ECNet: Early Attention and Local Convolution for
Machine Comprehension

Abhishek Goswami
Microsoft
Redmond, WA 98052
agoswami@microsoft.com

Abstract

Current state-of-the-art machine comprehension models have some common tenets.
One, the use of an embedding encoder layer to exploit contextual cues from sur-
rounding words. Two, the use of neural attention mechanisms to exploit matching
cues between the context and the query. In this paper we propose ECNet, a hier-
archical model for machine comprehension, which amplifies existing models by
adding early attention and local convolution. It uses self-attention over the input
embeddings as a form of early attention. For the embedding encoder layer, ECNet
models both sequential and local interactions between words, using recurrent and
convolution layers respectively and combining them. On the SQuAD 2.0 dataset,
ECNet outperforms the BiDAF model proposed recently in literature.

1 Introduction

Machine comprehension (MC) and question answering (QA) tasks have gained significant interest in
the past few years, with several end-to-end models showing promising results.

A key tenet of existing techniques is to use an embedding encoder layer. The input embedding layer
first maps each word to a vector space. The embedding encoder layer then refines the embeddings
using contextual cues from surrounding words. Approaches such as BiDAF [[13]] use a Long Short-
Term Memory (LSTM) network at the embedding encoder layer to model temporal interactions
between words, while more recent approaches such as QANet [17] use a combination of convolution
and self-attention to model this layer. The embedding encoder layer plays a crucial in the model
hierarchy with other layers stacked in a hierarchical fashion on top of it.

Another key factor in recent advancements has been the use of neural attention mechanisms, which
extract useful signal by exploiting the notion of matching; either matching {context, query} sentences
in QA tasks, or matching {source, target} language sentences in machine translation tasks. Several
attention approaches have been proposed in literature. Chen et al [4] propose a uni-directional
attention mechanism whereby the query attends to the context paragraph. In BiDAF, Seo at al [[13]]
introduce bi-directional attention flow to obtain query-aware context representations. Wang et al
[L6] note that query-aware passage representations have limited knowledge of the context itself, and
motivate self-matching attention to directly match the query-aware passage representation against
itself.

In this paper we propose two novel extensions. First, we observe that given the input embeddings,
most existing models dive straight into the embedding encoding layer. Attention layers come in
later in the modeling stack, almost as an afterthought. We propose adding a embedding attention
layer, as a form of early attention over the word and char embeddings. Second, we propose having a
combination of recurrent and convolution layers in the embedding encoder layer. The motivation for
these two novelties is to bring the benefits of early attention and local convolution into the model

hierarchy. We show that adding these two extensions is indeed helpful, and helps outperform the
BiDAF [13] model proposed recently in literature.

The remainder of the paper is organized as follows. In Section 2] we introduce our model. Section [3]
presents the experimental results from our modeling techniques. In Section] we survey related work
in the field of machine comprehension. Finally, we present our conclusions in Section 3]

2 Model

In this section, we first formulate the machine comprehension problem. We then present our model,
ECNet, for applying Early attention and local Convolution to deep neural Networks.

2.1 Problem Statement

The machine comprehension task considered in this paper is as follows. Given a context paragraph
with T words, C = {cy, ¢a, ..., cr} and a query sentence with J words, Q = {q1, g2, ... ¢}, output
aspan S = {¢;, Cj41,...Ci4; } from the original paragraph C that satisfactorily answers the question.
Section [3.3]describes two metrics that are widely used in literature for evaluating this task. We use d
to represent the hidden size used by several layers of the model.

Table 1: An example of a machine comprehension task.

Question | Economy, Energy and Tourism is one of the what?

Context | Subject Committees are established at the beginning of each parliamentary ses-
sion, and again the members on each committee reflect the balance of parties
across Parliament. Typically each committee corresponds with one (or more)
of the departments (or ministries) of the Scottish Government. The current
Subject Committees in the fourth Session are: Economy, Energy and Tourism;
Education and Culture; Health and Sport; Justice; Local Government and Regen-
eration; Rural Affairs, Climate Change and Environment; Welfare Reform; and
Infrastructure and Capital Investment

Answer | current Subject Committees

2.2 Model Overview

Several state-of-the-art machine comprehension models have a similar structure. They have (a) an
embedding layer (b) an embedding encoder layer (c) an attention flow layer (d) a model encoder layer
and (e) an output layer.

We introduce two novel extensions to this structure. One, we add a Embedding Attention Layer
between the input Embedding Layer and the Embedding Encoder Layer, with the goal of introducing
early attention in the modeling process. Second, for the Embedding Encoder Layer we use a
combination of recurrent and convolution operations to make it rich with both sequential and local
interactions. Our machine comprehension model is thus a hierarchical multi-stage process consisting
of six layers.

1. Embedding Layer.
. Embedding Attention Layer.
. Embedding Encoder Layer.
. Attention Flow Layer.

. Model Encoder Layer.

AN W AW

. Output Layer.

The details of each of the layers are as follows.

Qutput Layer Pend |

Pstane

Model Encoder Layer —

Attention Flow Layer

Embedding Encoder Layer ﬂ

I

T
—m —

)

Embedding Attention Layer

f
Embedding Layer
oo |
Context
Paragraph

Figure 1: ECNet model architecture

1. Embedding Layer. In this layer we mix character embeddings with word embeddings.

For character embeddings, we use a method similar to that proposed by Kim et al [8]. We first convert
a word to its character indices. We then pad (or truncate) each word so it has length 1m,,,,-q. For each
of these characters we lookup a dense character embedding (which has shape e.jq,-). To combine
the character embeddings, we use 1-dimensional convolutions over M, USIng ecpq, as the input
channel size and e,,-q as the output channel size. The output of the CNN are max-pooled over the
entire width to obtain a fixed-size vector of shape e,,,q for each word.

For word embeddings, we use pre-trained word vectors from GloVe [10] to obtain the fixed embedding
for each word. The size of the word embeddings is e,,,-q Which is the same as the shape of the
character-level embeddings for each word.

The concatenation of the character and word embeddings is passed to a Highway Network [14]]. We
do this for both the context sentence C' and also the question (). So now we have two matrices C
€ RT4 and Q € R’ corresponding to the context and question respectively.

2. Embedding Attention Layer. The motivation for adding this layer is to attend to the embeddings
provided by the previous layer. This layer starts early attention to the word and character character
embeddings. As before, we do this for both the context sentence C' and also the question @ , and
concatenate the results with the embedding layer output giving us two matrices X € R7*2¢ and Y
€ R724 corresponding to the context and question respectively.

3. Embedding Encoder Layer. The purpose of this layer is to encode the relationships between
the embeddings provided by the previous layers. On one hand we want to model the temporal
interactions between words. For this we use a bi-directional LSTM. This results in two matrices of
shape (T, 2d) and (J, 2d) corresponding to the context and question respectively.

We also model local interactions between the embeddings output by the embedding attention layer.
We use 1-dimensional convolutions over the sequence length using 2d as both the input and output
channel size. We do this using a kernel size 1, which results in two matrices of shape (7', 2d) and
(J, 2d) corresponding to the context and question respectively.

The concatenation of the RNN and CNN layers gives us two matrices H € RT4¢ and U € R/4¢
respectively.

4. Attention Flow Layer. We also add a bi-directional attentional flow layer introduced by Seo et
al [13]. The main idea is that attention should flow both ways - from the context to the question and
from the question to the context. The attention flow layer also fuses the information between the
context and the query words.

The inputs to the layer are contextual vector representations of the context H and the query U. The
outputs of the layer is G € RT>16¢ which is a query-aware vector representations of the context words,
along with the embeddings from the previous layer.

5. Model Encoder Layer. This layer encodes the query-aware representations of the context words.
The input is G, and the output is matrix M, which captures the interaction among the context words
conditioned on the query. We use two layers of bi-directional LSTM, with hidden size d for each
direction. Matrix M € R”"2¢ is then passed to the Output Layer.

6. Output Layer. This layer is application specific. For the QA task being explored in this project,
we need to find a sub-phrase of the context to answer the query. The phrase is derived by predicting
the start and end indices of the phrase in the paragraph. The output layer produces two probability
distribution pgtart, Pena € RY corresponding to each position in the context.

Dstart = SOftmaX(Wstart[G; MD (1)

Pend = softmax(W,,,q|G; M')). @

where M’ € R7:2? is a matrix obtained by applying a bi-directional LSTM to M.

2.3 Model Training and Scoring

Training. We define the training loss as the sum of the negative log-likelihood (cross-entropy) loss
for the start and end locations. So for a (context, question) pair with start index i € {1,2,...,7} and
end index j € {1,2,...,T}

loss = —10g Pstart (i) — 108 Pena(j)- (3)

During training, we average across the batch and use the Adadelta optimizer [18] to minimize the
loss.

Scoring. At test time, we chose the pair (i,j) of indices that maximizes Pstart (7). Pena(j) subject to
i1 <jandj — 1+ 1 < Lyygs, where L4, is a hyperparameter which sets the maximum length of a
predicted answer.

No Answer. We adopt the approach proposed by Levy et al [9]. We prepend a OOV token to the
beginning of each sequence. The model outputs ps;qr¢ and pe,q soft-predictions as usual. When
discretizing a prediction, if Pstqr¢(0)- Pena(0) is greater than any predicted answer span, the model
predicts no-answer. Otherwise the model predicts the highest probability span. Note, this approach
also allows us to predict a per-example confidence score that the question is unanswerable.

3 Experiment

In this section, we conduct experiments to study the performance of our models. We will benchmark
our models on the Stanford Question Answering Dataset (SQuAD) 2.0 [[12], considered to be one
of the most competitive datasets in QA tasks. We also provide some implementation details for our
models and present the main results.

3.1 Dataset

We consider the Stanford Question Answering Dataset (SQuAD) 2.0 [[12] for machine comprehension.
Our model is given a paragraph, and a question about that paragraph, as input. The goal is to answer

65
60 1
o
[¥]
u
£ 55
—®— ECNet (our model}
50 1 —8— BIDAF (baseline)
T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
u
(=]
(&
D 60
=
=
ﬁ 55
1
E 50 - —&— ECNet (our model) |
L= o -
) —&8— BIDAF (baseline)
[1N]

T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 B35 4.0
Step Count (in million)

Figure 2: Comparison of F1 and EM scores while training.

the question correctly. There are around 150k questions, and roughly half of the questions cannot be
answered using the provided paragraph.

3.1.1 Data splits

The official SQuAD dataset has three splits: train, dev and test. The train and dev sets are publicly
available and the test set is entirely secret. For this project we use a custom dev and test set obtained
by splitting the official dev set in half.

To summarize we have the following data splits:

e Train. 129,941 examples. All taken from the official SQuAD 2.0 training set.
e Dev. 6,078 examples. Roughly half of the official dev set, randomly selected.

e Test. 5,915 examples. The remaining examples from the official dev set.

From now on we refer to these splits as the train set, dev set and test set respectively. We will use the
train set to train the model. We report the performance metrics on the dev set.

3.2 Training Details

The model architecture used for this task is shown in Figure[T}

For the Embedding Layer, m. g 1S set to 16. ecpqr and ey are set to 64 and 300 respectively.
We use one 1D filter for the CNN char embedding with a kernel size of 5. The hidden state d of the
model is 100. For the convolutions in the Embedding Encoder Layer, we use a set of 4 stacked CNN
layers, each with input/output channels as 2d with a kernel size of 1 . We uses dropout as a form
of regularization across all the six layers in our model. Table [shows the effect of dropout on our
model performance. We use the Adadelta optimizer [[18] with a learning rate of 0.5 which is kept
fixed. While training we use a batch size of 64. When scoring, L, is set to 15.

We implement our model in Python using PyTorch [2]. The experiments are carried out on a Azure
Data Science Virtual Machine (DSVM) [[1]] which has a NVIDIA Tesla K80 GPU.

Table 2: Comparing ECNet with BIDAF

EM F1
BiDAF with character embedding (baseline) 59.47 62.46
ECNet (our model) 63.17 66.38

Table 3: Results from Ablation Study

EM F1
No Embedding Attention Layer 60.93 64.34
No CNN layers inside the Embedding Encoder Layer 59.64 63.10
No character embedding in the Embedding Layer 59.47 62.46

Un-freezing the character and word embeddings in the Embedding Layer 62.19 65.39

3.3 Metric Details

We measure performance via two metrics: Exact Match (EM) and the F1 score.

e Exact Match is a binary measure (i.e. true/false) of whether the system output matches the
ground truth answer exactly.

e F1 is the harmonic mean of precision and recall.

e When a question has no answer, both the F1 and EM score are 1 if the model predicts
no-answer, and O otherwise.

e For questions that do have answers, when evaluating on the dev or test sets, we take the
maximum F1 and EM scores across the three human-provided answers for that question.

3.4 Results

Table 2] shows the comparison between our model and the baseline. As per the original BiDAF model,
we include a character-level embedding layer using character-level convnets. This gives us a very
strong baseline to compare with. We see ECNet outperforms BiDAF on both the F1 and EM metrics.
Figure [2{ shows a comparison of the metrics while training the two models.

3.5 Ablation Study

Table 3] shows the performance of the model and its ablations on the dev set. Having an embedding
attention layer helps model performance. This validates our hypothesis that adding attention layers
early in the model stack should help performance. For ablating the effect of the CNN layers, we
experiment by removing the CNN layers from the embedding encoder layer. CNN layers prove to be
critical, with a drop of 3 points on both metrics when absent. Char embeddings in the embedding
layer also play a crucial role, whereby word-level embeddings represent the semantics of each
word as a whole, while char-level embeddings better handle out-of-vocab (OOV) or rare words.
Interestingly we also see that un-freezing the char-level and word-level embeddings gives us slightly
lower performance. It seems the model gives slightly worse results if we allow the backpropagation
to happen all the way through the embedding layer. This shows the pre-loaded embeddings are quite
good, fine-tuning these embeddings do not generalize well to unseen data in the dev set.

Table 4: Effect of dropoput

EM F1
No Dropout 60.41 63.46
Dropout = 0.1 62.06 65.39
Dropout = 0.2 (chosen) 63.17 66.38
Dropout = 0.3 59.84 63.81
Dropout =0.4 61.10 64.09

Table 3] shows the effect of dropout rates. The model overfits with low dropout rates. High drop-out
rates help in preventing overfitting, but lead to lower EM/F1 scores. We settle on 0.2 as the dropout
rate since it gives the best results.

4 Related Work

Machine comprehension (MC) and question answering (QA) tasks have gained significant interest in
the past few years. In this section we provide a brief overview of some of the fundamental techniques
in this field.

Use of Attention mechanisms. The use of attention mechanisms is one of the key tenets of existing
MC literature. Several techniques [3 (6] use a dynamic attention mechanism, in which the attention
weights are updated dynamically using the query, context and previous attention. Chen at al [4] show
that simply using a bi-linear term for computing the attention weights improves model accuracy. In
this paper, we use a memory-less attention mechanism similar to BiDAF [13]. We introduce the
notion of early attention, and show how it helps model performance.

RNN, CNN and Transformer architectures. Recurrent Neural Networks have traditionally been
the model of choice to capture the sequential nature of text. While common, RNNs are slow because
of their recursive definition, which prevents parallel computation. Another drawback of RNNss is
difficulty in modeling long dependencies, an issue which has prompted the use of Gated Recurrent
Unit (GRU) and Long Short Term Memory (LSTM) architectures for NLP tasks. Attempts have also
been made to replace recurrent networks by Convolution Neural Networks (CNN) [7]. More recently,
full attention architectures [[15] have been shown to be effective across a wide variety of tasks, such
as text classification, machine translation, question answering and sentiment analysis. A combination
of convolutions and self-attention [[17] has also been shown to have promising results. In this paper,
we use the best of all worlds using a combination of RNN, CNN and attention mechanisms in a
hierarchical model.

Pre-trained Contextual Embeddings. Several state of the art techniques leverage pre-trained
contextual embeddings (PCE). Examples of such PCE-based techniques are ELMo [[11] and BERT
[S]. The core idea of such techniques is to represent a piece of text using word embeddings that
depend on the context in which the word appears in the text. This is typically achieved by pretraining
the weights on a large-scale language modeling dataset, and using the pre-trained weights for the
initial model layers. In this paper we do not use PCE-based techniques. As mentioned in Section[2.2]
we use GloVe embeddings to represent our word vectors. We can extend our model to incorporate
PCE-based techniques.

5 Conclusion

In this paper we propose ECNet, a hierarchical model for machine comprehension, with focus on
early attention and local convolution. The goal is to use attention early in the modeling stack, and to
capture local interactions using convolution layers. On the SQuAD 2.0 dataset, ECNet outperforms
the BiDAF [13]] model proposed recently in literature. Ablation analyses demonstrate the effect of the
novelties proposed in the model. Future work involves extending ECNet to incorporate pre-trained
contextual embeddings (PCE) in the embedding layer.

References

[1] Azure data science virtual machines. https://azure.microsoft.com/en-us/services/virtual-
machines/data-science-virtual-machines/.

[2] Pytorch. https://pytorch.org/.

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473, 2014.

[4] D. Chen, J. Bolton, and C. D. Manning. A thorough examination of the CNN/Daily Mail
reading comprehension task. In Association for Computational Linguistics (ACL), 2016.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[6] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blunsom.
Teaching machines to read and comprehend. In Advances in Neural Information Processing
Systems, pages 1693-1701, 2015.

[7] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[8] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush. Character-aware neural language models. In
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[9] O. Levy, M. Seo, E. Choi, and L. Zettlemoyer. Zero-shot relation extraction via reading
comprehension. arXiv preprint arXiv:1706.04115, 2017.

[10] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word representation.
In Proceedings of the 2014 conference on empirical methods in natural language processing

(EMNLP), pages 1532—-1543, 2014.

[11] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep
contextualized word representations. arXiv preprint arXiv:1802.05365, 2018.

[12] P. Rajpurkar, R. Jia, and P. Liang. Know what you don’t know: Unanswerable questions for
squad. arXiv preprint arXiv:1806.03822, 2018.

[13] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidirectional attention flow for machine
comprehension. arXiv preprint arXiv:1611.01603, 2016.

[14] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
L. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
pages 5998-6008, 2017.

[16] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou. Gated self-matching networks for reading
comprehension and question answering. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 189-198,
2017.

[17] A. W. Yu, D. Dohan, M.-T. Luong, R. Zhao, K. Chen, M. Norouzi, and Q. V. Le. Qanet:
Combining local convolution with global self-attention for reading comprehension. arXiv
preprint arXiv:1804.09541, 2018.

[18] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

	Introduction
	Model
	Problem Statement
	Model Overview
	Model Training and Scoring

	Experiment
	Dataset
	Data splits

	Training Details
	Metric Details
	Results
	Ablation Study

	Related Work
	Conclusion

