
Improving Bi-Directional Attention Flow for Machine
Comprehension

Bosen Ding
Stanford University

bosend@stanford.edu

Yue Wang
Stanford University

wyue0125@stanford.edu

Abstract

Machine comprehension (MC) requires a complex model to capture the interaction
between a context paragraph and a query to answer the question correctly. Tradi-
tional fixed-size vector attention mechanism couples attention between adjacent
steps and usually attends in just one direction. As a hierarchical multi-process
framework, Bi-Directional Attention Flow (BiDAF) system [9] provides a novel
way to obtain query-aware context representation without early summarization.
In this project, using the starter code as our baseline, we extend the BiDAF with
character-level embedding, add a complex residual self-attention layer to our model
and replace all LSTM with GRU. Our single model obtains EM 64.24 F1 67.71
on SQuAD 2.0 dev set. With ensemble method, we achieve EM 67.18 and F1
70.07 on dev board and EM 66.09 F1 68.96 on non-PCE test board. By analyzing
questions by type, we show that our model improves most significantly on who type
questions and on unanswerable questions. We also find that randomly initialized
character-level embedding performs comparably well with trained character-level
embedding while the training with randomly initialized embedding is much faster.

1 Introduction

One of the key challenges in Question answering (QA) is to achieve a meaningful interaction
between the context and the query. Before the paper Bi-Directional Attention Flow For Machine
Comprehension by Seo et al. published at ICLR 2017, attention mechanism has mostly been restricted
as uni-directional. Previous works mainly employ a dynamic attention mechanism[1] introduced by
Bahdanau, Cho, and Bengio, in which the decoder vector attends to all encoder vectors to obtain
a focused weighted vector. In the area of machine translation, the query vector attends to each
context hidden state to attain the weighted context vector. As noted by the authors of BiDAF, the
traditional attention mechanism has its limitations of uni-directional query-to-context attending. The
next attention depends on previous Recurrent Neural Network(RNN) output, implicitly depending on
the previous attention result. Therefore, the traditional method might potentially reinforce the wrong
attending direction. Instead of summarizing the context as a fixed-size vector, BiDAF computes
attention for every time step. The attended vector for each step is free to flow through to modeling
layer along with the previous layer output. The author claims that this new framework overcomes
the early summarization information loss and imposes a memory-less attention mechanism. By
decoupling the attention layer and modeling layer, BiDAF forces the separation of the task "learning
the attention between query and context" and the task "learning the interaction within the query-aware
context representation". It also overcomes the dependency limitation because the attention input at
each time step is not dependent on the attention of previous time steps.

Preprint. Work in progress.



2 Related work

Stanford Question Answering Dataset (SQuAD) [8] is a large reading comprehension dataset consist-
ing of 100,000+ questions. Since the release of this dataset, many complex neural models are invented
to tackle the task of machine comprehension, and some of them have achieved human-level accuracy.
However, because all questions in SQuAD1.1 are answerable, models can perform on SQuAD1.1
well by simply learning context and type-matching heuristics[13] and the good performance does not
ensure the robustness of the system to distracting contexts[5]. SQuAD2.0[7] introduced last year has
addressed this problem by adding 50,000+ unanswerable questions to the SQuAD1.1 dataset. The
SQuAD 2.0 dataset challenges neural network models to not only answer questions correctly when
possible but also determine if an answer exists at all[7].
Bi-Directional Attention Flow For Machine Comprehension by Seo et al. provides a multi-step
hierarchical process that presents context at both word and character levels and uses a bi-directional
attending mechanism to generate query-aware context embedding. We mainly base our model on
this paper and improves its attention mechanism to exploit the potential of its bi-directional context
embedding further. Transformer [11], an attention-only framework is the very first model that get rids
of the sequential recurrent structure. Its extensive use of residual self-attention block leads us to the
idea of self-attention. Similar to BiDAF++ [3], we add a layer of residual self-attention, which helps
better capturing the embedding for each word in its context. We later show that this significantly
improves the performance on the unanswerable question set.

3 Approach

As a hierarchical multi-stage framework, our BiDAF variant consists of six functional layers. Our
major difference with the baseline model is the addition of character-level embedding, the replacement
of LSTM with GRU, and the addition of a complex residual self-attention layer.

1. Embedding Layer consists of parallel character embedding layer and word embedding layer.
The character embedding layer is responsible for mapping each word to a high-dimensional
space on the character level using learned Convolutional Neural Networks (CNN). The word
embedding layer maps each word to another high-dimensional space with pre-trained Glove
word vectors. The original BiDAF model directly concatenates the Glove word embedding
with CNN output and pass them to encoding layer as input. We started with this approach
first and then added the projection layer between word-embedding and the encoding layer.
We have experimented with both randomly initialized character embedding that comes
with the starter code as well as trained character-level embedding. In the presence of the
projection layer, we project the Glove embedding to d-dimensional(hidden-size) vectors and
concatenate with the d-dimensional output of CNN. The two embeddings are concatenated
and passed into a two-layer Highway Network[10], whose output is the same size as the
concatenated embedding input. The experiment result and our findings will be presented in
section 4.4.

2. Encoding Layer consists of a single-layer bi-directional Gated Recurrent Unit(GRU) [2] to
exploit the temporal connections between words. We concatenate the forward and backward
output of the GRU to obtain H ∈ R2d×T from context embedding and U ∈ R2d×J from
query embedding from the previous layer.

3. Bi-Directional Attention Flow Layer is responsible for the attention between the context
and query vectors.

Similarity matrix S ∈ RT×J is first computed where Sij represents the similarity
between i-th context word and j-th query word. Both context-to-query (C2Q) attention and
query-to-context (Q2C) attention will be computed using this similarity matrix.

α(hi,uj) = wT
S [hi;uj ;hi ◦ uj ] (1)
Sij = α(hi,uj) (2)

where hi is the output of the embedding layer for i-th context word and uj is the embedding
layer output for j-th query word. and wS ∈ R6d is a learnt weight vector.

Context-to-query Attention is used to highlight query words that are most relevant
to each context word. It takes the row-wise softmax of similarity matrix S to yield the

2



weighted-sum of the query vectors for each context word. For i-th context word,

αi = softmax(Si,:) (3)

ũi =
∑
j

αijuj (4)

Query-to-context Attention attends to the most similar context word to each query word
and is significant for the performance of the framework because all meaningful answers are
just spans of context words.

ri = max
j

Sij (5)

β = softmax(R) (6)

h̃ =
∑
i

βihi (7)

Then for each context word, its context encoding and its attention vectors are combined to
yield G, whose i-th column is [hi; ũi;hi ◦ ũi;hi ◦ h̃].

Figure 1: Residual self-attention BIDAF model diagram

3



4. Self-Attention Layer employees a modified residual self-attention structure. The input G
is first projected to X ∈ R2d×T by passing through a linear layer with ReLU activation.
We feed X through a one-layer bi-directional GRU and compute the self-attention of GRU
output for each position of the context and pass them through another linear layer with
ReLU activation to get Y ∈ R2d×T . Finally, we add X and Y elementwise as the output of
this residual self-attention layer.

5. Modeling Layer consists of two-layer bi-directional GRU, which takes the sequence of
query-aware context representation and outputs concatenated forward-and-backward outputs
of the GRU. The output is annotated as M ∈ R2d×T where i-th column represents the
representation of i-th context word based on the whole contextual information as well as the
query information.

6. Output Layer computes the start p1 and the end p1 positions of the contextual span that
the model deems as the answer to the query. Another bi-directional GRU is used to take M
as input and outputs M2. Note that we differ from the original approach by only using the
model layer output.

p1 = softmax(wp1
[M]) (8)

p2 = softmax(wp2 [M
2]) (9)

4 Experiments

4.1 Dataset

In this project, we use SQuAD 2.0 to both train and evaluate our models. SQuAD 2.0 extends SQuAD
1.0 with over 50,000 adversarial unanswerable questions. In our project, we will use a modified
SQuAD 2.0 given by our course staff, which contains 129,941 training examples, 6,072 dev examples,
and 5,921 test examples.

4.2 Evaluation method

Since we use the provided SQuAD dataset, our main evaluation metrics are Exact Match(EM) and
F1 scores. We use the provided word-embedding-only BiDAF model as our baseline model and
compares our extended model to this baseline model.

4.3 Experimental details

The main model architecture is shown in Figure 1. Each character-level embedding is of size 32.
We use hidden state size 100 and 100 1D filters for the CNN character embedding, each with a
kernel size of 5. We use AdaDelta optimizer[14] with a batch size of 64 and initial learning rate 0.5.
During training, we use a dropout rate of 0.2 on embedding, all GRU layers as well as the linear layer
before softmax output. Each model is trained for 30 epochs and the best model saved is evaluated
every 50,000 steps by F1 score. We run our models on a local machine with 1080Ti GPU as well as
Google Cloud VM instance with V100 GPUs. It takes us 5 hours to train the baseline model. For our
extended models, it takes us 8-10 hours on 1080Ti or V100 to train one model. We have trained three
baseline models and 20+ BiDAF variant models of different structures with various settings.

4.4 Results

Due to the limited attempts allowed on test dataset, all results without explicitly pointing out test
dataset are obtained from dev dataset. With ensemble method, our final model achieves EM 67.18
and F1 70.07 on dev board and EM 66.09 F1 68.96 on non-PCE test board.
The original paper has no projection layer between pre-trained Glove embedding and encoding
layer. When we follow this approach, we get EM 56.47 and F1 60.14 shown as trained-char-embed-
BiDAF-w/o-proj in Table 1. When we switch to randomly-initialized-char-emebd-BiDAF-w/o-proj,
we get roughly the same score. Then, when we added the projection layer, which projects Glove
embedding of dimension 300 to 100, matching the CNN as well as hidden state size, we get 2 points
improvement on both EM and F1. When we use the randomly initialized char-embedding with
projection layer, we get 2 points improvement as well. In both cases, the model with randomly

4



Table 1: Result on SQuAD 2.0 dev set

Model EM F1

baseline 57.87 61.23
trained-char-embed-BiDAF-w/o-proj 56.47 60.14
rand-char-embed-BiDAF-w/-proj 56.56 60.17
trained-char-embed-BiDAF-w/-proj 59.87 63.17
rand-char-embed-BiDAF-w/-proj 60.28 63.32
residual-self-attention-char-embed-BiDAF 64.24 67.27
baseline ensemble (3 models) 60.71 63.76
residual-self-attention-char-embed-BiDAF-ensemble(3) 66.14 69.00
residual-self-attention-char-embed-BiDAF-ensemble(7) 67.18 70.07

Table 2: Result on SQuAD 2.0 dev set by answerability

Model EM F1 A-EM NA-EM A-F1 NA-F1

baseline 57.87 61.23 59.66 55.82 66.90 55.82
char-embed-BiDAF 59.87 63.17 61.62 58.58 68.68 58.58
our final model 64.24 67.27 61.38 66.87 67.71 66.87

initialized embedding performs as well as the model with trained embedding. The training time of the
model with randomly initialized embedding is just half of that of the model with trained embedding.
The randomly initialized vector for character embedding is of size 64 while the trained embedding
is of size 8. One possible explanation is that randomly initialized high-dimensional vector has very
low cosine similarity. The CNN layer is thus able to learn to react to each randomly initialized
vector accordingly. Since in Linguistics, each character has almost no correlation in word meaning, a
randomly initialized high-dimensional character-level embedding (64 in this case) could compensate
the training-gain of low-dimensional embedding (8 in our case), and thus might be good enough for
machine comprehension task.
The ensemble of 3 baseline models brings 2.5 points improvement. We also experiment with different
ensemble method. The ensemble result shown below is acquired by max-pooling the probability for
each word position across models, which improves the common average method by approximately
0.3-0.6 points. We find that the larger the size of the ensemble, the more improvement the max
operation seems to have over the mean operation. We suspect that it is because max operation decides
by the most certain choice from the ensemble of models while mean operation reverts to the average
choice.

5 Analysis

5.1 Quantitative error analysis

We perform error analysis by answerability of questions, which is the major difference of SQuAD2.0
with SQuAD1.1. There are 2910 answerable questions and 3041 unanswerable questions in our
evaluated dev set. As shown in Table 2, we can see that the baseline model performs poorly on the
unanswerable questions. The introduction of char-level embedding improves both question types
approximately equally. The addition of residual self-attention layer improves the unanswerable
performance significantly, while only drags down slightly the performance of answerable questions,
leading the substantial improvement in its performance across entire dev set, demonstrating the
usefulness of our residual self-attention layer. One possible explanation for the slightly worse
performance on answerable questions might be that the baseline model might be biased towards
predicting an answer on border cases while our final model is more confident for a no-answer choice.
We have also classified each question in dev dataset by its question type and compare the performance

of our model with that of the baseline model by question type. Figure 2 shows that our model improves
decisively upon the baseline model across the question spectrum. The largest percentage improvement
comes from who type.

5



Figure 2: F1 score by question type

5.2 Qualitative error analysis

Figure 3: Example 1 from dev set

In Figure 3, we show an adversarial example which the baseline model fails but our model succeeds.
In order to answer this question correctly, the model has to not only understand the context but also
reason about the irrelevance of the question to the context. By reading through some adversarial
examples, we find one common pattern of the adversarial examples is that the question asks who did
a thing while nobody in the context actually did it. There are 351 unanswerable questions of who
type. The baseline only answers 172 questions correctly while our final model answers 219 questions
correctly. This accounts for almost all the improvement in the who type question.

6 Conclusion

In this project, we implemented a BiDAF variant neural network that improves more than 6 points
on a single model performance of SQuAD2.0 dataset. We first added character-level embedding
to the baseline model, and then extended the model with a residual self-attention layer. We have
experimented with various attention structures and many parameter settings. Our ablation studies
show that char-level embedding improves the BiDAF by 2 points while the addition of residual
self-attention layer improves by 4 points. We performed error analysis by question type especially
the who type question to reason about the source of our improvements. We showed that our residual
self-attention structure improves decisively the performance on unanswerable questions.
We have experimented with multi-head attention structure from transformer model[11] in residual self-
attention layer, but we only get EM 63.67 and F1 66.58 on dev set, so we did not adopt this structure
in our final model. Due to the superiority of the transformer model and good performance of BERT-

6



based models on the SQuAD2.0 dataset, we believe that this structure has space for improvement if
more time and computing resource is given.

References

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Translation by
Jointly Learning to Align and Translate”. In: CoRR abs/1409.0473 (2014). arXiv: 1409.0473.
URL: http://arxiv.org/abs/1409.0473.

[2] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation”. In: CoRR abs/1406.1078 (2014). arXiv: 1406.1078. URL:
http://arxiv.org/abs/1406.1078.

[3] Christopher Clark and Matt Gardner. “Simple and Effective Multi-Paragraph Reading Compre-
hension”. In: CoRR abs/1710.10723 (2017). arXiv: 1710.10723. URL: http://arxiv.org/
abs/1710.10723.

[4] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780.

[5] Robin Jia and Percy Liang. “Adversarial Examples for Evaluating Reading Comprehension
Systems”. In: CoRR abs/1707.07328 (2017). arXiv: 1707.07328. URL: http://arxiv.org/
abs/1707.07328.

[6] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global vectors for
word representation”. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). 2014, pp. 1532–1543.

[7] Pranav Rajpurkar, Robin Jia, and Percy Liang. “Know What You Don’t Know: Unanswerable
Questions for SQuAD”. In: CoRR abs/1806.03822 (2018). arXiv: 1806.03822. URL: http:
//arxiv.org/abs/1806.03822.

[8] Pranav Rajpurkar et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text”.
In: CoRR abs/1606.05250 (2016). arXiv: 1606.05250. URL: http://arxiv.org/abs/
1606.05250.

[9] Min Joon Seo et al. “Bidirectional Attention Flow for Machine Comprehension”. In: CoRR
abs/1611.01603 (2016). arXiv: 1611.01603. URL: http://arxiv.org/abs/1611.01603.

[10] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Highway Networks”. In:
CoRR abs/1505.00387 (2015). arXiv: 1505.00387. URL: http://arxiv.org/abs/1505.
00387.

[11] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762 (2017). arXiv:
1706.03762. URL: http://arxiv.org/abs/1706.03762.

[12] Wenhui Wang et al. “Gated self-matching networks for reading comprehension and question
answering”. In: Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Vol. 1. 2017, pp. 189–198.

[13] Dirk Weissenborn, Georg Wiese, and Laura Seiffe. “FastQA: A Simple and Efficient Neural
Architecture for Question Answering”. In: CoRR abs/1703.04816 (2017). arXiv: 1703.04816.
URL: http://arxiv.org/abs/1703.04816.

[14] Matthew D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method”. In: CoRR
abs/1212.5701 (2012). arXiv: 1212.5701. URL: http://arxiv.org/abs/1212.5701.

7

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1710.10723
http://arxiv.org/abs/1710.10723
http://arxiv.org/abs/1710.10723
http://arxiv.org/abs/1707.07328
http://arxiv.org/abs/1707.07328
http://arxiv.org/abs/1707.07328
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1703.04816
http://arxiv.org/abs/1703.04816
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701

	Introduction
	Related work
	Approach
	Experiments
	Dataset
	Evaluation method
	Experimental details
	Results

	Analysis
	Quantitative error analysis
	Qualitative error analysis

	Conclusion

