Semi-Supervised Question Answering: Generative
Augmentation in SQuAD2.0

Alex Lu
Department of Bioengineering
Stanford University
Stanford, CA 94305
alu2@stanford.edu

Abstract

The extractive question-answering task has been extensively investigated over the
last years, especially with the advent of PCE methods such as BERT and ELMo.
However, many current approaches are heavily dependent on large volumes of
hand-labeled training data. Here, we investigate semi-supervised learning for
SQuAD2.0 to better understand model dependence on training data, exploring
multiple data augmentation methods that ameliorate effects of data restriction. We
show that model performance is determined both by the underlying volume of data,
as well as its quality.

1 Introduction

Question answering is a fundamental problem in natural language processing. The extractive question-
answering formulation, in particular, has been extensively investigated over the last years. Given a
context paragraph and a question, this formulation requires selection of a contiguous span of context
words to answer the question. Significant progress has been made towards advancing the state of
the art in extractive question-answering, both in SQuADI1.1, as well as with the recent introduction
of the no answer possibility in SQuAD?2.0 [l1], [2]. Especially with the advent of PCE methods
such as BERT and ELMo, significant progress has been made towards improving scores in the
SQuAD challenge [3] [14]]. As of this writing, BERT-based models are increasingly close to human
performance on SQuAD?2.0, reaching an F1 of 89.147 on the leaderboard.

Without a doubt, these results are impressive. One significant limitation that greatly affects NLP
systems, however, is the need for an extensive dataset containing questions with associated contexts
and answers. The SQuADI1.1 and SQuAD2.0 datasets of 100,000 examples required significant
crowdsourcing and manual parsing to generate. With this dependency in mind, it is important to
consider the robustness of extractive question-answering models under conditions in which such
supervised data might not be available.

Here, we investigate semi-supervised question-answering methods to address the SQuAD2.0 chal-
lenge. In particular, I investigate various methods to reduce the dependence of extractive question-
answering models on the availability of training data. These approaches include model simplification,
naive (non-neural) data augmentation, and neural data augmentation through question generation.
These approaches are compared in development set performance; the top performing model is
evaluated against the training set.

2 Related Work

A number of works have approached the semi-supervised learning problem in extractive question
answering. Generally, such approaches require a combination of existing supervised data as well as a

pool of unsupervised data. Initial approaches were inspired by Yang et al., who identified two unique
approaches to semi-supervised question-answering [6]. First, Yang et al. describe a naive NER and
POS-based heuristic to extract contiguous answer phrases from unlabeled context paragraphs. The
immediate & words before and after this answer phrase are joined to form the question. While Yang et
al. noticed mild improvements with this naive method, they progressed into designing an architecture
that couples a question-generative model with a discriminative question-answering model. These
Generative Domain-Adaptive Networks worked well in SQuADI1.1, though were ultimately unable to
advance the state of the art. Notably, in dividing the training of generative and discriminative models
into three phases, it becomes difficult to identify bottlenecks in allowing the model to truly develop
understanding of the context and question.

Question generation methods have also been employed by Wang et al. 2017 [7]. In their work, a
generative model encodes context and candidate answers using a BiLSTM, before using a decoder
consisting of two LSTM cells guided by a pointer-softmax mechanism. Notably, the work of Wang
et al. uses a copy mechanism that chooses between copying from the context and generating from
model vocabulary [8]], [9]. The integration of artificially generated questions with existing training
data allowed improvement on SQuAD relative to their baseline model.

Perhaps the most stark example of semi-supervised learning is devised by Dhingra et al., who achieved
greater than .50 in F'1 by leveraging less than a thousand labeled examples coupled with a unique
question generation mechanism [[10]. In their work, they cleverly utilize the larger scale structure of
documents by decomposing them into introductory sentences {q; } and content paragraphs {p;} with
the understanding that many key phrases within content paragraphs also appear within introductory
sentences. If there is an exact phrase match in a paragraph p; and a sentence q;, q; with the phrase
masked out will be utilized as the question; the phrase will be the answer, and the context paragraph
will be the context. Perhaps it is more appropriate to refer to this method of question generation
as reductive, capable of generating relatively syntactically fluent questions. On the whole, the
performance achieved by Dhingra et al. is truly remarkable.

A final example to consider is that of BERT from Devlin et al. 2018. Notably, the pre-training phase
of BERT utilizes the masked language model task, which is inspired by the same Cloze task as in
Dhingra et al., but with the increased generality seen in the naive model of Wang et al. Additionally,
while Wang et al. and Dhingra et al. aggregate artificial and human-generated questions to train
in “one shot”, BERT uses a two-phase combination of pre-training on the MLM task and sentence
completion, which potentially allows the model to thoroughly learn how to extract meaning from
text. As the foundation for much of the current SQuAD2.0 leaderboard, BERT is also an impressive
step towards reducing dependence on hand-labeled data and devising ways to encourage model
understanding from unlabeled text.

3 Approach

The goal of preserving or even improving extractive-question answering performance in SQuAD2.0
can be framed as one of trying to maximize performance on a development or test set
Laev. et = {¢@, a?, p(i)}ﬁv:‘i"l‘" “ while restricting the amount of supervised training data, L, =
{q(i)7 a®, p® } f\i"f" Towards this end, two primary question generation approaches were considered.
Question-answer pairs were artificially generated from unlabeled data either through naive methods
resembling those of Yang et al. and Dhingra et al., as well as through neural question generation
methods as described in Yang et al. and Wang et al. Additionally, model complexity was investigated.
Overall, we hoped to encourage robust learning of the question-answering task while reducing
dependence on training data volume.

3.1 Naive Data Augmentation

Question generation methods consist of two components: (1) extracting candidate answers from
given context, (2) generating a question associated with each answer.

We implemented two naive methods that extract answers through preliminary Part-Of-Speech tagging
and Named Entity Recognition to label tokenized context, followed by extraction of contiguous
phrases. The question is then the set of W words on either side of this phrase, excluding the
phrase itself. The first naive method selects random noun-phrases only, referred to in Table|1|as

human
labels

optional BiDAF Question
supervision Answering

1]

removed . 1 fake
jisars Generative Model : sl :

1 1

Figure 1: Semi-supervised Learning Pipeline

random augmentation. The second naive method performs more extensive labeling and selects
candidate phrases based on their distribution in the SQuADI1.1 dataset [1]. Answers spans are
then deliminated by the immediate left and right neighbors of the selected phrase in a dependency
parse of the paragraph. NER, POS, and dependency tree functionalities were achieved using spaCy,
https://spacy.iol

3.2 Neural Question Generation

A question generation model is trained using a subset of the SQuAD?2.0 training set. The trained model
then produces new question-answer-context triples over the unseen subset to augment supervised
data for model training.

Embedding: The question generation model begins by using GloVe vectors to embed context,
question, and answer indices [11]]. This gives embedded vectors cy, ...,cx € R”, ay,...,ay € RP,
qi,..-,dK € RP, where D is the embedding size, N gives the maximum context length, M gives
the maximum answer length, and K gives the maximum question length.

Encoding: BiGRUs are used to encode the context and answer embedded vectors, producing
h§ € R”, h} € RY.

Answer2Context Attention: The Q2C attention mechanism from BiDAF is borrowed, instead
deriving the attention distribution over context words hidden states relative to the provided answer
hidden states [12]. As in BiDAF:

Sij = Win[h{;h:hf o h]

S;. = softmax(S;.) € RY
§:7j = softmax(S. ;) €RM
s’ =SSs7 € RVXN

Si,c; eRY Vie{l,., N}

k=2
I
M=

1

<.
Il

Decoding: The last hidden state of the context encoding is used to initialize the decoding during
question generation. The embedded reference questions qy, are used to teacher-force the decoder,

with y® = [y(®); 0prey] € RPTH . This is used to produce hgt) = GRUCell(y"), dec-state) € R*.
This hidden state is re-mapped using a linear layer with no bias, producing h[(f)’ = Wecproj € RE,
Wdec—proj € REXH,

Decode2Answer Attention: An attention distribution is generated over the answer hidden states
using the decoder hidden state e; = (h?)TWdec_pmjh,(f)’ € R¥ to produce a weighted combination
of answer hidden states: a; = [h¢...h%]e; € R,

https://spacy.io

<S>
Where

GRUCell

The D"L_'
‘ % Decode2Context Attentlon—l
heart
Decode2Answer Attention

Answer2Context Attentlon

chest D—-‘ﬁ (

between the lungs

Figure 2: Neural Question Generation Architecture

Decode2Context Attention: An attention distribution is generated over the context hidden states
using a combination of the Answer2Context attention and the decoder output.

Vi = b(Wdec—projh(gt)/)T S RN
q: = [i,...,h?\,]vt GRH

Flnally, we have the pre-output S; = [hg), qs; hfl)o q:; a;] € R The output of the decoding step
is then given by: Opey = WouputprojSt € RY.

The last step in decoding is given by a projection from the hidden state into the size of the vocabulary
through a tanh activation, with a log softmax applied to give the log probabilities of the next output
word. Beam-search is applied during evaluation and question generation modes to produce more
fluent output. Drop-out is also applied throughout.

This architecture is visualized in Figure 2]

3.3 Models: Baseline versus Reduced Size

The baseline model is the provided implementation of bi-directional attention flow without character-
level embedding. It contains an embedding layer, an encoding layer, bidirectional attention flow layer,
a modeling layer, and output layer. In Table|[T] this model is referred to as baseline.

In reducing the model size, we’d like to balance model expressivity while avoiding overfitting. With
this in mind, the first reduced size model shares similar architecture with the baseline; however, the
LSTM components of the encoding, modeling, and output layers are replaced by GRUs. LSTMs
and GRUs are both used frequently in sequence modeling, but GRUs with identical hidden size have
fewer parameters, and thus may better suit our purposes [15]. The reduced size model is referred to
in Table[Tlas reduced.

4 Experiments

A variety of combinations of training size restriction fractions and augmentation methods were used
to explore dependency on labeled data. These experiments are documented in Table[I] The %aug-
mentation column gives the total fraction of the training data that was substituted for augmentation.

4.1 Data

The provided default dataset for SQuAD?2.0 is used. The available training data is partitioned to
exclude 25%, 50%, with this excluded subset being used for question generation methods.

4.2 Evaluation Method

Overall model performance is ultimately evaluated using the development and test sets provided
for our version of SQuUAD2.0, using the AvNA, EM, and F1 metrics with different restrictions on
the amount of hand-labeled training data. The question generation model, trained separately in
maximizing negative log likelihood, is evaluated using BLEU.

5 Results
Table 1: Results
Configuration

Model % supervised % augmentation Configuration AVNA EM Fl1

Baseline 1.0 0.0 out of the box 67.00 57.00 60.35
Baseline .50 0.0 out of the box 65.42 53.74 57.46
Baseline .50 .50 random augmentation 67.84 56.61 60.20
Baseline 1.0 25 random augmentation 69.01 59.38 62.71
Baseline .75 25 neural generation 4786 323 37.06
Reduced 1.0 0.0 67.74 57.74 60.87
Reduced .50 0.0 63.49 5196 55.59
Reduced .50 .50 random augmentation 66.95 56.16 59.85
Reduced 1.0 25 random augmentation 69.9 59.18 62.83
Reduced .75 1.0 neural generation 47.86 3245 37.15

5.1 Baselines

As seen in Table |1| the baseline model with 100% of training data available is able to achieve
reasonable performance on SQuAD?2.0. A second baseline is instantiated by reducing this training
data, with no additional data augmentation. Both these results are displayed in the table.

5.2 Naive Augmentations

Different versions of naive augmentation were explored with different combinations of available
training data. Notably, the 1:1 augmented baseline with most naive question generation mechanism
was able to outperform the baseline without augmentation (even though most of the questions that are
generated do not seem like real, fluent questions). Preliminary results further suggest high variability
in model performance depending on which question-answer-context triples are ultimately sampled
for training. A model trained on 50% of available data, with the remainder replaced by augmented
data achieved EM of 54.235 and F1 of 57.741 on the test set, appearing close to the bottom of the
leaderboard (: (). A resubmission with a model trained on all of available data supplemented with
additional 25% augmented data climbed to rank 52 out of 78 on the test leaderboard with an EM
of 58.698 and an F1 of 62.22. While this performance was not significant relative to the results of
Dhingra et al., we can see that this one-shot aggregated approach of Cloze-like questions and random

answers is apparently able to improve the baseline model’s ability to learn from and understand the
extractive question answering task.

While noun-phrase naive augmentation method was able to improve or ameliorate model performance
under restrictive conditions, the augmentation seeking to match answer distribution with SQuADI.1
was unable to achieve such results. Notably, the dependency tree methods used to extract the answer
span often extracted answers that could be too long or too far apart, with associated context-based
questions syntactically unrealistic or insufficiently distinguishable from other context regions. It
remains to be explored whether better methods of extracting matched answer distributions will further
improve model performance.

5.3 Question Generation

The question generation model was trained on 75% of the available training data, evaluated using
BLEU on the dev set, and unexposed to the 25% partition of training data. After a hyperparameter
search over learning rates, learning rate decay, hidden size, training time, and attention architecture,
it seemed that the devised model could produce a peak score of roughly 22.00 corpus bleu. While the
output questions are fairly fluent, it seems that a major flaw in the output questions is the relationship
with the provided context and question (or lack thereof).

5.4 Baseline Performance with Aggregated Neural Augmentation

Looking at Table[T} we can see that questions produced through neural question generation actually
worsen the performance of both baseline and reduced models. It’s unlikely that this is due to
limited fluency in generated questions — the naive augmentation methods produced far less fluent
questions, and were able to improve model performance. In this situation, then, we can see that the
impaired performance of the baseline is likely due to inability to generate questions that truly relate to
the text. Perhaps a component of this shortcoming lies in the model’s decoding mechanism, wherein
the hidden state is projected into a vector the length of the corpus. Coupled with the greediness of
beam search, sentence generation seems to favor statistically likely next words over rarer words with
higher relationship to the context or question.

In fact, manual inspection of generated questions suggests that another issue is the inability
to produce sufficient attention over the context words that directly correspond to the ques-
tion, resulting in similar or identical questions given very different target answers. For
instance, one context paragraph about Chopin successfully generated multiple instances of
the question What type of music did Chopin play? for all three of the target answers
his earliest surviving musical, lessons, A-flat major. Here, we can see that current
model issues originate from struggling to learn interpretations of a single question corresponding
to different answers. This could be improved by revising model architecture to incentivize unique,
answer-driven questions.

6 Conclusion

On the whole, we have explored several data augmentation methods in attempts to reduce the reliance
of extractive question-answering models on human-labeled data. We demonstrate a method for
improving performance of the baseline model through a simple heuristic that allows learning to
operate in a one-shot fashion, rather than requiring extended pre-training as in BERT [3]]. We also
construct a neural question generation model that successfully learns to produce fluent questions.

Though the use of neural questions impairs model performance, this behavior reinforces our under-
standing of several principles. First, the strong effects of a relatively small quantity of garbage neural
questions show that the baseline model (and its reduced-size cousin) are able to extract understand-
ing from the context-question pairs. This not only confirms the intuition underlying the ability of
bidirectional attention flow to integrate significant context and question components, but also opens
pathways towards utilizing adversarial methods in question-answer tasks. In the future, it will be
worthwhile to explore the role of ensembling a question generation model with a question answering
model during training to better provide online reinforcement and improve model robustness.

References

[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ Questions for
Machine Comprehension of Text. arXiv preprint. arxiv:1810.04805, 2016.

[2] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know What You Don’t Know: Unanswerable Questions for
SQuAD. arXiv preprint. ACL2018. arxiv:1806:03822. 2018.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805,2018.

[4] Xinya Du, Junru Shao, and Claire Cardie. Learning to Ask: Neural Question Generation for Reading
Comprehension. https://arxiv.org/pdf/1705.00106.pdf

[5] Xingdi Yuan, Tong Wang, Caglar Gulcehre, et al. Machine Comprehension by Text-to-Text Neural Question
Generation. https://arxiv.org/pdf/1705.02012.pdf

[6] Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov, and William W. Cohen. Semi-Supervised QA with Generative
Domain-Adaptive Nets. arXiv preprint arXiv:1702.02206v2, 2017.

[7] Tong Wang, Xingdi Yuan, and Adam Trischler. A Joint Model for Question Answering and Question
Generation. https://arxiv.org/pdf/1706.01450.pdf

[8] Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio. Pointing the Unknown
Words. https://arxiv.org/pdf/1603.08148.pdf

[9] Jiatao Gu, Zhengdong Lu, Hang Li, Victor O.K. Li. Incorporating Copy Mechanisms in Sequence-to-
Sequence Learning. arXiv preprint. arxiv:1603.06393v3

[10] Bhuwan Dhingra, Danish Pruthi, Dheeraj Rajagopal. Simple and Effective Semi-Supervised Question
Answering. http://aclweb.org/anthology/N18-2092

[11] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global Vectors for Word
Representation. https://nlp.stanford.edu/pubs/glove.pdf

[12] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectionalattention flow for
machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[13] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, and Quoc
V Le. Qanet: Combining local convolution with global self-attention for reading comprehension. arXiv
preprint arXiv:1804.09541, 2018.

[14] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding
with unsupervised learning. Technical report, OpenAl. 2018.

[15] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling. 2014. https://arxiv.org/pdf/1412.3555v1.pdf

	Introduction
	Related Work
	Approach
	Naive Data Augmentation
	Neural Question Generation
	Models: Baseline versus Reduced Size

	Experiments
	Data
	Evaluation Method

	Results
	Baselines
	Naive Augmentations
	Question Generation
	Baseline Performance with Aggregated Neural Augmentation

	Conclusion

