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Abstract

Question answering is one of the most elusive disciplines within the realm of
computer science and natural language processing. The arrival of Bidirectional
Encoder Representations From Transformers (BERT) last year took the NLP world
by storm. BERT’s successes raised questions about whether pre-trained contextual
embedding (PCE) models are poised to supplant the past era of designing and
iterating on diverse, complex architectures for specific tasks. In this project, I
sought to shed light on this question. First, I experimented with hyperparameter
fine-tuning to better understand how to optimize BERT performance on SQuAD
2.0. Second, I explored the relationship between a baseline Bidirectional Attention
Flow (BiDAF) model and a BERT model. Specifically, I created a BERT+BiDAF
ensemble using a stochastic approach. The results were quite interesting: though
the ensemble model appeared to decrease scores on the dev set, it ultimately
performed better than standalone BERT on the test set, achieving a final F1/EM
score of 77.165/73.609. Ultimately, however, the increments afforded by such an
ensemble model were comparatively less than those realized through increasing
BERT compute power via hyperparameter tuning, suggesting that we may indeed
be in a “new era” of NLP dominated by pre-contextualized embeddings.

1 Introduction

Question answering (QA) is one of the most elusive disciplines within the realm of computer science
and natural language processing. Often viewed as a litmus test of artificial intelligence approaching
human-level abilities, QA involves processing a corpus of information to construct answers. In
a world increasingly being changed by artificial intelligence, QA has proved its importance and
significance by helping augment human cognition through tools such as Wolfram Alpha.

Yet, QA has proved difficult for a variety of reasons. First, QA algorithms are often reliant on having
corpora that contain verbatim the actual answer. As a result, an often critical component of any QA
model is selecting documents which might contain the answer. To abstract away this challenge and
instead focus on locating the answer when it does exist, many QA datasets, such as the Stanford
Question Answer Dataset (SQuAD), require that the answer to a given question is a span, or exact
segment, from the inputed reading passage [8]]. Additionally, QA algorithms are susceptible to
adversarial examples, which can manifest themselves in a variety of ways. For example, a span of the
inputed corpus could have a high exact match with the question but be about an entirely different
subject, thus tricking the QA algorithm into picking the wrong answer. Finally, even with more recent
versions of QA datasets such as SQuAD, QA algorithms have still been criticized for being unable to
capture the nuances of human common sense, with notable examples being question answering in
context (QuAC) and answering questions that require multiple steps of reasoning (HotPotQA) [ 13]].



NLP scholars have worked on reading comprehension for decades, tracing back to the Yale Al Project
led by Roger Schank [9]]. Yet major progress was not made until the last few years, with the release
of large datasets which facilitated the training of deep neural network approaches. With researchers
constantly testing new architectures, these neural network approaches, such as QANet, Bidirectional
Attention Flow (BiDAF), and Attention-over-Attention, were as diverse as they were complex. Yet
significantly, within the last year, the discipline of QA has experienced momentous breakthroughs
with the release of Pretrained Contextual Embedding (PCE)-based approaches. Compared to models
based on classic static word embeddings, models based on PCE incorporate context in order to capture
the polysemous qualities of words, among many other benefits. Interestingly, these PCE models often
required only one additional layer to adapt to various NLP tasks and achieve impressive performance.

This project seeks to answer the question of whether PCE models are poised to supplant the past
era of designing and iterating on diverse, complex architectures. To do this, I experimented with
hyperparameter fine-tuning to better understand how to optimize BERT performance on SQuAD
2.0. Concretely, I modified a PyTorch implementation of BERT from huggingface [6] to support
the loading of models that have already been fine-tuned in order to facilitate the process of tuning
hyperparameters to better understand what works best to improve PCE models. Second, I explored
the relationship between a baseline BiDAF model and the BERT model. To do this, I wrote code to
create an ensemble model that fuses the BiDAF baseline and BERT model. The motivation behind
creating this ensemble model is that multiple learning algorithms can often achieve better predictive
performances than could be obtained from any of the constituent models alone [[7]. In the context
of reading comprehension, a model like BIDAF which is specifically tailored to question answering
might be able to rectify mistakes from the BERT for SQuAD model, which, as explained below, has
a comparatively simple approach in terms of fine-tuning for the task of question-answering.

2 Related Work

2.1 Bidirectional Attention Flow for Machine Comprehension

The BiDAF Network was introduced at ICLR 2017. At the time, it achieved state-of-the-art results on
SQuAD and the CNN/DailyMail cloze test. The modifications to the BIDAF Network that are unique
to the Default Final Project are discussed below in the Approach section; for more information about
BiDAF writ large, one can refer to the official whitepaper [10].

2.2 How BERT is Powered: The Transformer

At the forefront of related works is the monumental 2017 paper that introduced the Transformer
architecture: “Attention Is All You Need” by Ashish Vaswani et al. from Google AI [11]]. At the most
basic level, the Transformer has encoder and decoder portions, as depicted in Figure 1.

For language modeling purposes such as BERT, only the Encoder portion of Transformer is used.
As displayed above, each encoder (on the left) has two sub-layers: a self-attention layer and a
feed-forward neural network layer. The self-attention layer receives embeddings that are concatenated
with positional encoding vectors in order to account for the order of inputed words. In contrast, the
feed-forward layer is agnostic to dependencies between words, which means that operations can
be executed in parallel in the feed-forward layer, leading to the impressive performance speedups
associated with the Transformer [1]].

Analogous to how hidden states in recurrent neural networks allow some degree of storage of previous
words, self-attention is how the Transformer prices in understanding of contextual words while
processing the current word of interest. However, Transformers directly model relationships between
all words in a sentence, regardless of respective position [4]]. Critically, this unique aspect of the
Transformer architecture facilitates the Masked Language Modeling tasks that have proven effective
in training BERT, extrapolated below in the Approach section.

2.3 Other Approaches: QANet

QANet combines local convolution with global self-attention for the specific purpose of QA. By
abandoning RNN architectures, QANet achieved up to 13x faster speeds in training up to 9x faster



Figure 1: Internal structure of the Transformer .
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speeds in inference. A key difference between QANet Encoder Blocks and Transformer Encoders is
that QANet Encoder Blocks adopt character-level convolutions with max-pooling.

Like the BiDAF baseline, QANet is another brainchild of the era of devising and iterating on diverse,
complex architectures to solve QA. Ultimately, this paper seeks to understand whether contextual
embeddings pre-trained on massive corpora such as BERT are increasingly supplanting this era of
designing architectures, or whether the relationship is more of a symbiotic one, i.e,, performance can
be improved via ensembling.

2.4 BERT vs. Other Approaches in QA and Beyond

Qualitatively, BERT’s pre-trained contextual embedding approach (as detailed above) differs with the
feature-based training approach that characterizes models like ELMo. Noting the weaknesses of a
one-size-fits-all word embedding in models such as GloVE, ELMo looks at the entire sentence before
assigning each word in it an embedding. It uses a bi-directional LSTM trained on a specific task to be
able to create those embeddings.

Quantitatively, when first released, On SQuUAD v1.1, BERT achieved 93.2% F1 score (a measure of
accuracy), surpassing the previous state-of-the-art score of 91.6% and human-level score of 91.2%.
Additionally, below is a numerical figure that quantifies BERT’s performance compared to other
state-of-the-art models such as ELMo on the GLUE benchmark, which tests language models on a
set of 9 diverse Natural Language Understanding (NLU) tasks. As depicted, BERT improved on the
state-of-the-art performance by 7.6%.

Figure 2: BERT versus other SOTA models on the GLUE benchmark ,

Rank Model Score ColA SST-2 MRPC STS-B QqpP MMLI-m QNLI RTE
1 BERT: 24-layers, 1024-hidden, 16-heads 804 605 949 854/89.3 B7.6/86.5 85.3/721 867 911 7041
2 Singletask Pretrain Transformer f28 454 913 757/82.3 BZ.0/BD.0 BE.5/70.3 821 BB 56.0
3 BiLSTM+ELMo+Attn 70.5 3.0 904 77.9/849 75.1/73.3 847/0438 764 799 56.8



3 Approach

3.1 The Baseline: BiDAF Model

The baseline model is based on BiDAF. The embedding layer is at a word-level rather than a character-
level, projecting embeddings to have dimensionality H and applying a Highway Network to refine the
embedded representation. In the encoding layer, a bidirectional LSTM helps the model incorporate
temporal dependencies between timesteps of the embedding layer’s output. The unique part of the
attention layer is that attention flows both ways, from the context to the question (C2Q) and the
question to the context (Q2C). In the Modeling Layer, a bidirectional LSTM refines the output of the
attention layer before the Output Layer performs softmaxes to produce vectors of probabilities g
and peng to get answers to the questio

Figure 3: Sample TensorBoard visualization of BiDAF Baseline Model Results after applying Adadelta
optimization.
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3.2 Breaking Down BERT

3.2.1 Overview

BERT produces a state-of-the-art language model. At the highest level, its architecture is a trained
stack of Transformer Encoders as described in the Related Work section [4]].

To tailor Transformers to language modeling, BERT has a unique approach to generating represen-
tations for each input. Specifically, BERT input embeddings are the sum of the token embeddings
and their corresponding segment and position embeddings. The token embeddings are based on
the WordPiece model [[12], which is often thought of as a median between character-based and
word-based models that effectively captures and exploits linguistic combining forms such as prefixes
and suffixes. The segment and position embeddings are used for BERT pre-training and are detailed
further in the following section.

3.2.2 Transformers for Language Modeling: BERT, Masked LM (MLM), and Next
Sentence Prediction (NSP)

One of the most notable breakthroughs of the BERT whitepaper centers around its twofold approach to
training the Transformer Encoder Stack. Training is performed in two main ways: Masked Language
Modeling (MLM) and Next Sentence Prediction (NSP). Both of these methods facilitate BERT being
the first deeply bidirectional, unsupervised language representation.

In MLM, as depicted on the bottom layer of Figure 2, 15% of the words in sequences inputed to
the BERT substructures are first replaced with a [MASK] token. The model then is charged with
predicting vectors for the masked words bidirectionally. The act of randomly deleting words is
significant because it circumvents the issue of words indirectly "seeing itself" in a multilayer model.

Another important part of BERT training is Next Sentence Prediction (NSP), wherein the model
learns to predict whether a secondary sentence follows from a first. NSP is facilitated by the [SEP]
tokens, which delineate where the first sentence ends and the second one begins. Then, a classifier
layer, consisting of a feed-forward neural network and a softmax, is added on top of the Transformer
Encoder Stack. The deeper idea behind NSP is that the model learns to phrases might be related to
each other, setting up potential applications to NLP tasks such as QA.

!There are many equations left out here (such as calculation of similarity matrix for attention layer) due to
space limitations; for more information on the Baseline, including Training Details (e.g. the Loss Function) and
how to predict no-answer, please refer to the DFP handout.



Figure 4: Masked Language Modeling (MLM) .
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Figure 5: BERT Sentence Pair Encoding .
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When training BERT, Masked LM and Next Sentence Prediction are trained together, with the idea
that minimizing the combined loss function of MLM and NSP will yield the best representations.

3.2.3 Fine-Tuning BERT
BERT’s simplicity is especially apparent when it comes to fine-tuning BERT to other tasks such as

name-entity recognition, natural language inference, and question answering. For all these tasks, one
can simply learn an additional layer built on top of the core model, as depicted below in Figure 5.

Figure 6: General method of fine-tuning BERT .
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In the context of QA, the key method of tailoring BERT to SQuAD is learning two extra vectors
S € RH and E € RY (where H is the size of the hidden layer) that denote the beginning and end
of the answer, respectively. Formally, the equation that describes the probability that a word ¢ is the
beginning of an answer span is:

eS'Ti

b=y om

(D

S is replaced with E to calculate the word with the maximum probability of being the end of an
answer span. The loss function is then the log likelihood of the correct start and end positions [4].



3.3 Ensembling BERT and BiDAF

I wrote an original script to ensemble the BERT and BiDAF models (ensemble. py). Specifically,
the script takes the .csv prediction files from the BiDAF and BERT models and ensembles them using
a stochastic approach.

I settled on a randomized model where when there is disagreement, between the predictions, BERT
prevails 0.98 of the time and BiDAF prevails 0.02 of the time. The motivation behind it is that there
are cases, however improbable (see section 5.3), where BiDAF does outperform BERT, and it is
desirable to squeeze out those performance gains possible.

4 Experiments

4.1 Data and Evaluation Metric

The datasets being used are provided by SQuAD with some modification from the Stanford CS224N
Teaching Team. Evaluation Metrics are EM and F1. Details can be found in the DFP Handout.

4.2 Experimental Details
There were two main experiments run for this project:

1. Tuning the HuggingFace PyTorch BERT model hyperparameters to increase perfor-
mance.
The two finetuned BERT models are denoted BERT-1 and BERT-2 (trained on NV6 machine
courtesy of Microsoft Azure), with specific hyperparameter details below:

Model BERT-1 | BERT-2
Train Batch Size 2 8
Learning Rate 3e-5 3e-5
Train Epochs 1.0 3.0
Max Seq Length 384 384
Doc Stride 128 128
16-Bit Float Precision True True

2. Ensembling BERT and BiDAF to increase performance.

As detailed above, the ensembling heuristic I settled on was a stochastic model where when
there is disagreement, BERT prevails 0.98 of the time and BiDAF prevails 0.02 of the time.
The ensembling script was run after the BiDAF baseline and BERT models made their
predictions. Implications of this choice are displayed in the Results section and discussed in
the Analysis section.

4.3 Results

The main results of the experiments are summarized in the table below. Note that the first two
BERT+BiDAF ensemble models do not have Test EM/F1 scores because they demonstrated dimin-
ishing performance on the dev sets. Due to the 3-run constraint on the test leaderboard, only the last
ensemble model was chosen to submit to the test leaderboard.

Model Description Dev EM | Dev F1 | Test EM | Test F1
BiDAF Baseline 55 58 56.298 | 59.920
BERT-1 72.590 | 75.394 | 72.354 | 74.903
BERT-2 74.136 | 77.450 | 73.542 | 76.848

BERT+BiDAF (0.25 threshold) | 69.148 | 72.365 N/A N/A
BERT+BiDAF (0.10 threshold) | 73.097 | 76.318 N/A N/A
BERT+BiDAF (0.02 threshold) | 73.786 | 77.074 | 73.609 | 77.165




5 Analysis

5.1 Analysis of Experiment 1: BERT Hyperparameter Tuning

The hyperparameter tuning section of my project was quite straightforward. I started with a smaller
fine-tuning batch size of 2 (EM/F1 72.590/75.394), but increasing the size of the batch to 8 yielded
stronger results, increasing the Dev EM and F1 scores by around 2 points (EM/F1 74.136/77.450).
This makes sense because more tokens lead to increased granularity in fine-tuning. It is worth noting
that increasing the batch size past 8 was infeasible on the NV6 machine due to memory constraints.
However, the default train batch size is 32, and according to the SQuAD 2.0 leaderboard, the raw
BERT single model with 32 train batch size achieves EM/F1 of 80.005 and 83.061. Such is the
difference that compute power makes, and this will be further discussed below when assessing and
quantifying the impact of ensembling.

5.2 Analysis of Experiment 2: Ensembling

There is much to be said and analyzed about the stochastic approach to ensembling described in the
Approaches section. Admittedly, the approach is more of a makeshift method. However, I viewed
it as an approximation of the fact that occasionally, the BIDAF model does yield a better answer
than the BERT model. Indeed, as demonstrated in (E3) in the following section, there are indeed
cases, however infrequent, where BERT’s bells and whistles from massive pre-training, do err, and
we might be able to randomly rectify those mistakes by ensembling with BiDAF.

Randomness is exactly what manifested in final results. Allowing BERT to dominate 0.75 of the time
when there was a disagreement saw a decrease of around 5/4 points in EM/FM from the standalone
BERT-2 model, and decreasing the threshold to 0.02 seemed to improve the scores back towards that
of the standalone BERT-2 model. However, on the test set, the ensembling script managed to improve
performance by 0.6 EM points and 0.3 F1 points.

Though a stochastic approach means we cannot extract the most meaning from this improvement, the
improvement does indicate that the stochastic approach is able to exploit where BiIDAF may rectify
some of BERT’s errors. Indeed, the following section of the paper contains examples where BiDAF
outperforms BERT and discussion about possible reasons why.

Ultimately, a large reason why ensembling did not produce monumental gains in the context of this
project is because ensembling tends to yield the greatest impact when there exists great diversity
between the models. Both BERT and BiDAF put a large emphasis on attention in their architectures;
perhaps the lack of diversity is the reason why most ensembled models on the current leaderboard
do not involve BiDAF in any capacity. Based on the results of this project, however, it does seem
that the upside of tuning hyperparameters and increasing compute power has much larger upside
(=~ 10 times more gain in score) than ensembling. The broader implications of this difference will be
discussed further in the conclusion.

5.3 Commentary on Selected Examples
Below are some examples that highlight the differences between BERT and BiDAF.
Which courts have a duty to interpret domestic law as far as possible? (E1)

Here, the relevant context is “Fourth, national courts have a duty to interpret domestic law as far
as possible.” For this example, the BERT model correctly predicted “national courts,” but the
BiDAF Model predicts “Fourth, national courts.” This is a nice demonstration of the power of BERT
pre-training; because the BERT Encoding Blocks are pre-trained on large corpora, the dot product
equation (1) under the “Fine-tuning BERT” section will likely give a low probability to “Fourth”
being a valid start vector because ‘“Fourth” is unlikely to ever be associated with “national” or “courts”
in pre-training. However, the BiDAF model would be oblivious to this issue, as it does not have the
luxury of extensive pre-training, so it simply applies attention to the beginning of the sentence and
includes “Fourth.”

What Yuan policies did Muslims like? (E2)



Here, the relevant context is “Some policies of the Yuan Emperors severely discriminated against
Muslims, restricting Islamic practices like circumcision.” For this example, the BERT model correctly
predicted “No Answer” but the BIDAF Model predicts “circumcision.” Once again, the pre-training
of BERT displays its power in handling the polysemous word “like.” The BiDAF model, using GloVe
vectors, is weaker on this issue, likely picking the wrong answer because “Islamic” and “Muslim” are
close in high-dimensional space and the word “like” is attended to in both C2Q and Q2C.

What happens when all parts of a plant become infected? (E3)

Here, the relevant context is “When a part of a plant becomes infected, the plant produces a localized
hypersensitive response.” Interestingly, here the BiDAF model correctly predicts “No Answer” while
the BERT model predicts “hypersensitive response.” There does not to be a clear-cut answer to why
this discrepancy happens; perhaps the BERT threshold necessary to generate “No Answer” needs
to be more sensitive (indeed, the choice for all BERT models was —1 for the diff_threshold.)
In comparison, the BIDAF model’s GloVe vectors can quickly come to a consensus that “all” and
“part” are very different such that py.(0) and pe,a(0) are greater than the corresponding values
for “hypersensitive response.” In this sense, perhaps the BIDAF model’s adaptation to SQuAD 2.0
specifically is more robust.

6 Conclusion

This nexus question this project set out to answer was whether contextual embeddings pre-trained on
massive corpora such as BERT are increasingly supplanting the past era of designing and iterating
on complex architectures, or whether the relationship is more of a symbiotic one. The results of the
experiments seem to support that researchers who lionize BERT as spearheading a new era in NLP
may be correct, as the improvements afforded by increasing compute in ways such as increasing
the batch size of BERT fine-tuning dwarf the small increments afforded by the ensemble model.
Ultimately, it is important to note that even the examples above were hand-picked; there are far more
examples where BiDAF is simply wrong, and the few instances where BiDAF beats BERT seem to
be the exception rather than the norm, as evidenced by the ~ 20 point difference in EM and F1 scores
between BERT-2 and BiDAF.

If it is true that pre-trained contextualized embeddings are the future of NLP, however, there is a
dark, or perhaps inconvenient, side to such a revolution. Indeed, the success of BERT is yet another
case for those who claim that the way to solve most problems in Al is to “throw more compute at
it.” It is worth noting that BERT’s reliance on compute power does lead to one of its most important
weaknesses, namely, that its bidirectional approach (MLM) converges much slower than left-to-right
approaches.

Certainly, there are considerable limitations to my work. Most notably, ensembling has previously
been done in many ways that are much more precise than the stochastic approach pursued in this
project. An area for future work is thus developing a more sophisticated ensembling heuristic, such as
learning some weighting over the predictions (i.e. one more linear layer) and seeing if the weighted
combination makes any difference.

In terms of other avenues for future work, with more time and collaborators, I would have liked to
explore how to more deeply and comprehensively integrate the BERT and BiDAF models to target
scenarios just like (E3) in the Analysis section above. Whereas my approach was more end-facing,
taking the predictions that each model created and ensembling them stochastically, I feel that there
could be positive results from replacing the embedding layer of the BIDAF models with BERT to
more deeply contribute to answering the question of whether we are in a new PCE-dominated era
of NLP. Along these lines, with sufficient credits, I would have liked to really play around with all
the hyperparameters in section 4.2, including maximizing number of train epochs and maximum
sequence length, to see if compute power is really all one needs. In a different direction, I would have
liked to implement part of the Attention over Attention paper [3|], which resonates with me as I liken
Ao0A’s effectiveness with human metacognition during reading comprehension.
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