
CS224n Final Project: SQuAD 2.0 with BERT

Kevin M. Lalande
Department of Computer Science

Stanford University
klalande@stanford.edu

Abstract

This paper adapts pre-trained models of Bidirectional Encoder Representations
from Transformers (BERT) to the natural language processing task of answer span
prediction ("QA") on the Stanford Question Answering Dataset (SQuAD 2.0). The
original BERT implementation ("origBERT") presented in Devlin et al. [2018]
achieved SOTA performance of 88.5 F1 on a SQuAD 1.1 dataset with 100,000+ an-
swerable context-question-answer tuples. However, when origBERT is used on the
much more challenging SQuAD 2.0 dataset, released subsequently with 50,000+
additional questions that are impossible to answer from the context paragraph,
performance drops to 73.1 F1. This paper presents a combination of refinements to
the task-specific tuning in origBERT, including: a multi-layer QA architecture, an
ensemble with a binary sequence classification model trained to identify impossible
questions, a larger fine-tune training data set including examples from TriviaQA,
and optimized hyperparameters. SQuAD 2.0 performance improves from a base-
line of 73.1 F1 to a best F1 score of 77.6 for BERTbase and 81.4 for BERTlarge.
Finally, this paper concludes with the observation that these refinements allow an
optimized BERTbase model to perform almost as well (-2.3 F1) as an origBERTlarge
model, which has 3 times as many parameters and is considerably more challenging
to train.

1 Introduction

BERT Devlin et al. [2018] introduce a new language representation model which achieves break-
through performance on eleven different NLP benchmarks, including SQuAD, covering a wide range
of useful token- and sentence-level tasks. Outperforming state-of-the-art on any single benchmark
is a noteworthy accomplishment in and of itself, even though the new high water mark is often
temporary. The BERT paper is particularly interesting because origBERT simultaneously beats a
dozen well-established benchmarks with a single conceptual leap.

Furthermore, BERT achieves this remarkable performance while also employing a generalizable
version of transfer learning, in which a universal set of pre-trained contextual representations are
later trained again on supervised task-specific data jointly with a single additional output layer as
BERT is "fine-tuned" to perform a particular downstream NLP task. This contrasts with the more
commonly used “feature-based” strategy, in which a fixed set of possibly task-specific pre-trained
representations are input into a model that has been custom engineered to perform well on a single
task. The fact that BERT is capable of producing state-of-the-art results on a wide range of NLP
benchmarks with a generalizable transfer learning strategy suggests that the authors have uncovered a
fundamentally better language model representation.

SQuAD Motivated by the importance of large datasets of high-quality in the advancement other
machine learning fields, like ImageNet for object recognition or Penn Treebank for syntactic parsing,
Rajpurkar et al. [2016] released SQuAD 1.1, a reading comprehension dataset of 108,000 questions
posed by human crowdworkers for which the answer can be extracted from a contiguous span of

text within the corresponding context paragraph. In the BERT paper, origBERT performed quite
well on this benchmark, with the base model achieving 88.5 F1 on the Dev split and the large
model achieving score of 91.8 F1 on the Test split, beating both previous SOTA and human-level
performance.

After the BERT paper was submitted for publication, Rajpurkar et al. [2018] released a new SQuAD
2.0 benchmark which combines the prior data with an additional 54,000 unanswerable questions
that were written adversarially by human crowdworkers to look similar to questions that do have
answers. This is a more challenging task because QA systems must be able to identify questions that
are not answerable from the context paragraph as well as correctly answer those which are. When
an equivalent implementation of origBERT is applied to this new dataset, performance of the base
model on the CS224n Dev split (which is half of the official SQuAD Dev split) drops to 73.1 F1.

This paper explores several potential changes to the fine-tuning process used by origBERT in order
to improve performance on SQuAD 2.0 above this baseline of 73.1 F1.

2 Related Work

BERT is built on two conceptual foundations: 1. pre-trained contextual embeddings (PCEs), which
are, in turn, an extension of distributed word embeddings, and 2. the Transformer architecture.

Distributed Word Embeddings Multi-dimensional vector representations of words like the skip-
gram Word2Vec model by [Mikolov et al., 2013] and the hybrid GloVe model by Pennington et al.
[2014], which adds global co-occurrence probability ratios, use unsupervised neural networks to
efficiently encode semantic and syntactic relationships by unsupervised learning on a large corpora of
unstructured text. When pre-trained distributed embeddings are later fed as fixed inputs into a natural
language application, the resulting model outperforms statistical language strategies with atomic word
representations, such as the popular N-gram model, no matter how much training data is supplied
Brants et al. [2007]. This is due in part because of the transfer learning advantage conferred with
multi-dimensional word representations learned over billion-word corpora. Furthermore, Word2Vec
outperforms all prior work in its own category of neural-network derived word representations,
including Collobert and Weston [2008], Mnih and Hinton [2009], Turian et al. [2010], and the hybrid
GloVe model outperforms Word2Vec.

Pretrained Contextual Embeddings The concept of distributed word representations was ex-
tended to learn more than a single representation for a given word token, dependent upon the broader
context beyond the local window in which the word is used. This was first proposed in the lan-
guage model automated sequence tagger (TagLM) by Peters et al. [2017] and then improved shortly
thereafter with Embeddings from Language Models (ELMo) by Peters et al. [2018]. EMLo pro-
duces contextualized embedding vectors derived from a deep bi-directional LSTM (BiLSTM) with
self-attention that is trained with using a semi-supervized language model objective on a large text.
Pre-trained ELMo weights are frozen and concatenated as input features into a supervised model with
task-specific architecture. Like BERT, EMLo performed well on a broad range of natural language
tasks including textual entailment, sentiment analysis, and question answering.

Transformer Architecture Vaswani et al. [2017] showed that the powerful but computationally
slow sequential RNNs widely used in neural language models can be replaced with a simpler and more
parallel network architecture, the Transformer, which is based solely on the self-attention mechanisms.
This new architecture was adopted by Radford et al. [2018] in the Generative Pre-trained Transformer
(OpenAI GPT).

Points of Comparison BERT, ELMo, and OpenAI GPT each produce PCEs. For downstream
tasks, ELMo follows a feature-based approach in which its PCEs are fed as frozen inputs to a
model-specific architecture, while BERT and OpenAI GPT both fine-tune their representations jointly
with an additional output layer. ELMo’s architecture is a BiLSTM, while BERT and OpenAI GPT
both use Transformers. Perhaps the most significant difference among the three models is that BERT
alone trains a bidirectionally conditioned language model, while OpenAI GPT trains a unidirectional
Transformer and ELMo concatenates two independently trained unidirectional LSTMs.

2

Figure 1: BERT input representation.

3 The BERT Model

3.1 Inputs

The input scheme is designed to represent either a single sentence or an A/B pair of sentences, where
the word “sentence” is understood to mean any arbitrary span of contiguous text up to 512 total
tokens rather than a well-formed linguistic sentence.

As shown in Figure 1, the BERT input representation is constructed by summing: (i) the corresponding
WordPiece input token embedding Wu et al. [2016] using a 30,000 token vocabulary, (ii) a learned
segment A embedding for every token in the first sentence and a segment B embedding for every
token in the second sentence, and (iii) learned positional embeddings for every token in the sequence
up to 512. Special tokens are used to designate the beginning of a sequence [CLS] and the end of a
sentence [SEP]. A packed pair of A/B sentences is defined as an input sequence.

3.2 Architecture

BERT replaces the standard RNN-based language model with a purely attention-based architecture
using a multi-layer bidirectional Transformer encoder as presented in Vaswani et al. [2017] to map
an input sequence of discrete tokens (x1, . . . , xn) to a sequence of continuous representations z =
(z1, . . . , zn). Two different versions of the model are trained denoted by the number of layers L, the
hidden size H, and the number of self-attention heads A. BERTbase has 110 million parameters with
L=12, H=768 and A=12. BERTlarge has 340 million parameters with L=24, H=1024 and A=16.

Figure 2: (Left) BERTbase model with 12 Transformer Layers with 12 Attention Heads per Layer.
(Right) Example visualization of attention weights for all tokens.

3

As illustrated in Figure 2 (Left), BERT uses multiple layers of attention (12 or 24), each with multiple
attention heads per layer (12 or 16). Model weights are independent at each layer, so a single BERT
model can have 144 or 384 different attention mechanisms. Figure 2 (Right) shows example output
from visualization tool developed by Vig [2018] to provide insight into general patterns learned by
BERT’s attention mechanisms. The tool visualizes attention as lines connecting the sequence position
being updated (left) with the position being attended to (right). Colors identify the corresponding
attention head and line weight reflects magnitude of the attention score. General patterns include
attention to: next word, previous word, delimiter tokens, bag-of-words, identical or related words in
same sentence, identical or related words in other sentence, and words that are predictive of a given
word.

3.3 Pre-training Procedure

Devlin et al. [2018]’s unique contribution in BURT is an innovative new unsupervised technique to
train a deep bidirectional language model that does not suffer from the information leakage problem
that constrains all prior conditional language models to be either unidirectional or a concatenation of
independently trained directions. BERT trains using two novel unsupervised prediction tasks:

1. Masked Language Model (MLM): To train deep bidirectional representations, the authors
randomly replace 15% of the input tokens with a special [MASK] designation and set
the training objective to correctly predict each masked word using only the fused context
from both the left and right side of the mask. This procedure, known as the Cloze task, is
well-established in the literature Taylor [1953].

2. Next Sentence Prediction (NSP): Some NLP tasks, such as SQuAD, require an understand-
ing of the relationship between two sentences, which is not directly captured by standard
language models. To train BERT with more of an understanding of sentence relationships,
an additional binary prediction task was added for each pre-training example in which a
second sentence B isNext or is notNext the next sentence following sentence A.

Dataset and Hyperparameters The pre-training dataset includes BooksCorpus (800M words)
Zhu et al. [2015] and English Wikipedia articles ignoring lists, tables and headings (2.5B words). The
model is trained in batches of 256 sequences by 512 tokens each for 1 million steps, which requires
40 epochs over the entire 3.3 billion word corpus. Adam optimizer is used with a learning rate of
1e-4, β1 = 0.9, β2 = 0.999, L2 weight decay of 0.01 and a linear decay learning rate beginning after
the first 10,000 steps. Dropout with a probability of 0.1 is used on all layers. Finally, instead of a
ReLU activation, the authors use a Gaussian Error Linear Unit, or gelu, activation Hendrycks and
Gimpel [2016].

3.4 Final Training Procedure (“fine-tuning”) for SQuAD QA Task

The prediction task in SQuAD is to select the start and end token within a given paragraph of text
which represent the answer to a given question. The (Question, Paragraph) input is represented as

Figure 3: BERT Unsupervised Pre-Training Tasks

4

a packed sequence with the question assigned the A embedding and the paragraph assigned the B
embedding. As illustrated in Figure 3(c) in the paper, the final hidden state from pre-trained BERT
for the ith input token is Ti ∈ RH . In the fine-tuning process, new parameters are learned for the
start vector S ∈ RH and end vector E ∈ RH . The probability of a given token being the start or end
of the answer span is calculated as the softmax dot-product between Ti and either S or E, with the
additional constraint added that the end token must come after the start token in the paragraph span.

Pi =
eS◦Ti∑
j e

(S◦Tj)

4 Approach

My objective is to improve the F1 performance score of pre-trained BERTbase and BERTlarge models
that are fine-tuned for SQuAD v2.0. I began by integrating and extending the Codebase listed below
as described in Testbed Setup to reproduce the implementation presented in Devlin et al. [2018]
and to support experimentation. I then applied this model to SQuAD v2.0 to establish the Baseline
below. Finally, as described in Improvements below, I pursued several potential refinements to the
fine-tuning procedure used in origBERT, including: a multi-layer QA architecture, an ensemble with
a binary sequence classification model trained to identify impossible questions, a larger fine tuning
training data set with examples from TriviaQA, and optimized hyperparameters.

Codebase: I use DFP starter code and a PyTorch implementation of pretrained-BERT (Hugging-
face) that produces identical results to the TensorFlow-based model presented in Devlin et al. [2018],
as well as an NVIDIA library for mixed-precision and distributed GPU training and a reading
comprehension dataset with 650K additional question-answer tuples.

• https://github.com/chrischute/squad
• https://github.com/huggingface/pytorch-pretrained-BERT
• https://github.com/nvidia/apex
• https://github.com/mandarjoshi90/triviaqa

Testbed Setup: Significant work was required to understand, integrate and extend the mul-
tiple repositories of code and data used in this project. The Huggingface codebase is the
foundational scaffold, which I have made extensive modifications to and stack-traced ev-
ery last line of [modeling.py, run_squad.py, run_classifier.py, tokenization.py,
optimization.py, file_utils.py] to fully understand the implementation details and to make
sure my integrations and code extensions are working properly. Here is a brief summary of the key
elements of my testbed setup work:

• Output File Management and Logging ML projects need a consistent and automated
output file naming convention to synchronize across multiple machines and keep track of
dozens-to-hundreds of experimental file results (178+ as of this writing). This did not exist,
so I implemented the functionality and added a new –time_stamp CLI argument which is
set automatically to YYDDMM-HH_MM of script runtime if not specified, or is pre-pended to
load specific [log, bin, json, csv] files if specified. I also extended the base logging
to include a FileStream handler for saved log files in addition to the I/O console.

• Tensorboard and Test-Val Model Checkpoints Integrated PyTorch api for logging with
Tensorboard from Hollander [2018]. Extended the existing script functionality to allow
me to monitor train-val splits, save the best validation checkpoint models, and reload and
continue training a checkpoint or previously fine-tuned model. Split the Train dataset into
90% train 10% validation so the Dev dataset can be used for Leaderboard submissions.

• Tiny Data Set Implemented a new –tiny_data CLI flag to load just a few examples from
the [train, dev].json files to allow the entire code base to be rapidly debugged on a
local machine without waiting too long for data processing between debugging runs.

• Model Training Speed Installed and debugged NVIDIA’s Apex module, optimized the
related –[batch_size, fp16, loss_scale] CLI settings by trial-and-error to speed up

5

https://github.com/chrischute/squad
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/nvidia/apex
https://github.com/mandarjoshi90/triviaqa

training time from 7 days (estimated) on my local machine to 4-hours per epoch on an Azure
NC6. This was still slower than I’d like at 8-12 hours per full model fine-tuning run, so I
configured a second NC24s_v3 VM with four Tesla V100 GPUs which is more expensive
but trains much faster at 35 mins per epoch. This capability, in turn, also allowed me to also
train a BERTlarge model to compare its performance against my other changes, as shown in
results below.

• Leaderboard Submission Extended the write_predictions() function to output a sec-
ond version of split-predictions.csv that complies with the format specified for the
DFP SQuAD Leaderboard.

• Error Analysis Added new code module to examine example-by-example prediction
errors and to conduct split-level analytics of the types of questions the model gets
no_match, partial_match, and exact_match as defined by the EM, F1 and AvNA
calculations in the DFP starter code, which in turn was pulled from the original SQuAD
paper Rajpurkar et al. [2016].

Baseline: Devlin et al. [2018] BERTbase(Single) produced an F1 of 88.5 on SQuAD 1.1. Applying
my PyTorch equivalent version of their origBERT implementation to SQuAD 2.0 produces the project
baseline of 73.1 F1. This result is what I expected based on the v2.0 Leaderboard lowest BERTbase
single model posted Jan 19, 2019 of 74.4 F1.

Improvements: I considered but ruled out potential improvements to the pre-trained BERT models
and underlying Transformer architecture, like: a) larger WordPiece token vocabulary, b) a third
unsupervised learning task, c) additional pre-train corpora like TriviaQA, d) more layers and/or
attention heads. Pre-training times alone would make these impractical within the given time
constraints. Therefore, I narrowed my exploration to the following potential improvements to the
fine-tuning process in origBERT:

• Deeper task-specific QA architecture Since performance drops in v2.0 because a third of
the questions are unanswerable, the most promising place to start is a task-specific training
architecture that can learn more powerful representations than the single fully-connected
layer in the baseline model.
I built 3- and 6-layer linear QA models based on the BertForQuestionAnswering class.
The first layer takes as input the output from the last layer of pre-trained BERT with
shape[batch, sequence_length, hidden_size]. Dropout regularization with 10%
probability is applied between each layer. In the 3-layer model, the size of the hidden units
is halved at each layer from 768→ 384→ 192→ 2. The 6-layer model has two of each
of the layers in the 3-layer model. The final two units in the output layer are split into
start_logits and end_logits of shape[batch, sequence_length] to calculate the
probabilities according to formula (1) above of each position in the sequence being the start
or end of the correct answer span.

• Concatenate multiple BERT output layers In origBERT, only the hidden-states cor-
responding to the last encoding layer are fed into the QA architecture. I tried other
combinations, including concatenating the last 4 encoding layers for an input to QA
of shape[batch, sequence_length, 4 * hidden_size], to see if access to more
hidden-states from earlier layers could improve performance.

• Weighted cost function The classes of is_impossible=True vs False are unbalanced
in the entire dataset (33/67) and, according to my Error Analysis, also between the Train
and Dev splits. Furthermore, incorrect impossible questions are penalized more heavily
(F1 score = 0) than partially incorrect answerable questions (0 < score < 1). For these
reasons, a weighted loss function may help. I implemented class weighting in the binary
BertForSequenceClassification discussed next. But in QA, loss on incorrect impossi-
ble questions is calculated based on the distance from position zero, which varies depending
on question length. I couldn’t come up with a convincing way to weight this function, so I
opted instead to balance the Train dataset using more impossible examples from TriviaQA.

• Ensemble two different BERT models I trained a second class of model,
BertForSequenceClassification (BSC), with its sole objective being the binary clas-
sification of whether an input sequence is_impossible. That required a full round of

6

code development and tuning, details skipped for space. I then ensemble the results of
the QA and BSC model as follows: Default answer is QA prediction. If BSC predicts
is_impossible then BSC overrides. If BSC predicts not is_impossible but QA pre-
dicted is_impossible, then QA replaces its NULL answer the next best score as the final
predicted answer.

• Failed experiment: Train on Larger QA Data Set I spent several days writing, testing and
troubleshooting the code necessary to extend the SQuADv2.0 train dataset with additional
examples from the TriviaQA dataset (Joshie et al., 2017) as suggested in Devlin et al. [2018].
Unfortunately, I was not able to replicate their results. Models trained with augmented
datasets perform significantly worse. I had to move on in the interest of time.

5 Experiments

Figure 4: Summary of Experimental Results

Results from sixteen experimental model runs are listed in Figure 4 above. Data: Each uses data
from the official SQuAD 2.0 training set to either train (BiDAF) or fine-tune (BERT) the model and
modified splits for dev and test were created by CS224n faculty by dividing the official SQuAD
2.0 dev dataset roughly in half. All of the results shown are based on the dev split. Evaluation
Method: EM and F1 scores from the PCE Leaderboard are listed. Each is defined in the DFP
Handout and recalculated by my code, which produces results that match the Leaderboard. F1 is
the primary objective, and any unlabeled performance number in this paper is intended to refer to
F1. Experimental details: The type of model, number of training epochs, batch size, learning rate,
and configuration of the task-specific QA architecture are also listed to help explain the differences
among the various experimental runs. Other experimental details not listed are consistent with Devlin
et al. 2018.

Results: I improved BERTbase by 4.5 points above baseline to 77.6 F1. Notably, this is only 2.3
points below the origBERTlarge baseline performance, which is 3x larger and considerably more
expensive to train. I achieved a maximum F1 of 81.4 with a modified BERTlarge model. A few
observations:

• The big jump of 13.2 points from BiDAF baseline to BERTbase baseline quantifies how
much more powerful the PCE-based models are for the SQuAD task. It was exciting for me
to re-create this result.

• The 6.8 point increase from baseline BERTbase to baseline BERTlarge is driven by the
increased power of a BERT model with 340M vs 110M parameters rather than by any
improvements I made. That said, it was not trivial to debug the NVIDIA Apex modules or
to pay for the more expensive NC24s_v3 machines capable of fine-tuning a BERTlarge in any
reasonable amount of time. This capability has been helpful to me in exploring the effects
of BERT model size, batch size, training epochs, and task-specific QA architecture.

• The modified 3-layer QA architecture described above produces a legitimate 2.4 point
improvement. However, increasing QA depth again from 3 to 6 layers resulted in little

7

additional improvement (+0.05 F1). 6-layer performance then decreased by -0.4 F1 when
the model was trained six epochs instead of two, suggesting the need for early stopping
at Train-Val checkpoints to prevent overfitting. I therefore decided to use the 3-Level QA
architecture. BERTlarge also benefits from the 3-Layer QA. But it is much quicker to overfit,
so the benefit only became clear in Run #16 once Train-Val checkpoints was implemented.

• Concatenating the BERT’s last 4 encoding layers for input to QA ended up hurting perfor-
mance by (-0.5 F1), to my disappointment as I had high hopes for this approach. Performance
improved once the Test-Val checkpoint was implemented in the next run, but the 4-layer
concatenation was still a drag on overall performance so I abandoned it for the standard
approach of using the last-level only.

• The two-model ensemble described above was effective in increasing performance by an
additional 1.4 F1. I believe this is in part due to the weighted cost function used in the
binary classifier to better capture actual class balance, and in part due to the advantage of
one model focusing solely on whether a given sequence is answerable while the QA model
focuses on both that and where the answer span begins and ends.

Figure 5: Error Analysis by Question Type

6 Analysis

Error Analysis: I analyzed model accuracy by is_impossible[True, False], by type of ques-
tion asked [what, who, how, when, where, which, why, other], and by token length of
[context, question, gold_answer, predicted_answer] to try to find patterns where var-
ious models perform better or worse. An example of this analysis is shown in Figure 5 above, which is
based on the 190304-04_13 run in which a BERTlarge model with 3-level QA architecture unexpectedly
performed worse than the same model with default QA architecture. A few quick observations:

• The split between possible-impossible questions is 48/52 rather than the 67/33 that I expected.
I have double-checked these results and believe they are correct. I need to check the
distributions in the train and test sets, and to work these findings back into my model as
described above.

• My analysis found that the default max_query_length of 64 covered only 67% of the Dev
set questions, while setting it to 96 covers 94% and improves performance. The same did
not hold max_seq_length from 384 to 512.

• The question type [what, who, ...] is not an exact 1:1 correspondence, because some
questions have more than one word on the type list in the question, but it is close (within
about 5%). Questions types are dominated by ’what’ and ’who,’ both of which are usually
answered with concrete nouns. I am curious how the models perform on ’why’ questions,
which seem conceptually harder to me, but I’m not going to spend much time here because
they make up such a small portion of the question set.

8

References
Thorsten Brants, Ashok C Popat, Peng Xu, Franz J Och, and Jeffrey Dean. Large language models

in machine translation. In Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
2007.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th international conference on
Machine learning, pages 160–167. ACM, 2008.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. arXiv preprint arXiv:1606.08415, 2016.

Branislav Hollander. Logging in tensorboard with pytorch.
Medium, Septemer 2018. URL https://becominghuman.ai/
logging-in-tensorboard-with-pytorch-or-any-other-library-c549163dee9e.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in neural information processing
systems, pages 3111–3119, 2013.

Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical distributed language model. In Advances
in neural information processing systems, pages 1081–1088, 2009.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

Matthew E Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power. Semi-supervised
sequence tagging with bidirectional language models. arXiv preprint arXiv:1705.00108, 2017.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint arXiv:1802.05365,
2018.

Alec Radford, Karthik Narasimhan, Time Salimans, and Ilya Sutskever. Improving language under-
standing with unsupervised learning. Technical report, Technical report, OpenAI, 2018.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

Wilson L Taylor. “cloze procedure”: A new tool for measuring readability. Journalism Bulletin, 30
(4):415–433, 1953.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the 48th annual meeting of the association for
computational linguistics, pages 384–394. Association for Computational Linguistics, 2010.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008, 2017.

Jesse Vig. Deconstructing bert: Distilling 6 patterns from 100 million parame-
ters. Medium, December 2018. URL https://towardsdatascience.com/
deconstructing-bert-distilling-6-patterns-from-100-million-parameters-b49113672f77.

9

https://becominghuman.ai/logging-in-tensorboard-with-pytorch-or-any-other-library-c549163dee9e
https://becominghuman.ai/logging-in-tensorboard-with-pytorch-or-any-other-library-c549163dee9e
https://towardsdatascience.com/deconstructing-bert-distilling-6-patterns-from-100-million-parameters-b49113672f77
https://towardsdatascience.com/deconstructing-bert-distilling-6-patterns-from-100-million-parameters-b49113672f77

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144,
2016.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pages 19–27, 2015.

10

	Introduction
	Related Work
	The BERT Model
	Inputs
	Architecture
	Pre-training Procedure
	Final Training Procedure (“fine-tuning”) for SQuAD QA Task

	Approach
	Experiments
	Analysis

