described in
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Figure 1: Final model architecture (attention layers borrowed from Wang et al. [8])

Section 3.2.1 with the character and word embeddings to form e = [wi, c̃i, fEM ]. Finally, we pass e
through a projection layer and a highway network [5] to obtain our final embeddings ẽi ∈ RH , where
H is a hyperparameter representing the hidden size.

3.2.1 ExactMatch Features

We define the ExactMatch features as three binary indicator features proposed by Chen et al. [1].
Let each question and context be denoted as q and c, respectively. In particular, for each word in the
question qi, we define a binary feature 1(qi ∈ c). Likewise, for each word in the context ci, we define
a binary feature 1(ci ∈ q). We add a binary feature for each of the words in the original, lowercase,
and lemmatized form. While Chen et al. used this for context encodings, we use these features for
both the question and context embeddings to emphasize the importance of exact matches of words
from question to context as well as context to question.

At the start of our self-attention context layer, we merge these features into our model a second
time as a way of guiding the attention to focus on these features. Similar to the concept of spaced
repetition for human learning, we found that having the network revisit these important features again
later in the network improves our performance on the EM/F1 metrics.

3.3 Attention Layers

We will now summarize the hierarchical attention and fusion layer that Wang et al. propose. Using
Q̃e and P̃e from the embedding layer, we can construct a soft-alignment matrix S to measure the
semantic similarity between question and passage as:

Sij = Att(q̃i, p̃i) = ReLU(WT
linq̃i)

T ·ReLU(WT
linp̃i), (1)

where Wlin is a trainable weight matrix. We then use Sij to compute attention between question and
passage, which is used to compute attended vectors in the passage to question (P2Q) and question
to passage (Q2P) direction, respectively. The P2Q direction can be summarized by computing
αj = softmax(S:j). We then compute an aligned passage representation from the question as:

Q̃:t =
∑
j

αtj · Q̃e:j∀j ∈ [1, ...m]. (2)

The Q2P direction equations are similar and result in obtaining P̃k:, where P̃ is the weighted sum
of the most important words in the passage with respect to the question. With P̃ and Q̃, the authors
propose a vector-based fusion kernel to compute P ′ = Fuse(P, Q̃) and Q′ = Fuse(Q, P̃ ).
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The next step is to use self-attention in order to further align the question and passage representation
against itself. Using P ′, let D = BiLSTM([P ′; fEM ]), where fEM are the ExactMatch features
mentioned earlier that we use to guide the attention. We then use a bilinear self-alignment function
summarized as:

D̃ = softmax(D ·WL ·DT ) ·D (3)
We then have a question-aware passage representation D and a self-aware representation D̃ that are
fused to form D′. Finally, we run D′ through a bidirectional LSTM to form D′′, the final contextual
passage representation.

Since the question representation is shorter in length, the authors propose using a linear transformation
to encode the question representation. First, we compute Q′′ = BiLSTM(Q′). The final single
question vector can then be computed with a linear self-alignment as:

γ = softmax(wT
q ·Q′′), (4)

q =
∑
j

γ ·Q′′:j ,∀j ∈ [1, ...,m]. (5)

3.4 Output Layers

Finally, we implemented the U-Net model’s answer pointer, plausible answer pointer, and answer
verifier proposed by Sun et al. [7] to better handle the challenge of unanswerable questions without
adding too much overhead to the model. We modified the bilinear match layer in hierarchical attention
to use additional layers for the pointers and verifier. However, we found that our model achieved the
best performance with simply the answer pointer and answer verifier, which we describe below.

Given our summarized question vector q and final contextual passage representation D′′, we compute
a vector of probabilities corresponding to each position in the context:

pstart = softmax(q ·WT
s ·D′′) (6)

pend = softmax(q ·WT
e ·D′′) (7)

At test time, we choose the values of r̂s and r̂e that maximize pstart(r̂s) · pend(r̂e).
Additionally, we compute the probability the question is answerable using the U-Net answer verifier.
We first create a vector F containing the question representation, the no-answer token’s attended
context representation, and the two answer spans, each combined with the passage representation. We
then pass F through a sigmoid and a linear layer to obtain a probability of the question’s answerability.

F = [q,D′′0 , cs, ce], cs = pstart ·D′′, ce = pend ·D′′ (8)
panswerable = σ(WT

f F ) (9)

Having a separate predictor for question answerability improves our model’s performance signifi-
cantly, as we are effectively employing multi-task learning by semi-supervising the model’s answer
span prediction with its ability to predict whether or not a question is answerable. With our answer
pointer, we compute a negative log likelihood loss component:

LA = −
(
log(pstart(i)) + log(pend(j))

)
, (10)

where i and j are the gold start and end locations in the context passage, respectively. We then
compute a separate loss function for our answer verifier:

LAV = −
(
δ · log(panswerable) + (1− δ) · log(1− panswerable)

)
, (11)

where δ ∈ {0, 1} depending on if the question is answerable. Summing the two equations, we obtain
the final loss:

L = LA + LAV (12)

4 Experiments

4.1 Dataset

We use the provided SQuAD 2.0 dataset for all experiments. We incorporate 300-dim GloVe
embeddings, character embeddings, and three additional binary ExactMatch features described in
Section 3.2. The ExactMatch features are computed during the data preprocessing phase, so they
incur a minimal cost on the overall runtime of training the model.
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Figure 2: Final Model Architecture Development Curves

4.2 Evaluation Methods

We evaluated our methods using the SQuAD 2.0 leaderboard and EM/F1 scores. We focused on
comparisons between incremental modifications to our model, beginning with the baseline BiDAF
model given in the starter code. We also referenced the class leaderboard for inspiration of models to
consider. To see how important each component of our model architecture was, we conducted an
ablation study on our final model.

For qualitative analysis, we filtered and manually inspected output to understand the type of questions
our model answered incorrectly. We discuss qualitative results further in Section 6.2.

4.3 Experimental Details

We began by building off of the provided implementation of a BiDAF [6] model. For the embedding
layer, we modified the layer to take a concatenation of word embeddings, character embeddings, and
ExactMatch manual features. Then, we implemented the hierarchical attention network method for
creating the passage to question (P2Q) and question to passage (Q2P) representations explained by
Wang et al [8]. We replaced the BiDAF model’s attention layers with our new attention network.

Finally, we substituted the BiDAF output layer with the bilinear match layer given by Wang et al.
combined with the answer verifier in the U-Net output layer. We experimented with different answer
pointers, and we modified our loss function to be the objective described in Section 3.4.

Note that since we do not have access to an official implementation of the hierarchical attention
network, and we are not using pretrained contextual embeddings like ELMo or BERT, we are not
using the provided EM/F1 score by Wang et al. as a baseline benchmark.

We ran each model for roughly 2 million iterations using a dropout of 0.23 for each as a starting point,
which we found through empirical testing. We stopped some models early when it was clear that they
were overfitting the training data. We experimented with different optimizers (AdaMax, AdaDelta,
Adam), different learning rates for each optimizer, and different dropout probabilities (0.1, 0.3, 0.5),
and we found training stability to be significantly impacted by the choice of hyperparameters. For
example, with too small of a learning rate, in some cases the model would become stuck in a local
optima and always predict no-answer.

5 Results (Non-PCE)

After performing a hyperparameter grid search, we settled on the following final list of tuned
hyperparameters: batch size = 128, optimizer = Adam, initial learning rate = 0.001, hidden size =
100, dropout = 0.23, learning rate decay = 0.99.
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Model Metrics on Dev Set EM F1 AvNA NLL
Baseline BiDAF 55.99 59.29 67.90 3.08
Hierarchical 56.11 58.92 66.14 2.98
BiDAF+EM+Char 60.85 64.36 70.49 2.76
Hierarchical+EM+Char 63.99 67.19 73.37 2.55
Hierarch+EM+Char+UNet 64.78 67.27 71.47 9.27
Final Model 65.43 68.37 74.53 2.45

Figure 3: EM, F1, AvNA, and NLL scores of different models tested on the development set

Our final model consists of word + character embeddings, ExactMatch features, hierarchical attention,
and the U-Net answer verifier. With our final model, we obtain our best results on the development
set as seen in Figure 3. We list only the models with major architectural changes for clarity.

After experimenting with an initial implementation of the hierarchical attention network, we found
that substituting hierarchical attention for BiDAF attention led to a minor improvement in EM
and a minor reduction in F1 compared to the given official baseline metrics. We suspect that this
discrepancy in performance could be because hierarchical attention networks rely on pre-trained
embeddings more than BiDAF does, as the original authors use ELMo in their final model. This is
corroborated by our observation that after adding ExactMatch features and character embeddings
to both the hierarchical attention network and BiDAF models, our hierarchical attention network
obtained far superior performance on the EM and F1 metrics. After modifying the training objective
to include the binary cross entropy loss of the answer verifier’s predictions, we noticed a further
improvement of our final model, supporting the idea that the hierarchical attention network relies on
more expressive input and output layers to perform well.

Surprisingly, when we implemented the full U-Net output layer (answer pointer, plausible answer
pointer, and answer verifier), we obtained slightly lower metrics than when we simply use the answer
verifier (note that the large difference in NLL is due to a modified objective function). We suspect that
the plausible answer pointer did worse because we effectively rewarded the model for predicting a
plausible answer, even when it should predict no-answer. Furthermore, since the full U-Net objective
function involved splitting the loss into three components, the additional complexity seemed to make
training slower with diminishing returns on performance. With just the answer verifier, we found that
the model converged more quickly and performed better on discerning a question’s answerability, as
desired and as seen in the improved metrics.

Our final test leaderboard submission obtained scores of 63.06 EM and 65.48 F1. We can see that
we are to some extent overfitting to the development set, which makes sense as we tracked the F1
and EM scores throughout training to inform our hyperparameter tuning. Also, the held-out test set
contains some hand-labeled examples, which could make the distribution of the test set data slightly
different than the distribution of the train and development data, which might partially explain the
difference in development and test F1 and EM scores.

6 Analysis

6.1 Ablation Analysis

Model Metrics on Dev Set EM F1
Final Model 65.43 68.37
- Hierarchical Attention (BiDAF instead) 62.84 65.28
- ExactMatch features 63.16 66.73
- Character Embeddings 61.09 64.55
- U-Net Answer Verifier 63.99 67.19

Figure 4: Ablation tests of our final model on the development set

In order to measure the individual contribution of each model component, we ran an ablation study.
Figure 4 summarizes the performance of our model with individual components removed on the
development set. We can see that the character embeddings are the most crucial to the performance
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on both EM and F1, which makes sense as character embeddings aid in providing representations
for OOV words, whereas word embeddings would simply use a fixed <UNK> token representation.
The next most important component is the hierarchical attention network layer. When replaced
with BiDAF attention, we observe a significant drop of about 5% on the metrics. We hypothesize
that the hierarchical attention layer is more effective with more expressive inputs, as we have seen
empirically in our experiments. To evaluate the effectiveness of the ExactMatch features, we see
that by removing the manual features, EM decreases by about 3.5% and the F1 decreases by about
2.5%. We notice that the drop in the EM score is more significant than the F1 decrease. We posit that
since the ExactMatch features mark words that match in the question and the context passage, the
ExactMatch features influence the EM score more than the F1 score. Finally, we see that removing
U-Net answer verifier degraded performance least.

6.2 Qualitative Error Analysis

During development, we assessed our model’s predictions qualitatively to see where improvements
could be made. In Sections 6.2.1 and 6.2.2, we show two examples of issues that were alleviated by
architectural changes in our final model. In Sections 6.2.3 and 6.2.4, we highlight two examples our
model struggles with, as well as possible ways to remedy the problems.

6.2.1 OOV words in the question and context

Although our model initially struggled with predicting OOV words, our final model successfully
identified many solutions that include out-of-vocabulary words. In the above example, the model
is able to identify the relationship between "syrenka" and "mermaid", even though "syrenka" is not
in the trained vocabulary. The character-level embeddings likely helped solve this problem, as the
model can potentially infer that the parentheses around "syrenka" signaled a definition or alternate
meaning of the word. Moreover, the character-level embeddings provide OOV words with a unique
representation instead of grouping them all as a single <UNK> representation.

6.2.2 Exact Match

Adding ExactMatch features helped our model greatly, particularly by lemmatizing all question words
and searching for them in the context. In the above example, since our model gives more weight to
lemmatized context words that are also present in the question, the sentence containing the answer
was given significantly more attention, since "primary", "recreation", "sports", and "facility" were in
the question text. Notice that the lemmatization helps with marking "recreational" and "recreation" as
matches in the ExactMatch features. Compared to the class leaderboard, we have a relatively higher
EM than F1 score, which we can potentially attribute to our ExactMatch features.
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6.2.3 Improper recognition of question type

Our model occasionally struggled to identify the asked question type. In the above example, the
question clearly asks for the name of a person (Kissinger), signaled by "for who?" at the end of
the sentence, but our model predicted "Kissinger’s dominance" instead. However, it is important to
note that our model only predicts answer spans in the passage, and in this case, the standalone name
"Kissinger" is not present in the context. We would likely need train a separate model to match our
final output with the correct question type in order to handle these questions. Moreover, additional
named-entity recognition features may help in determining that the answer is intended to be a noun.

6.2.4 Predicting plausible answer instead of no-answer

Our model also occasionally predicted a plausible answer instead of no-answer. In the above example,
the answer to the question is not present in the text, however our model predicts the plausible answer.
This shows that our model is susceptible to pattern matching, instead of actual comprehension. We
attempted to solve this problem by adding the U-Net plausible answer pointer, however we found
that adding the plausible answers ultimately degraded overall model performance. To mitigate this
issue, we should explore different methods of encoding confidence of the answerability of a question
in order to predict no-answer properly beyond our attempts of using U-Net’s modified objective.

7 Conclusion & Future Work

In this paper, we implement and modify the hierarchical attention network proposed by Wang et
al [8] as well as the U-Net answer verifier proposed by Sun et al [7]. We found that our model’s
performance is highly dependent on having sufficiently expressive input embeddings, as seen by our
model’s performance improvement after adding ExactMatch features and character-level embeddings.
Our final model achieves competitive EM and F1 scores relative to the class leaderboard, but there is
still significant room for improvement with respect to the state of the art. Through ablation analysis,
we see that our model relies most on character-level embeddings, likely because they help with
handling OOV words in the context and question. Through qualitative inspection of predictions,
we see that our model is prone to choosing "plausible" answers when there is truly no answer. We
attempted to remedy this by using an answer verifier in the output layer, which improved performance.
We also experimented with a plausible answer pointer, which did not improve performance.

For future work, we have seen that expressive and informative inputs contribute a significant impact
on the model’s performance. Thus, an immediate next step could be to try integrating state of the
art pretrained contextual embeddings such as BERT [2] to our model’s embedding layer. It would
also be interesting to examining different ways of regularizing the model to help with generalization,
perhaps with techniques such as zoneout [3]. Future work could also experiment with different
attempts to divide the problem definition into more sub-tasks, in order to not only focus on predicting
a reasonable answer span, but also to be confident in the answerability of a question.
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