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Abstract

The Bidirectional Attention Flow (BiDAF) model (Seo et al., 2016) for neural
question answering uses recurrent neural network contextual encoders, a bidi-
rectional (passage-to-question and question-to-passage) attention mechanism, a
recurrent modeling layer, and pointer networks to perform SQuAD-style ques-
tion answering. We augment BiDAF with several modern attention-based neural
architectural components (primarily drawn from Wang et al. (2017)), including
nonlinear additive attention, self-attention, gated attention, and attention-pooling
for conditioning a pointer network. This leads to substantial improvements in
the model’s performance, indicating the importance of more involved attention
mechanisms to modern neural question answering.

1 Introduction

Neural attention mechanisms are becoming increasingly important to modern natural language
processing tasks. Attention mechanisms allow a stage of neural computation to refer back to
or “attend to” either the input sequence or a computed intermediate sequence, providing shortcut
connections to aide with gradient descent, and an inductive bias that has proven powerful for NLP.
Typically an attention mechanism computes a convex combination of the sequence being attended to,
where the combination coefficients come from some learned similarity function. But there are many
ways to implement an attention mechanism, and many ways to integrate attention mechanisms into a
neural network model for an NLP task. Many of the first architectures to make use of attention (e.g.
Bahdanau et al., 2014) added it on top of a Seq2Seq style architecture, giving the decoder the ability
to attend to encoder representations. Since then, attention has been more elaborately integrated into
NLP models, culminating in the very high-performing Transformer model (Vaswani et al., 2017)
that is composed almost entirely of attention mechanisms. The most recent and high-performing
models make heavier and more involved use of attention, leading one to suspect that a model cannot
go wrong by adding more attention. This trend raises the question: How important are each of these
attention mechanisms?

In this report we explore the impact of various attention mechanism augmentations on the performance
of a modern neural question-answering system. Namely, we start with a BiDAF model, and add
several additional attention mechanisms from the higher-performing R-Net model, examining the
performance impact of each additional component.

BiDAF (Seo et al., 2016) contains many of the basic architectural elements that are common in deep
learning NLP systems: word and character embeddings are passed through a bidirectional recurrent
neural network (RNN) to create contextual embeddings for the passage and query, which are then
passed through an attention mechanism to allow the passage and query embeddings to interact, and
the output of this attention layer is passed to a pointer network that selects the span of the passage
that should contain the answer. These features make BiDAF a sensible baseline model for many
NLP tasks, as it contains most of the components that are considered critical to modern NLP, but



not very many of the latest and greatest new components. R-net (Wang et al., 2017) makes more
involved use of attention – it’s attention mechanism is nonlinear and more heavily parameterized,
and it supplements this attention mechanism with a further self-attention layer. It even finds a way
to include attention in it’s pointer network, conditioning the network on an attention-pooling of the
query embeddings. Progressively adding R-net components to BiDAF allows us to study the impact
of each of these additional components.

2 Related Work

This work directly builds on the BiDAF model proposed by Seo et al. (2016), and draws its major
architectural improvements from the R-net model of Wang et al. (2017). One of the earliest papers to
use attention was Bahdanau et al. (2014), which proposed an architecture much like the “seq2seq
with attention” models that became a dominant paradigm for sequence transduction tasks for some
time after its publication.

This work focuses on a study of particular recurrent attention mechanisms. Attention has been
highly successful as an architectural element of NLP systems in recent years, even being found to be
capable of completely replacing the recurrent networks that are usually central to the design of neural
networks for NLP, as in the Transformer of Vaswani et al. (2017). These attention-heavy systems
are currently state-of-the-art on a broad array of natural language processing tasks, especially when
pre-trained as in BERT (Devlin et al., 2018). But here we instead focus on a careful study of the
impact of several attention mechanisms on a more “traditional” RNN-based architecture.

3 Approach

We implement the major components of R-net (Wang et al., 2017) into a baseline model based on
the Bidirectional Attention Flow (Seo et al., 2016) neural question-answering model. The baseline
model is implemented as described in the cited paper, but without character-based word embeddings
implemented. A diagram of this model is shown in Figure 1.

Figure 1: A schematic of the baseline BiDAF architecture.

This model is augmented with several additional architectural elements. A schematic of the final
R-net architecture is shown in Figure 2.The model implemented here has the following components
(both the baseline and added components are described):
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Figure 2: A schematic of the R-net architecture.

• Word embedding layer: Word-level embeddings of the passage and query are loaded as
pre-trained GloVe embeddings (Pennington et al., 2014), {wP

t }nt=1 and {wQ
t }mt=1. These

embeddings are held constant throughout training.
Character embeddings are trained for each character, and are passed through a single-layer
max-pool convolutional network followed by a highway network to produce character-
level embeddings for each word, {cPt }nt=1 and {cQt }mt=1. The final word embedding is
the concatenation of the GloVe vector and the character-based embedding, {ePt }nt=1 =

{[cPt ;wP
t ]}nt=1 and {eQt }mt=1 = {[cQt ;wQ

t ]}mt=1 This character-based embedding is not done
in the baseline, but is added for this project. The character-level embeddings allow the
model to learn to reason about word morphology, and also allows some limited meaning to
be learned about out-of-vocabulary words.

• Contextual embedding layer: Once a vector representation for each word has been con-
structed, a representation of the meaning of these words in their context is computed. To do
this, the sequences of word embedding vectors are passed through a bidirectional recurrent
neural network, whose hidden states at each index in the sequence is taken as the contextual
embedding vector,

hQ
t = GRU(hQ

t−1, e
Q
t ) (1)

hP
t = GRU(hP

t−1, e
P
t ). (2)

Weights are shared between the two contextual-embedding RNNs, so that these layers can
focus on learning contextual meanings in English generally – the later layers are responsible
for question-passage interaction effects.

• Attention layer: The contextual embeddings are then passed through an attention layer,
allowing the model to learn how to relate passage words to query words. Two types of
attention are considered: the BiDAF attention model described in Seo et al. (2016), and
the R-net attention mechanism used in Wang et al. (2017). The details of BiDAF can be
found in the paper, but the primary difference between the two types of attention is that
BiDAF-style attention computes a similarity matrix Sij = wT

sim[hQ
i ;hP

j ;hQ
i ◦hP

t ], whereas
R-Net computes a form of additive attention that is produced by a recurrent neural network
layer as follows.
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Define c = att(S, x) to be an attention vector computed by using the vector x to “attend to”
the set of vectors S . That is, c will be a convex combination of the elements of S , where the
coefficients of the convex combination are determined based on some similarity measure
comparing the similarity of each element of S to x. BiDAF uses the softmax-normalized
columns of the similarity matrix S defined above to compute these coefficients, and R-net
does additive attention, computing

sj = vT tanh(WsSj + Wxx) (3)

ai = exp(si)/

|S|∑
j=1

exp(sj) (4)

c =

|S|∑
i=1

aiSi. (5)

In these expressions, first unnormalized similarity scores sj are computed through a non-
linear similarity function with parameters v,Ws, and Wx. These unnormalized logits are
softmax-normalized to give the coefficients of a convex combination, and the attention
vector c is the resulting combination.
The output of the attention layer is given by a recurrent layer whose tth input is a vector that
results from using the tth passage contextual embedding hP

t to attend to the entire question.
This builds a question-aware repreentation of the passage. Specifically, the attention layer
computes

vPt = GRU(vPt−1, gate([hP
t , c

att
t ])), (6)

where cattt = att(hQ, [hP
t ; vt−1]), the result of using both the RNN hidden state and the

current passage embedding to attend to the question embedding, allowing the RNN to
influence the attention mechanism. Note that the attention vector ct is passed through the
RNN after concatenating the passage embedding hP

t , allowing the passage embedding to
pass through this layer directly as well.
The attention layer of R-net also utilizes a gate function on the RNN input. The gate function
is computed as gate(x) = sigmoid(Wgx) ◦ x, and allows this attention layer to ignore
components of the passage if it so chooses, focusing on the most relevant words.

• Self-Attention Layer: R-net follows the passage-query attention layer with a self-attention
mechanims. This allows the model to learn relationships between passage words, relating
them to help compute the answer span. The self-attention is defined similarly to the passage-
question attention,

yPt = GRU(yPt−1, gate([vPt ; cself−attt ])), (7)

where now cself−attt = att(vP , vPt ), using the current attention vector vPt to attend to all
other attention vectors vP . Note that as before, the self-attention is concatenated with the
question-passage attention to allow the previous layer to flow directly through this layer, and
note that a gate allows this layer to selectively pass information through it.
BiDAF has no self-attention layer, so this is a pure addition to the baseline model, rather
than a change to an existing layer.

• Modeling layer: The modeling layer is additional processing on top of the previous layer’s
outputs, to model the question-aware passage representation and help produce an answer.
BiDAF uses such a layer, and the modeling layer is simply another RNN stacked on top of
the attention-layer outputs, mP

t = GRU(mP
t−1, v

P
t ).

R-net does not use this layer with this terminology. However, note that the structure of the
self-attention layer is very similar to the structure of BiDAF’s modeling layer – it is an RNN
that takes in the output of the attention layer – but the R-net self-attention RNN also takes
as input the self-attention vector cself−attt . So the self-attention layer of R-net is a strictly
more expressive version of the modeling layer in BiDAF. In fact, if the RNN in R-net’s
self-attention layer is a deep RNN, the second layer of the deep RNN could be considered a
nearly identical analog of BiDAF’s ‘modeling layer.’

• Output layer: Both models compute outputs by generating a distribution over passage
indices (a ‘pointer network’). BiDAF takes the output of the modeling RNN (call this
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sequence mP ), and computes an output sequence oP by passing these sequences through
yet another RNN, oPt = GRU(oPt−1,m

P
t ). The distribution over start and end tokens is

computed as

pstart = softmax(Wstart · [vP1 , · · · , vPn ;mP
1 , . . . ,m

P
n ]) (8)

pend = softmax(Wend · [vP1 , · · · , vPn ; oP1 , . . . , o
P
n ]), (9)

where recall that vPt was the output of the attention layer.
The R-net model uses pointer networks as originally described in Vinyals et al. (2015), which
is a slightly different architecture, and it also conditions this pointer network on a pooled
vector embedding of the query. Specifically, first a pooled question vector is computed as
rQ = att(uQ, V Q

r ), where V Q
r is a learned parameter. Then outputs are computed using

a recurrent network over outputs. We compute c1 = att(yP , rQ), and pstart(i) is the ith

element of the softmax-normalized attention coefficients.
Then rQ2 = GRU(rQ, c1) is computed by a single step of an RNN. We compute c2 =

att(yP , rQ2 ), and pend(j) is the jth element of the softmax-normalized attention coefficients.
The RNN would be reused to produce more pointer distributions if more were necessary,
but we only need two positions to define a span, so we stop here.
To predict ‘no answer,’ an out-of-vocabulary token is appended to the start of the passage
sequence, so that the model can learn to point to this token to represent an unanswerable
question.

• Loss function: The loss function for both models is the sum of the negative log-likelihood
for the start and end tokens. If i is the true start token and j is the true end token, then we
minimize

L = − log pstart(i)− log pend(j). (10)

• Generating Predictions: Predictions are generated by finding the span with the largest
pstart(i) · pend(j) where i ≤ j and j − 1 + 1 ≤ Lmax. Because ‘no answer’ is represented
by i = j = 0, we can predict ‘no answer’ organically in this framework.

4 Experiments

We conduct experiments using the SQuAD 2.0 question-answering database by Rajpurkar et al.
(2018). This database consists of sets of examples that each consist of a passage P , a query Q, and
an answer A that is always a contiguous span located in the passage, if the question is answerable.
The question can also be un-answerable, in which case the model is expected to return a special “no
answer” token.

Models are evaluated using the F1 score as the primary evaluation metric, though exact-match (EM)
scores are also reported for reference. Table 1 reports performance on the course dev and test sets,
which are each composed of half of the official SQuAD dev set (the official SQuAD test set is not
publicly available, so we do not evaluate against it). Because submissions for evaluation on the test
set were limited, only the final model’s performance on this dataset is recorded.

All models are trained with a learning rate of 0.5 using the Adadelta optimizer. All models are
trained for 30 epochs, which takes 12-15 hours on a cloud NV-6 GPU machine for the baseline
model, and as long as 30 hours for the more complicated R-net model. Hidden layer sizes of 100
are used throughout, with 300-element GloVe word vectors being held constant during training.
All recurrent layers are bidirectional, and GRU cells are used for all recurrent networks in order to
reduced training time (relative to LSTMs). When character embeddings are trained, 20-dimensional
character embeddings are trained, and are passed through a character-level convolutional layer to
produce 100-dimensional character-based word embeddings.

Performance results of models with various architectural elements are shown in Table 1. The best-
performing model has been submitted to the non-PCE dev and test leaderboards under the name
“aspenser”.

Both character-based word embeddings and self-attention led to significant improvements in model
performance. This is expected, as both are common elements of modern neural NLP architectures.
The other added components either added small performance gains or did not improve performance.
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Dev Test
Model EM (∆) F1 (∆) EM F1
Baseline 55.99 (-) 59.29 (-) - -

+ Character embedding 57.23 (+1.24) 61.34 (+2.05) - -
+ R-net attention 56.78 (-0.45) 60.81 (-0.53) - -
+ Gated Attention 57.12 (+0.34) 61.31 (+0.50) - -
+ Self-Attention 59.56 (+2.44) 63.03 (+1.72) - -
+ R-net output 60.11 (+0.55) 63.62 (+0.59) 59.053 62.638

Table 1: Exact-match and F1 scores of various SQuAD models under study. In parentheses next to
each value is the absolute incremental improvement over the model in the previous row.

This is intuitive, as the other components represent smaller tweaks to the model, rather than the
addition of an entirely new layer. It should also be noted that only the last row of the table was
subjected to any focused hyper-parameter tuning due to the need to implement the final model
relatively quickly. Even this final model was completed with time for only 3-4 tuning runs.

With all of the R-net components added into BiDAF, a little over 4 points of improvement are seen in
F1 score, consistent with the difference between BiDAF and R-net on the SQuAD 1.1 leaderboard.
However, I expected slightly better perfomance considering the competitiveness of the course non-
PCE leaderboard. The relatively low performance may be due to the fact that architectures more
recent and high-performing than R-net were popular for implementation for this project, and therefore
may make up a large portion of the leaderboard.

5 Analysis

The quantative results in the previous section suggest that the character embeddings and the self-
attention layer are the most important improvements that R-net has, relative to BiDAF.

The impact of character embeddings can likely be explained by the fact that words that were previously
represented by only an “out of vocabulary” (OOV) token are now represented by a more expressive
vector that can capture the morphology of the OOV word and match it with other words. In question
answering, it is often the case that the question being asked is about a named person or event that is
very frequently OOV. For instance, one passage about a Chinese scholar named Tugh has the question
“What was the least notable publication of Tugh’s academy?” where “Tugh” is an OOV word. The
passage is full of OOV words such as “Zhu,” “Xi,” “neo-Confucianism,” and others, so being able to
reason about which OOV word is being asked about in the query is likely crucial.

To better understand how the self-attention layer works, consider the visualization of an example
attention distribution in Figure 3. This figure shows the self-attention coefficients for a small region
surrounding the position of the correct answer (France). Each column is a vector of attention
coefficients corresponding to a single element of the self-attention sequence yPt . Note that the model
is learning to put more attention on the correct answer. What’s interesting is that even at words far
removed from the correct answer, the model is choosing to heavily represent the vector for the correct
answer in the attention combination. This means that many of the inputs to the self-attention RNN
will be composed of largely the vector for the answer. It’s particularly intriguing that for the timesteps
yPt corresponding to the position of the correct answer, the answer if represented less than at the
surrounding positions.

This suggests that the self-attention layer allows the model to emphasize the correct answer in its
output representation by making it dominate the representation coming out of the self-attention layer.

6 Conclusion

We see a 4-point improvement in the F1 score of the BiDAF model after implementing all of the
R-Net attention augmentations. This is consistent with the level of improvement seen when the R-Net
paper was originally released, though the absolute score is substantially lower because this work
used the more challenging SQuAD 2.0 database, rather than the original SQuAD database (Rajpurkar
et al., 2016) used in the original R-Net paper.

6



Figure 3: A visualization of the self-attention coefficients for a small region of the sequence surround-
ing the position of the answer. Note that the answer (France) is receiving much more attention in the
self-attention layer.

Experiments show that character embeddings and a self-attention mechanism seem to be the two
most important differences between the baseline and the final model configuration. The large impact
of character embeddings is likely caused by the dramatic increase in the amount of information
that is passed into the model about out-of-vocabulary words. Without a character-based embedding,
the model knows nothing about out-of-vocabulary words except for the fact that they are out-of-
vocabulary. With character embeddings, morphological similarities can be discerned, and different
out-of-vocabulary words in the question and passage can be compared. This is likely especially
important because it is often the case that the question is about a named person or event in the passage,
which is frequently represented by at least one out-of-vocabulary word.

Self-attention likely causes substantial improvement because it is a more expressive version of the
modeling layer that is present in BiDAF. BiDAF uses a bidirectional recurrent network over the
passage-to-query and query-to-passage attention layer, whereas R-net similarly uses a bidirectional
recurrent network augmented with attention. This allows the model to learn how to relate the words
in the passage in order to reason toward the answer, and allows this layer to emphasize spans in the
passage that are likely to contain the answer.

A major drawback of the attention mechanisms explored in this project is that they all rely heavily on
recurrent neural networks. R-net replaces the non-recurrent passage-to-query and query-to-passage
attention mechanism in BiDAF with a recurrent version, and also adds a recurrent self-attention layer.
Each additional recurrent layer added to the model substantially increases the runtime of a forward
pass through model. After adding all of the R-net attention mechanisms to the BiDAF model, it
takes over twice as long to train. This makes the model more expensive to deploy, and also limits
the amount of hyper-parameter optimization that can be realistically performed. This highlights
the significance of recent advances in non-RNN-based attention-heavy architectures such as the
Transformer.
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