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Abstract

In this work, we experiment with several approaches to question answering on
SQuAD 2.0. We augment a baseline model based on BiDAF with character
embeddings and see a gain in performance. Additionally, we experiment with
implementing a variant of QANet and a handful of other approaches to adding
self-attention to our models, but find they do not improve performance as currently
implemented.

1 Introduction

In this work, we investigate several approaches to question answering, with a particular focus on
applications of self-attention. In particular, we use SQuAD 2.0, which is a challenging question
answering data set where each example consists of a question and a paragraph of context which
contains the answer if one exists. Approximately one third of the examples are not answerable;
this makes for a substantially more difficult task, as reflected in the gap between performance on
SQuAD 1.1 and 2.0. Question answering and reading comprehension have immediate applications in
information retrieval, among other areas. Apart from possible applications, they also provide one
way to approach natural language understanding, which is of independent interest.

Currently, competitive methods for SQuAD 2.0 make heavy use of pretrained contextual embeddings
learned from large unsupervised corpora. In this work, we focus on models which do not leverage
such contextual embeddings. Drawing inspiration from the success of the Transformer [2] and similar
self-attention based models on a variety of NLP tasks (including learning contextual embeddings),
we focus particularly on models which make use of self-attention.

Ultimately we find that our models which incorporate self-attention do not outperform an RNN-based
baseline. Our best model, which is simply the BiDAF-inspired baseline augmented with character
embeddings, achieves a test F1 score of 64.791.

2 Related work

SQuaD has attracted considerable interest and there are many papers that propose models specifically
designed to perform well on it. Our work draws most heavily on BiDAF [1] and QANet [5], both of
which gave state-of-the-art results at the time of their introduction. Like many SQuAD architectures,
both BiDAF and QANet compute contextual representations of each word in the query and context,
combine these representations through an attention mechanism, pass the combined representation
to additional encoding layers, and conclude with a relatively simple pointer network to produce
distributions over the starting and ending tokens.

BiDAF’s core contribution is the introduction of a bidirectional attention layer in which both a
representation of the context conditioned on the query and of the query conditioned on the context
are computed. We use a variant of BiDAF as our baseline in this work. A small modification to that
baseline also turns out to be our best performing model.

Although similar to BiDAF in that it also uses a bidirectional attention layer, QANet is distinguished
by the use of blocks consisting of convolutions and self-attention in place of RNNs throughout the
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Figure 1: QANet as depicted in the original paper [5]

model. The attention in these blocks is identical to that first proposed for use in the Transformer in
Vaswani et al [2]. We experiment both with a re-implementation of QANet and another architecture
which incorporates self-attention.

3 Approach

We implement several models, all broadly based on BiDAF and QANet. Our baseline is the provided
BiDAF implementation without character embeddings.

3.1 Character Embeddings

Our simplest (and best performing) model is simply this baseline model augmented with character-
based word embeddings. We take a relatively standard approach to learning these embeddings. Each
character has a trainable embedding in R%. For each word, its character embeddings are passed
through a one dimensional convolutional layer and the result is max-pooled over the entire sequence
length to give a 64 dimensional embedding for each word.

To combine these embeddings with the pretrained GloVe vectors, we concatenate the two represen-
tations, project the concatenation using a linear layer, and then pass the result through a two layer
highway network. This approach, (with higher dimensional character embeddings) is also used in
QANet. We also train a variant of this model as part of an ablation study.

3.2 QANet and Self-Attention

In an attempt to further improve over this model, we implement two models which make use of
self-attention.

The first of these is a (broken) reimplementation of QANet. As mentioned above, on a high level,
QANet follows the general approach of many SQuAD models. It begins with word embedding layers
for the question and context. This layer is nearly identical to that used in our augmented baseline. It
differs only in that the <UNK> word embedding is not frozen during training and that each character
embedding is of dimension 200 instead of 64.

These embeddings are then passed through an encoding block which draws heavily on the Transformer
encoder block of Vaswani et al [2]. Positional encoding is applied at the start of the block. This
is followed by a depthwise convolutional layer, a multiheaded attention layer, and a two layer
positionwise feedforward network. Each of these layers is preceded by a layer norm and has
a residual connection around it. Notably, the only difference between the last two layers and a
Transformer encoder block is that the layer norm is applied before each layer instead of after.

Explicitly, multiheaded attention is computed as follows. For the it" of the n heads, there are trainable
matrices W), Wi, Wy, € R% >4 where d is the model dimension and d,, the embedding dimension.
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Figure 2: Multiheaded attention as depicted in Attention is All You Need [2]

In our implementation, d,, is fixed to be d/n. For the i*" head, the result of the attention is
softmax (WéQKTW}:/\/ dv) WiV

where the rows of @), K, V" are the query, key, and value vectors respectively. That is, each of the keys,
queries, and values are projected and then scaled dot product attention is applied to the projections.
The results from each of the heads are then concatenated to form vectors of dimension d which are
passed through a trainable linear layer. This is depicted in Figure 2]

The outputs of the encoding layer are passed through a bidirectional attention layer which is identical
to that used in the baseline provided. The output of the attention layer is projected via a linear layer
Whoroj € R44*4 and then passed through three stacked encoding layers. These layers consist of 7
consecutive blocks each identical in architecture to the encoding block preceding the bidirectional
attention layer. They differ only in that they use filters of size 5 instead of size 7.

All three layers share weights. Finally the outputs of the first and third of these layers are concatenated
and passed to a linear layer and softmaxed to obtain the distribution over starting tokens. Similarly,
the outputs of the second and third layers are passed through a linear layer and softmaxed to obtain
the distribution over ending tokens. QANet was originally designed for SQuUAD 1.1. Each example
in the data set has a padding character prepended. In order to handle questions without an answer, we
simply declare that the model has predicted the question does not have an answer if the most likely
span starts and ends at that character. This is the same approach used for all of our models, including
the baseline.

We reduce the model dimension from 128 to 96 and the number of attention heads in each block
from 8 to 4, but otherwise (attempt to) replicate the model described in the original QANet paper
exactly. We use code from the baseline where appropriate and an open source implementation of the
Transformer [6], but otherwise write all code ourselves.

Finally, we experimented with adding Transformer blocks to the baseline augmented with character
embeddings in hopes that it would improve performance. We trained a model with a single small
Transformer block with two attention heads following the model encoder layer. This performed worse
than the model which adds only character embeddings.

4 Experiments

We trained two versions of the baseline model augmented with character embeddings with the first
effectively an ablation of the second.

In the first, we froze the initial random character embeddings and learned embeddings of size 50.
These embeddings were then concatenated with the GloVe representations and passed through a 2
layer highway network.

In the second, we implemented the exact model described in the approach section above. We used
100 filters, each with kernel size 5 in the CNN and projected the concatenated embeddings to vectors
of dimension 100 before passing them through the highway network.



For both training runs, we used the baseline configuration — Adadelta with learning rate .5, no
weight decay, and batch size 64. Both models were trained for 30 epochs, although we observed
that performance on the dev set plateaued well before the end of training. We do no additional
preprocessing and use the same exponential moving averaging on the weights used for the baseline.
We use dropout with p = .1 in the character embedding layer in both instances. It takes approximately
14 hours to complete 30 epochs on half of an Nvidia M60.

Unsurprisingly, the latter model performs better, though both models outperform the baseline as
indicated in Table[T}

For the second model, we additionally performed some basic hyperparameter tuning to select the
weight decay penalty. We trained models with weight decay parameter A = 107°,107%,10~7. We
find that A\ = 10~ improves the dev F1 score by .259, but reduces the dev EM score by .05. On the
test set, the model trained with weight decay improves even more over the model without, although
of course there is randomness involved in the choice of the test set.

For the model where we add a small Transformer encoder block to the baseline with character-based
embeddings, we again use the exact configuration used for the baseline.

For QANet, we reduce the model dimension and number of attention heads as mentioned above,
but otherwise train with the same configuration used in the original paper — we use Adam with a
logarithmic learning rate warmup from 0 to .001 over the first 1000 batches and constant learning
rate .001 thereafter, and weight decay parameter 3 - 10~7. We use a batch size of 32. We additionally
use the same dropout and stochastic depth described in the paper. We also experimented with using
learning rate .0001 since we observed that the training loss tended to be quite noisy, but did not find
it helpful.

We find that over 2.5 million iterations, the dev negative log likelihood fails to go below 3.7 and the
dev EM and F1 plateau near 50 and 52, respectively. Needless to say, these results are quite poor and
indicate that the model is implemented incorrectly, though we’re unable to determine the location of
the bug.

For all models, our primary evaluation metrics are the official metrics for SQuAD 2.0. The first of
these is just the percentage of answer spans the model gets exactly correct. The second is the F1
score of the predicted answer span relative to the true answer span(s) averaged over all examples.

4.1 Results

Table 1: Dev set model performance (Non-PCE)

Model EM Fl1
Baseline 57.86 | 61.21
CharEmbeddings 1 59.822 | 63.145
CharEmbeddings 2 61.149 | 64.14

CharEmbeddings 2 + weight decay | 61.099 | 64.672
CharEmbeddings + Self Attn 60.544 | 63.928

QANet 50.16 | 53.03
Table 2: Test set model performance (Non-PCE)
Model \ EM \ F1 \

CharEmbeddings 59.983 | 63.643
CharEmbeddings + weight decay | 61.183 | 64.791

Ultimately, as indicated in Table[]] a relatively simple model consisting of just the baseline augmented
with character embeddings performs best on the dev set. Adding an additional self-attention layer
after the second RNN encoder layer slightly degrades performance. Our version of QANet performs
poorly, but is almost certainly implemented incorrectly. Apart from the poor performance of QANet,
these results are roughly in line with what might be expected. Adding character embeddings yields
a substantial, but by no means spectacular improvement. Perhaps most surprising is how much a
fairly basic and restricted hyperparameter search improved performance, especially on the test set.
We qualitatively investigate these results in the next section.



5 Analysis

We focus on comparing the baseline to our best performing model. We expect that including character
embeddings might improve performance on questions whether either key pieces of the context,
especially the answer span, are out of the vocabulary. For instance, the following context makes
heavy use of abbreviations (and rare characters like "#"):

Other important complexity classes include BPP, ZPP and RP, which are defined
using probabilistic Turing machines; AC and NC, which are defined using Boolean
circuits; and BQP and QMA, which are defined using quantum Turing machines.
#P is an important complexity class of counting problems (not decision problems).
Classes like IP and AM are defined using Interactive proof systems. ALL is the
class of all decision problems.’

And indeed, the model with character-based embeddings correctly answers # P while the baseline
answers N/A.

The model still struggles in many ways, of course. One of this is in handling co-reference resolution.
Given the context

Genghis Khan united the Mongol and Turkic tribes of the steppes and became
Great Khan in 1206. He and his successors expanded the Mongol empire across
Asia. Under the reign of Genghis’ third son, Ogedei Khan, the Mongols destroyed
the weakened Jin dynasty in 1234, conquering most of northern China. Ogedei
offered his nephew Kublai a position in Xingzhou, Hebei. Kublai was unable to
read Chinese but had several Han Chinese teachers attached to him since his early
years by his mother Sorghaghtani. He sought the counsel of Chinese Buddhist and
Confucian advisers. Mongke Khan succeeded Ogedei’s son, Guyuk, as Great Khan
in 1251. He granted his brother Kublai control over Mongol held territories in
China. Kublai built schools for Confucian scholars, issued paper money, revived
Chinese rituals, and endorsed policies that stimulated agricultural and commercial
growth. He adopted as his capital city Kaiping in Inner Mongolia, later renamed
Shangdu.

the model incorrectly answers that Kublai was Ogedei’s brother instead of his nephew. This presum-
ably stems from a failure to correctly resolve "He" in the third to last sentence.

Although individual examples can be instructive, we also examine the aggregated performance of the
baseline and the model with character embeddings on subsets of the dev set. Figure [3|displays the
exact match accuracy of each model on examples where the query with each of the words "who",
"what", "when", "where", "why", and "how" and queries beginning with any other word. Surprisingly,
both models perform best on the "misc" category, which consists of all queries which do not begin

with one of the other six words.
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Figure 3: Performance on subsets of the dev set



We see that the model with character embeddings outperforms in all categories except for queries
beginning with "where" and "why". The outperformance on questions beginning with "who", in
particular, is intuitive. People’s names are unlikely to be in the vocabulary, and being able to learn an
embedding for them would seem to be particularly useful for these questions. The underperformance
for questions beginning with "why" is somewhat perplexing for the same reason. One might expect
that learning embeddings for place names would yield a similar increase in performance.

We also investigate performance based on the length of the shortest correct answer. Questions without
an answer are considered to have a shortest answer length of zero. As we might expect, both models
tend to have greater difficulty with longer answer spans, though the decline in performance is fairly
gradual. There does not appear to be any significant difference in how the models degrade.

6 Conclusion

In this work we described several approaches to SQuAD 2.0, ultimately finding that a model based
on BiDAF performed best. This model achieves an F1 score of 64.791 on the test set. We additionally
experimented with several models incorporating self-attention; with additional effort and fine-tuning,
we believe that these models would likely outperform our RNN based model, though they do not
currently. This is one potential avenue for future work.
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