
Hierarchical Attention Fusion Network for Question
Answering

Yang Chen
LinkedIn

Mountain View, CA 94043
yangc27@stanford.edu

Marius Seritan
LinkedIn

Mountain View, CA 94043
mseritan@stanford.edu

Abstract

In this project we explored the Hierarchical Attention Network for question an-
swering. In particular, we experimented with the following modifications to the
Bidirectional Attention Flow (BiDAF) model: (1) adding character embedding to
address the out-of-vocabulary words, (2) applying fusion network to combine the
context and question hidden states from the encoder layer and the corresponding
attention vectors instead of directly concatenating them, and (3) incorporating pas-
sage and question self-attention to further refine the representations. We compared
the F1 and EM scores of the Hierarchical Attention Network with BiDAF. Results
show that passage self-attention led to the major performance boost, while the
other components also helped improve the performance on the dev set. Overall,
we achieved F1 score of 64.6 on the dev set, and 61.6 on the test set. Comparing
with the baseline, we improved the F1 by 3.2 on the dev set. Error analysis of the
result shows that the most promising next step would be developing an accurate
no-answer prediction strategy.

1 Introduction

In this project, we focus on reading comprehensive style question answering (QA). Particularly, we
seek to optimize the model for the Stanford Question Answering Dataset (SQuAD) 2.0 (1), in which
the answers are manually collected through crowdsourcing, and are constrained to spans within the
reference passage. Comparing with SQuAD 1.0, the new version contains a good amount of questions
with no answers.

A lot of efforts have been made since the release of the dataset. One major direction is around
introducing effective attention layer. For example, Wang and Jiang (2) introduced match-LSTM
to build question-aware passage representation and predicted answer boundaries in the passage
with pointer networks (3). Seo et al. proposed the bi-directional attention flow networks to model
question-passage pairs (4). Xiong et al. proposed fusing the co-attended representations of the
question and passage, and iterates over potential answer spans with a dynamic pointing decoder to
allow recovering from local maxima (5).

Attention is an effective way to capture the relation between the question and the passage. It produces
more meaningful representations for both questions and passages than the encoded word embedding.
Also, a network architecture with attention at different levels offers consistency with human reading
pattern: when looking for answers from a passage, we usually try to connect the passage with the
question, and understand more deeply about the intention of the question related to the passage theme.
After that, we roughly locate the most relevant part of the passage and identify the best answers from
there.

Preprint. Work in progress.



Inspired by previous works (4; 6; 7), we decided to focus on experimenting different attention
mechanisms and compare with the bi-directional Attention Flow (BiDAF) model as the baseline.
Our model, modified on top of BiDAF (4), consists of four joint layers: 1) encoder layer where
recurrent neural network was used to build representations for question and passage separately.
Though our reference paper (7) proposed incorporating pre-trained contextual embedding (PCE),
we did not include this part because we wanted to experiment the effectiveness of the attention
alone and participate in the non-PCE leader board. 2) Gated co-attention combined with the original
representations. 3) Self-attention layer for passage and question separately to further refine the
representations. 4) Match question and passage and output the probability for start and end point
for the answer span. The major differences comparing with BiDAF include 1) fusion function at
the co-attention layer, 2) self-attention layer, 3) character embedding at the embedding layer, and 4)
bilinear match at the match layer. Experiment result shows that self-attention for the passage offered
the largest performance boost.

2 Related Work

Previous work for QA on SQuAD can be roughly divided into three categories: one major direction
is around applying pre-trained contextual embeddings, such as Embeddings from Language Models
(ELMo) (8) and Bidirectional Encoder Representations from Transformers (BERT) (9). BERT has
brought significant improvement to not only QA, but also many other natural language processing
(NLP) tasks. We believe that this trend reflects that more meaningful representation is the key to
success for NLP generally.

A second category of previous work on QA is about exploring different attention approaches. For
example, Chen et al. developed a simple but effective model with bilinear match function and a
few manual features (10). Wang and Jiang (2) build question-aware passage representation with
match-LSTM. Seo at al. proposed the bi-directional attention flow networks to model question-
passage relation (4); this model was considered as the baseline model in our experiment. Microsoft
Research Asia introduced R-Net (11), which contain a self-matching attention mechanism to refine
the representation by matching the passage against itself.

The third category focuses on building more accurate strategy for predicting "no-answer" probability,
and is specifically for SQuAD 2.0. Sun et al. proposed U-Net, which depends on a universal node
that encodes fused information from the question and the passage to predict whether the question is
answerable (12). Hu et al. introduced auxiliary losses for a neural reader to better handle no-answer
detection and built a answer verifier on top of that (13).

In this project, we focus on improving the attention layer, we incorporate both gated co-attention and
self-attention. We also explore which component contributes most to the improvement.

3 Approach

3.1 Baseline model

Our baseline model is the BiDAF model (4) with the following five layers from the bottom to the top:

1. Embedding layer, which contains an fixed Glove embedding look up table and a two-layer
highway network

2. Encoder layer, which consists of a bidirectional LSTM

3. Bidirectional attention flow layer

4. Modeling layer, which is a bidirectional LSTM to refine the question-aware context repre-
sentation

5. Output layer, which applies softmax on the transformed the concatenated output of the
attention layer and the modeling layer

Specifically in the attention layer, we first calculate a similarity matrix S:

Sij = wT
sim[ci; qj ; ci ◦ qj ], (1)

2



Table 1: Ratio of Out Of Vocabulary words

Set OOV Words Total Words Ratio

Train 136,228 51,840,172 0.26%
Dev 22,230 235,8170 0.94%

where ci is the context hidden states from the encoder layer and qj is the question hidden states. We
then get Context-to-question (C2Q) and Question-to-context (Q2C) attention from S: the C2Q output
ai is calculated as the weighted sum of question hidden states

S̄i,: = softmax(Si,:) (2)

ai =
∑
j

S̄i,jqj (3)

The Q2C output bi is calculated as the weighted sum of context hidden states:
¯̄S:,j = softmax(S:,j) (4)

S′ = S̄ ¯̄S
T

(5)
bi =

∑
j

S′
i,jcj (6)

3.2 Character embedding

In order to judge the usefulness of integrating character encoding, we evaluated the number of
unknown words in the training and dev set.

Based on the analysis result shown in Table 1, we decided to combine character embedding (14)
with word embedding to better handle out-of-vocabulary words. The character embedding layer
contains embedding lookup, a convolutional network, and highway network with dropout. In the
convolutional network, we use 1-dimensional convolutions, and learn a weight matrix W and a bias
vector b. Assume x is the reshaped character embedding lookup result, the output of the convolutional
network is calculated as

xconv = Conv1D(x) (7)
xconvout = MaxPool(ReLU(xconv) (8)

We experimented with adding character level embedding in BiDAF and in our model with hierarchical
attention layers.

3.3 Hierarchical attention fusion network

The model we built consists of four layers (Figure 1): (1) word and character embedding encoded by
BiLSTM; (2) bi-directional co-attention, which was combined with the output of the first layer with a
fusion function; (3) passage and question self-attention, which was combined with the co-attention
with a funsion function; (4) bilinear match between passage and question and output span probability.

When implementing the network, we adopted from BiDAF the embedding and encoder layer, the
similarity matrix calculation, and question-to-passage (Q2P) and passage-to-question (P2Q) co-
attention.

3.4 Co-attention

In the co-attention layer, we replace the concatenation between attention and original representation
with a gated fusion function. Specifically, assume that the original context/passage representation
and question representation is P and Q, respectively. The aligned representation for context/passage
is P̃ = {bj}, j = 1, ..., N and for question is Q̃ = {ai}, i = 1, ..., N . We first fuse the original and
aligned representation as follows:

P ′ = g(P, Q̃) ·m(P, Q̃) + (1− g(P, Q̃)) · P (9)
where g is a gate function and m is defined as

m(P, Q̃) = tanh(Wf [P ; Q̃;P ◦ Q̃;P − Q̃] + br) (10)

3



Figure 1: Architecture for hierarchical attention fusion network

3.5 Self-attention

In the self-attention part, which further refine the obtained information from the context-question-
attention layer. In this layer, we explore adding one single manual feature, the frequency of each
word, to the question-aware passage representation. After combining the manual feature with p′, we
further encode the refined question-aware passage representation:

D = BiLSTM([P ′; featman]) (11)

and then calculate bilinear self-attention:

L = softmax(D ·W1D
T ) (12)

Therefore the self-aligned representation is

D̃ = L ·D (13)

After that, we apply the fusion function again to get

D′ = g(D, D̃) ·m(D, D̃) + (1− g(D, D̃)) ·D (14)

Finally, a BiLSTM was used to get the final passage repesentation:

D” = BiLSTM(D′) (15)

We also explored question self-attention with the following steps: first BiLSTM is applied on the
fused question representation:

Q” = BiLSTM(Q′) (16)

4



Table 2: BiDAF performance with different dropout probability

Dropout probability EM F1

0.0 58.03 61.4
0.2 57.44 60.74
0.5 52.13 55.53

Then we aggregate the result:
γ = softmax(wT

q ·Q”) (17)

Finally, we calculate the self-aligned question representation:

q =
∑
j

γj ·Q”
:j , j ∈ [1, ...,m] (18)

3.6 Matching and output layer

We use bilinear matching between question and passage:

Pstart = softmax(q ·WT
s ·D”) (19)

Pend = softmax(q ·WT
e ·D”) (20)

4 Experiments

4.1 Data and evaluation method

We trained and tuned models on the provided SQuAD 2.0 dataset, and followed the default setting on
splitting train, dev and test set.

We use the EM and F1 metrics as defined by SQuAD to evaluate models. We compared our results
with the baseline model and on the class leaderboards.

4.2 Experimental details and results

4.2.1 Dropout hyper parameter tuning

For our first experiment we ran the baseline model BiDAF and tuned the dropout probability to
understand the status of the model. Table 2 shows the performance of BiDAF with different dropout
probability. The result shows that with probability 0, the BiDAF model achieved the best F1 and
EM score. It indicates that the model is not overfit, but possibly underfit. This motivates us to add
more layers and parameters to better model the problem. In the following experiment, we considered
BiDAF with dropout probability 0 as the baseline to compare with.

4.2.2 Character embedding

Our second experiment is adding character embedding to the BiDAF model. We tuned CNN kernel
and its output layer size as hyper-parameters for the character embedding layer. The results are as
shown in Table 3. With kernel size 5 and output size 8, We got an F1 score of 62.43. The result
demonstrate that fine tuned character embedding indeed contribute to improve the performance by
better handling unknown words. This again shows that better representations is the key in NLP
problems.

4.3 Hierarchical attention fusion network

Our third experiment is building the hierarchical attention fusion network described in Section 3.4 -
3.6. In the following parts, we call this model SLQA (Semantic Learning for Query Answering) for
short (7).

5



Table 3: BiDAF + character embedding performance

Kernel Output EM F1

3 8 58.63 61.96
5 16 58.88 62.41
5 8 59.15 62.43

Table 4: Performance comparison between SLQA and BiDAF

SLQA Layers Dev Test
EM F1 EM F1

Embedding (Word + Char) + Output 47.01 48.65 - -
... + Paragraph Co-attention + Fusion 51.59 54.09 - -
... + Paragraph Self Attention+ RNN 60.78 63.62 57.95 61.59
... + Question Self Align + RNN 61.45 64.61 57.80 61.35
... + Manual feature 58.60 61.76 - -
Baseline EM F1 EM F1

BiDAF (Dropout prob = 0) 58.03 61.4 - -
BiDAF + Char embedding 59.15 62.43 - -

We have taken a layered implementation strategy: we started with the embedding and output layers
of BiDAF, and incrementally added the middle layer on top of them. Metric comparison in Table
4 and the Tensorboard curves in Figure 2 show that the initial performance was low, but the scores
started to improve as we added more layers. As compared with the BiDAF, the SLQA model have
raised the F1 score on the dev set by 3.07% to 64.61. The passage self-attention layer brought the
largest performance boost.

5 Analysis

5.1 Analyzing performance

While our changes in attention improved the performance, the reference paper (7) claimed a higher
F1 score (74.43) on SQuAD 2.0 than ours in the experiments. We can see a couple of reasons for this
result:

Figure 2: Tensorflow board

6



Table 5: Summary of error cases

Situation Count

Exact match 2919
We don’t answer when we should 2624
Not exact match 209
We answer when we shouldn’t 199

Table 6: Counts for error examples with different keywords

Question Avg EM Avg F1 Total

what 49.7 50.0 3496
when 44.8 44.9 429
which 37.3 38.7 212
who 51.9 52.1 640

who-when 40.0 40.0 10
where 48.2 48.2 251
how 52.3 52.3 555

– 49.4 49.7 174

1. We are using different training, dev, and test set comparing with the model submitted to the
public leader board.

2. The paper started with ELMo pre-trained contextual embeddings. We did not want to explore
this category because we wanted to stay in the non-PCE leader board and we had a fined
tuned baseline to compare with.

3. Due to the limited time, we only explored one manual feature, which is the frequency of
each word. It actually caused decreasing F1 score. This indicates that manual features could
have high impact on the final result, but frequency is not an effective feature to choose.
Better feature could include entity tagging, part-of-speech tagging, etc.

4. We used a different similarity matrix that co-attention depends on. This could also contribute
to the performance disparity.

5.2 Analyzing errors

We categorize the error cases based on the failing reasons and count the number of examples that fall
into each category. Result is shown in Table 4, in which "Exact match" means the correctly answered
examples, and the other three rows represent different failing examples. The result shows that the
"We don’t answer when we should" category contributes to 87% of the errors. This motivates us to
build a more accurate no-answer predictor in the next step.

We also did classify the error examples based on the single keyword they contain (Table 5) and the
keyword combinations (Table 6). Interestingly, we found that the model works best for the "how"
questions and the worst for the "which" questions. The reason for the bias could be mixed and needs
further investigation.

6 Conclusion

We experimented fine tuning the baseline model, adding character embedding to the baseline model,
and building a hierarchical attention fusion network. The new model with both co-attention and
self-attention achieved better F1 score comparing with the baseline. Analysis of different layers
shows that passage self-attention led to the largest performance boost. Other components such as
character embedding and fusion functions also contribute. Based on the error analysis, our future
work will mainly focus on building an accurate no-answer predicting strategy.

7



Table 7: Counts for error examples with different keyword combinations

Question Avg EM Avg F1 Total

what-when 46.3 47.1 95
what-which 32.1 32.1 28
what-who 45.5 45.5 11
when-how 40.0 40.0 10

what-where 55.6 55.6 9
what-how 66.7 66.7 9

when-which 20.0 20.0 5
who-where 80.0 80.0 5

References
[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions

for machine comprehension of text. In Proceedings of the Conference on Emp

[2] Shuohang Wang and Jing Jiang. 2016. Learning natural language inference with LSTM. In NAACL
HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, San Diego California, USA, June 12-17, 2016.

[3] Vinyals, Oriol and Fortunato, Meire and Jaitly, Navdeep. Pointer networks. Advances in Neural Informa-
tion Processing Systems, 2692–2700, 2015.

[4] Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H. 2016. Bidirectional attention flow for machine
comprehension. arXiv preprint arXiv:1611.01603.

[5] Caiming Xiong, Victor Zhong, Richard Socher. 2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604.

[6] Wang, W., Yang, N., Wei, F., Chang, B. Zhou, M., 2017. Gated self-matching networks for reading
comprehension and question answering. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers) (Vol. 1, pp. 189-198).

[7] Wang, W., Yan, M., Wu, C. 2018. Multi-granularity hierarchical attention fusion networks for reading
comprehension and question answering. arXiv preprint arXiv:1811.11934.

[8] Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. and Zettlemoyer, L., 2018. Deep
contextualized word representations. arXiv preprint arXiv:1802.05365.

[9] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

[10] Chen, D., Fisch, A., Weston, J. and Bordes, A., 2017. Reading wikipedia to answer open-domain questions.
arXiv preprint arXiv:1704.00051.

[11] Microsoft Research Asia. 2017. R-NET: Machine Reading Comprehension with Self-matching Networks.
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf

[12] Sun, F., Li, L., Qiu, X. and Liu, Y., 2018. U-Net: Machine Reading Comprehension with Unanswerable
Questions. arXiv preprint arXiv:1810.06638.

[13] Hu, M., Peng, Y., Huang, Z., Yang, N. and Zhou, M., 2018. Read+ verify: Machine reading comprehension
with unanswerable questions. arXiv preprint arXiv:1808.05759.

[14] Kim, Y., Jernite, Y., Sontag, D., Rush, A. M. 2016. Character-aware neural language models. In Thirtieth
AAAI Conference on Artificial Intelligence.

8


	Introduction
	Related Work
	Approach
	Baseline model
	Character embedding
	Hierarchical attention fusion network
	Co-attention
	Self-attention
	Matching and output layer

	Experiments
	Data and evaluation method
	Experimental details and results
	Dropout hyper parameter tuning
	Character embedding

	Hierarchical attention fusion network

	Analysis
	Analyzing performance
	Analyzing errors

	Conclusion

