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Abstract

In this paper, we present a series of experiments using the Huggingface Pytorch
BERT implementation for questions and answering on the Stanford Question
Answering Dataset (SQuAD). We find that dropout and applying clever weighting
schemes to the loss function leads to impressive performance. More specifically,
we ensemble across three models: one leveraging dropout, another weighting
questions with answers more heavily than those without, and finally, one weighting
the answer span start more heavily than the end. This leads to a test set F1 score
of 76.545 and a test set EM score of 73.609.

1 Introduction

Question answering systems have captured the minds of budding computer scientists since the early
1960s due to their evident usefulness in a variety of domain-specific tasks (5). In general, question
answering covers a wide field of systems that automatically answer questions posed in a natural
language. A subset of question answering, known as machine reading comprehension, focuses on
finding an answer to a given question in a specific paragraph or document, and the majority of early
natural language processing (NLP) research specifically focused on machine reading comprehension
(16). However, systems had little success with machine reading comprehension until the production
of large-scale, labeled datasets, which allowed researchers to build supervised neural systems. The
Stanford Question Answering Dataset (SQuAD) is a prime example of one of these large-scale,
labeled datasets for reading comprehension.

The original version of SQuAD, SQuAD 1.1, only contains questions that are guaranteed
to have answers in the associated document (12). Furthermore, various systems have surpassed
human-level performance on SQuAD 1.1. However, in the context of SQuAD 1.1, these models only
have to find the answer span that seems most related to the given question, which reduces model
robustness. Thus, despite human-level performance, models built for SQuAD 1.1 lack true language
understanding (7) (18). In order to remedy the issues with SQuAD 1.1, Rajpurkar et al. develop
SQuAD 2.0, which combines answerable questions from SQuAD 1.1 with new, unanswerable
questions about the same paragraphs (11). For the scope of this project, we focus on the more
advanced SQuAD 2.0, which was released in mid-2018.

Early models built for SQuAD 2.0 substantially underperformed human-level performance
until the release of BERT by Devlin et al.(4). Now, as of March 2019, nineteen out of the top twenty
submissions on the SQUAD 2.0 leaderboard leverage BERT in some capacity, and, by relying heavily
on BERT, the top submissions have almost achieved human-level performance on SQuAD 2.0. Thus,
BERT has become foundational to state-of-the-art machine reading comprehension systems.



In this paper, we fully explore the power of BERT. First, we finetune the original BERT
model by experimenting with a variety of parameters, including learning rate, dropout, batch size,
and training epochs. Second, we experiment with a bespoke output layers to bolster BERT’s shallow
output layer. Third, we tweak the loss function in a handful of ways in an attempt to improve BERT
without altering the underlying model architecture. Finally, throughout our experimentation we
develop a variety of BERT models and certain models perform better on certain tasks. Therefore,
we leverage an intelligent version of ensembling in our final model, which achieves an F1 score of
76.545 and an EM score of 73.609 on the test set.

2 Related Works

Introduced in October 2018, BERT stands for Bidirectional Encoder Representations from
Transformers. Devin et al. design BERT to pre-train deep bidirectional language representations
by jointly training on both left and right contexts of a given word in all layers of their model.
Underlying BERT’s model architecture is a multi-layer bidirectional Transformer encoder, originally
implemented by Vaswani et al. (21). Transformers dispense entirely with recurrence and convolu-
tion mechanisms and rely solely on attention mechanisms, which significantly decreases training time.

Furthermore, the work of Devin et al. follows from a long history of pre-training general
language representations. Specifically, we note GLoVE embeddings developed by Pennington et
al., which rely on word-to-word co-occurrence statistics, and ELMo embeddings developed by
Peters et al., which generalize traditional word embeddings by integrating context-sensitive features
from language models (9) (10). Nonetheless, pre-trained embeddings have become integral to NLP
systems, offering significant improvements over embeddings learned from scratch (17).

Moving forward, Devin et al. achieve state-of-the-art results on a wide range of NLP tasks
by fine-tuning BERT. Typically, fine-tuning approaches involve pre-training some model architecture
on a language model objective before fine-tuning that same model for a supervised downstream
task (6). With a fine-tuning approach, models only need to learn a few parameters from scratch.
Additionally, there has been work showing the effectiveness of transfer learning from supervised
tasks with large-scale datasets, such as natural language inference and machine translation (3)) (8).

3 Approach

3.1 Baseline

We leverage an adjusted version of the BIDAF model laid out in Seo et al. as our baseline model (13).
However, in contrast to Seo et al., our BiIDAF model does not include a character-level embedding
layer. Our baseline BiDAF model has five primary layers, which follows from the high-level structure
commonly found in SQuAD models. As the default, our model was trained with a hidden size of 100.

1. Embedding Layer: Embedding look-up to convert indices into GLoVe word embedding
vectors. 2,196,017 GloVe vectors each with an embedding size of 300.

2. Encoder Layer: Two-layer bidirectional LSTM to encode the embed sequence (15)).

3. Attention Layer: BiDAF layer that allows information to flow from the context to the
question and from the question to the context.

4. Model Encoder Layer: One-layer bidirectional LSTM to refine the sequence of vectors
after the attention layer.

5. Output Layer: Produces a vector of probabilities corresponding to start and end positions
and then uses a softmax to output start and end pointers for the answer span.
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Figure 1: Key Components for BERT Architecture (4) (21)

3.2 BERT Model

3.2.1 Model Overview

As noted in Section 2, BERT’s model architecture is a multi-layer bidirectional Transformer encoder
based on the original implementation described in Vaswani et al. (see Figure (1)(b)) (21). BERT
relies on several layers of Transformer blocks (see Figure (1)(a), note positional embeddings are
not used in BERT). Each Transformer block consists of two sub-layers, a multi-head self-attention
mechanism followed by a simple, position-wise fully connected feed-forward network. Residual
connections exist around each of the two sub-layers, and dropout, following after each sub-layer,
provides layer normalization.

e Multi-Head Attention: We can describe an attention function as mapping a query (Q)
and a set of key-value pairs (X, V') to an output vector (O), where the output is a weighted sum of the
values. The weight assigned to each value is computed by a compatibility function of query (Q);) with
the corresponding key (/;). Within BERT, the input matrix X, which either comes from the input
embeddings or the previous hidden layer, is separately projected using the following weight matrices:

XWlQ — Qz c Rinputxdq; XWlK — Kz c ]Rinputxdk; XWlV _ V; c Rinputxdu

Instead of performing a single attention function, the multi-head attention mechanism linearly
projects the queries, keys, and values h times with different, learned linear projections to d,,, dj, and
d, dimensions, respectively. On each of these projected versions of queries, keys, and values, the
multi-head attention mechanism performs the attention function in parallel. The output vectors are
then concatenated and once again projected, resulting in an output vector (O). Multi-head attention
allows the model to jointly attend to information from different subspaces at different positions which
bolsters the effectiveness of the attention (see Figure (1)(b)).

MultiHead(Q, K,V) = Concat(heads, . .., head,)W©; head; = Atten(Q;, K;, V;)

e Feed Forward: The feed forward network, which comes after the multi-head attention mechanism,
consists of two linear transformations with ReLLU activitation in between.

FFN(0O) = ReLU(OW, + by)Wy + by

o Input Representation: BERT can handle single sentences or pairs of sentences with a one token
sequence. The input representation for a given token is constructed by summing over three different
embeddings, corresponding to the token, segment, and position (see Figure (2)(a)).
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Figure 2: BERT for Question Answering (4) (21)

1. Token Embeddings: drawn from WordPiece embeddings (19).

2. Segment Embeddings: first token of every sequence is denoted with [C'LS]. Sentence
pairs separated with [SFE P]. Learned sentence A embedding for every token of the first
sentence and a sentence B embedding for every token of the second sentence.

3. Position Embeddings: learned and support sequence lengths up to 512 tokens.

Devin et. al create two versions of the underlying BERT model, BERTp455. and BERT srcE-
For the scope of this project, we only leverage BERT 5 4 s, where the Transformer consists of 12
transformer blocks and each transformer block has 12 attention heads. Furthermore, BERT g s s is
trained with a hidden size of A = 768 and a max sequence length of 512. Therefore, the overall
model has approximately 110 million parameters.

e Pre-training Procedure: Before fine-tuning BERT, Devin et. al pre-train BERT on two
novel unsupervised prediction tasks: masked language model (LM) and next sentence prediction. The
masked LM task involves masking some percentage of input tokens at random, and then predicting
only those masked tokens. Furthermore, the next sentence prediction task is specifically designed to
bolster question answering ability, as developing an understanding of the relationship between two
sentences is not directly captured by language modeling. In the prediction task, the model determines
if a given sentence B proceeds the sentence A. Specifically, when choosing the sentences A and B
for each pre-training example, 50% of the time B is the actual next sentence that follows A, and 50%
of the time it is a random sentence from the corpus. In this project, we fine-tune each of our models
by starting with the pre-trained BERT model.

3.2.2 Fine-Tuned Model

o Shallow Output Layer: In order to fine-tune BERT 5 45 we follow the same approach of Devin
at al. We train two new sets of parameters for the SQuAD 2.0 task, a start vector S' € RH and an end
vector E € R¥, where H is the hidden size of 768. We train S and F by passing the BERT output
through a Linear Layer. More specifically, given T; € R¥ (final hidden vector from BERT for the ‘"
input token), the probability of word ¢ being the start of the answer span is computed as a dot product
between 7; and S, followed by a softmax over all of the words in the paragraph. The end of the
answer span is similarly calculated, and the maximum scoring span is used as the prediction (see
equations below and Figure (2)(b)). We leverage the power of BERT by using the BERTsprarLr
model implemented HuggingFace (1)).
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¢ Bespoke Output Layer: In an attempt to bolster the original BERT model, we decide to build a
model with a bespoke output layer. The original shallow output layer projects directly from a vector
of size 768 to an output vector of size 2, so the output layer can only learn a linear transformation.
Therefore, we replace the shallow output layer with a single hidden layer with ReLU activation:

Xoutput = ReLU(WlT + bl)Wg + bg



where W € R256X768 "W, ¢ R2X256 b, ¢ R?56, and b, € R2. Furthermore, when compared to
the shallow output layer, (Xoutput)o = P? and (Xoutput)1 = PF for the i*" input token.

e Loss Function Adjustments: In the original BERT model, the loss from start and end
logits are weighted equally in the loss function. However, we first note that the start loss is probably
more important than the end loss when finding the correct answer span. Second, we note that the start
and end loss are probably more important when a question has an answer than when a question does
not have an answer. We explore both of these claims in Section 4.3. Thus, we build three models,
each with a different loss function. Each of these models leverage the original BERT model.

1. Start loss weighted twice as much as the end loss (Note: we did not try weighting the end
loss twice as much as the start loss due to initially poor results).

2. Loss for questions with answers weighted twice as much as questions without answers.

3. Loss for questions without answers weighted twice as much as questions without answers
(for experimental robustness).

o Intelligent Ensembling: Since we create a variety of BERT models, we decide to ensemble across
three different models in our final model. For a given question, our ensemble model analyzes the
output of each BERT model and then chooses the answer with the relative, highest probability.
However, if any of the models predict that the question does not have an answer, our ensemble model
will also predict no answer. Ensembling across different versions of the same model has been proven
successful for question and answering tasks per Wang et al. (20).

4 Experiments

4.1 Data

Briefly described in Section 1, we use SQuAD 2.0, which is a reading comprehension dataset
consisting of questions posed by crowdworkers on a set of Wikipedia articles. Furthermore, the
answer to every question is a segment of text from the corresponding reading passage or the question
is unanswerable. For the scope of our project, we use the official SQuAD 2.0 train and dev sets. We
leverage the two datasets in the following way:

e train (129,941 examples): All taken from the official SQuAD 2.0 training set.
o dev (6,078 examples): Half of the official dev set, randomly selected.
e test (5,921 examples): The rest of the official dev set, plus hand-labeled examples.

4.2 Evaluation Method

To evaluate our models we use the standard SQuAD performance metrics: Exact Match (EM) score
and F1 score. For our project, we focus on the EM and F1 scores with respect to the dev set.

o Exact Match: A binary measure of whether the system output matches the ground truth
answer exactly.

e F1: Harmonic mean of precision and recall, where precision = (true positives) / (true
positives + false positives) and recall = true positives / (false negatives + true positives).
F1 score = (2xpredictionxrecall) / (precision + recall). (Note: In SQuAD, precision
measures to what extent the predicted span is contained in the ground truth span, and recall
measures to what extent the ground truth span is contained in the predicted span.)

4.3 Experimental Details

We train all of our models on Azure Virtual Machines each equipped with an Nividia NV6 GPU.
Additionally, due to memory constraints on the virtual mahcines, we use a batch size of 6 for all of
our experiments using BERT. As a baseline, we trained the given BiDAF model using dropout with
a learning rate of 0.5 for 30 epochs. Afterward, we started experimenting with the Huggingface
PyTorch implementation of the BERT base model. We originally used a learning rate of 5e—5, which



led to results significantly worse than those detailed in the original BERT paper. However, after
reviewing other BERT implementations and experimenting with the hyperparameters, we found that
a learning rate of 3e—>5 led to significantly better results. Upon further review, we found that the
creators of Huggingface use this learning rate to achieve their best results, and they also emphasize
the importance of the learning rate for model performance.

After settling on a learning rate of 3e—5, we decided to experiment with using dropout be-
fore the output layer, which the Huggingface implementation had notably decided not to use. We
used a dropout probability of 0.1 and trained models for both two and three epochs. We noticed
that dropout did very little to reduce overfitting and actually led to worse performance in general.
Nonetheless, we found that the models trained with dropout were generally better at detecting the
correct start and end positions for dev examples with answers (and significantly worse at detecting
those with no answer). This phenomenon is further explored in Section 5.

We then decided to make more drastic changes to the BERT model by overhauling the
structure of the output layer as detailed in the Section 3.2.2. Once again, to train this model we used
a learning of 3e—>5, and despite spotty results in our previous experiments, decided to use dropout for
this modified model as a regularization technique to curb the effects of the added complexity.

Finally, unsatisfied with the results of altering the structure of the output layer, we decided
to focus our efforts on modifying the model’s loss function. First, we decided to test the hypothesis
that weighting the loss associated with the model’s choice of start position more heavily than the loss
associated with the chosen end position would lead to better performance. Intuitively, since English
is read left-to-right, we felt that the information carried forward from the start position onward may
be more valuable than the information carried backward from the end position. As such, we modified
the model’s loss to weight the start loss twice as much as the end loss and trained again for two
epochs using the same learning rate but without dropout.

We were relatively satisfied with the results of weighting the start loss more heavily than
end loss, but we decided to go back to the drawing board to see if we had overlooked anything
crucial. after thinking more deeply about the fact that the Huggingface implementation was designed
to work with SQuAD 1.1 and 2.0, we decided that we had not accounted for key difference between
the two datasets. Since the difference between versions 2.0 and 1.1 is the presence of questions with
no answers and the lack thereof respectively, we decided to again see if there was a way to tweak the
model’s loss. Analyzing the results of our previous experiments, we noticed that the best performing
models with respect to detecting questions with no answer often struggled to detect correct answers
in questions with answers and vice versa. To address this tradeoff, we decided to train one model that
would bias toward detecting questions with no answer and another that would bias toward detecting
the correct start and end positions in questions with answers. Specifically, we trained one model with
a loss function that weighed the loss for questions with no answer twice as heavily as the loss for
questions with answers and another that did the reverse. We trained both of these models using the
same learning rate as before and, again, did not use dropout.

5 Results and Analysis

To measure the performance of our models, we considered the overall F1 and EM scores along with
the F1 and EM scores on the subset of the data containing questions with answers and the subset
containing questions without answers. We found that the BERT base model with a learning rate of
5e—>b gave significant improvement over the BiDAF baseline model (approx. +7 F1 and +7 EM).
However, using a learning rate of 3e—>5 led to even more drastic improvements over the baseline
(approx. +16 F1 and +16 EM). See Figure 3 for a detailed breakdown of our results.

Furthermore, after training for two epochs with dropout, using a dropout probability of 0.1,
we found that overall performance slightly worsened, but our model did slightly better on both
scoring metrics for questions with answers. As such, we decided to train for another epoch, 3 in
total, to see if the gain for questions with answers could be amplified. Indeed it was, as we achieved
an increase of approximately 1.5 points for both F1 and EM for questions with answers. Finally,
to combine the expressive power of the model without dropout with the regularization benefits



Model ID Model Description Dropout Learning Ep(?chs No Answer Has Answer Has Answer F1 EM
Rate Trained F1/EM F1 EM
1 |BiDAF Baseline X 05 30 - - X 59.81 56.7
2 |BERT Small 0.0005 3 53.0934 819576 745704 | 669129 633761
3 |BERT Small 0.0005 2 53.8826 82.8881 757388 | 677697 643468
4 |BERT Smanl X 0.0003 3 61.9003 813521 747423 | 712133 68.0487
5 |BERT Small LastEpoch  0.0003 3 622159 82.0746 753265 | 717238  68.4929
6  |BERT Small X 0.0003 2 713068 80.258 737801 | 755924 72491
7 |BERT Smal 0.0003 3 735795 717345 713402 | 755689  72.5074
8  |BERT Small 0.0003 2 726326 79.8446 734364 | 760866  73.0174
9 |BERT - Bespoke Output Layer X 0.0003 2 66.9508 773443 715464 | 719269  69.151
10  |PERT-Adjusted Loss Function: start| 0.0003 2 712437 787914 716495 || 748574 71438
loss weighted twice end loss
11 |PERT - Adjusted Loss Function: loss 0.0003 2 595013 812957 741237 | 699359 665021
weighted twice when no answer
BERT - Adjusted Loss Function: |
12 - Adjusted Foss unction: {0ss 0.0003 2 726641 806745 744674 | 764993 735275
weighted twice when has answer

Figure 3: Experimental details and single-model results

of dropout, we decided to train our previous best model for an additional epoch with dropout.
Specifically, this was the model we had trained with a learning rate of 3e—5 for two epochs, and
had found that we overfit when we had previously trained for an additional epoch without dropout.
Indeed, the trend in dropout leading to higher performance on questions with answers continued.
we achieved a gain of approximately 2 F1 and EM points over our previous best for questions with
answers.

Next, after modifying the output layer to contain a hidden layer with ReLU activation as
described in Section 3.2.2, we found a significant decrease in performance. In particular, we trained
this modified model for two epochs with dropout (again with probability 0.1) and a learning rate
of 3e—>5. Overall, saw a decrease of approximately 4 F1 and EM points compared to our previous best.

Moving forward, the results of our modified loss function experiments indicated that weighting the
start loss more heavily than the end loss, while enticing, led to only slightly different results. On
the other hand, we found much more significant changes after performing experiments where we
weighted the loss for questions without answers differently from that for questions with answers.
Specifically, weighting the loss for questions with answers twice as much as that for questions
without answers led to some improvement across the board. However, the reverse led to a significant
decrease in performance. Intuitively, weighing the loss for questions that have answers more heavily
than that for questions without answers may give the model more power to learn the complex
relationship between the start and end positions of answers of variable lengths across the data set,
even if that trades off in the form of slightly decreased performance on questions without answers.

On the other hand, it makes sense that weighting the performance on questions without an-
swers over the performance on questions with answers could lead to issues, since modeling answers
is inherently more complicated in many ways than modeling the lack thereof. After all, a question
without an answer always has the same start and end position (namely -1 and -1), while the start and
end positions for questions with answers vary drastically from example to example. Figure 4 shows
how our adjusted loss decreases over the training periods.

Finally, in order to combine the best aspects of the various models resulting from our ex-
periments, we decide to use ensembling, as detailed in Section 3.2.2. We considered various
ensembling strategies, but we ultimately decided to choose the simplest set of models that would
emphasize the most powerful aspects of the various models we had created. Specifically, we used
three models in our ensemble: basic model with dropout, weighting questions with answers more
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Figure 4: Change in loss with respect to the the number of batches (training periods)

heavily, and weighting the start of the answer span more heavily than the end. This led us to choose
models 6, 10, and 12. This led to a test F1 score of 76.545 and a test EM score of 73.609.

6 Conclusion

Overall, in this paper, we explore the full power of the basic BERT model by experimenting with a
variety of hyperparameters, including the learning rate, dropout, and training epochs. Furthermore, we
experiment with a bespoke output, layer built on top of BERT, that replaces the shallow output layer
in the original model. We also extensively explore tweaking the BERT loss function. In particular,
we try weighting the start loss twice as much as the end loss, and we test weighting questions with
answers more than questions without answers and vice versa. Finally, we ensemble across three
models that collectively emphasize the best findings of our various experiments to achieve very
competitive test set F1 and EM scores. For future work, we note that using our same strategies with
respect to BERT 1 o ra g instead of BERT g 4 s would almost certainly achieve significantly better
results. However, we leave this as an exercise to the wealthy reader.
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