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Abstract

The task of Reading Comprehension can be described as follows: from a context
(passage / paragraph) and question pair, the goal is to answer the question using
information from the context. This paper aims at solving the sub-task of Extractive
Question Answering. In this setting, the answer is a segment (span) of the context.
Our goal is to achieve good performance on the updated version of the Stanford
Question Answering Dataset (SQuAD 2.0) without the use of Pretrained Context
Embedding (non-PCE). In this paper, we built our QA system on top of the Bi-
Directional Attention Flow (BiDAF) [1] model, and further explored several ideas
to improve on this baseline. We specifically considered existing approaches to
enrich the word embedding (including character embedding and tag features) and
incorporated a co-attention mechanism. Moreover, we explored several novel ideas
such as a distance-aware loss and a segment-based aggregation approach. We were
able to improve the baseline EM, F1 score from 55, 58 to 61, 65, respectively. For
the methods that did not work well, we carry out in-depth analysis and discuss
ways to improve these approaches.

1 Introduction

In 2016, Rajpurkar et al. built a dataset tailored for the task of Extractive Question Answering:
the Stanford Question Answering Dataset (SQuAD 1.1) [2]. State of the art algorithms using the
pretrained language representation model called BERT (which stands for Bidirectional Encoder
Representations from Transformers [3]) now achieves past human performances on this dataset.
However, one assumption that made this dataset simpler was that all the questions could be answered
using the context paragraph. Our model is trained on the updated version of the SQuAD dataset,
namely SQuAD 2.0 [4]. This version includes unanswerable questions, which make the problem
more challenging. To achieve good performance on SQuAD 2.0, our model must not only answer
questions correctly when possible, it also has to abstain from answering when no answer is provided
in the passage. All the 20 best performing models on the SQuAD 2.0 leaderboard use BERT in
one form or another. Pretrained Contextual Embeddings (PCE) in general provide an indisputable
performing edge. Thus in this paper, we followed Herb Simon’s recommendation to "go somewhere
else" and investigate other creative avenues of improvement. We first tried several published ideas
to boost the sentence encoder, including character embedding, word-level tag features as well as
co-attention mechanism. Then we explored some novel ideas. We designed a new distance-aware
loss to penalize more for predictions that are further away from the ground-truth than those close to
the true locations. Finally, motivated by a similar idea in the computer vision community [5] and



another coarse-to-fine QA [6] approach, we devised a novel segment-based aggregation method to
tackle the long-term dependency problem.

With all our workable methods, we are able to improve the baseline EM, F1 score from 55, 58 to 61,
65, respectively. For the methods that didn’t work as expected, we provide our analysis as well as
steps and thoughts on how we can improve them in future works.

2 Related work

Our baseline is the Bi-Directional Attention Flow (BiDAF) [1] architecture. This model was the
previous state-of-the-art on the original SQuAD 1.0 dataset before the upcoming of PCE. The key
insight of this model was to use a bi-directional attention flow mechanism to obtain a query-aware
context representation. The encoding layer uses both GloVe word embedding and a character-level
embedding [1] to represent words.

To extend on this baseline, we considered ways to enrich this word embedding. This idea was inspired
by the work of Chen et al. [7] on the Attentive Stanford Reader++ model. They showed that using
clever features can drastically improve performance. Their model added Part Of Speech (POS) and
Named Entity Recognition (NER) tags among others to the previous word embeddings.

An important notion in the QA community is the co-attention idea [8], which calculates a co-attention
score between input context and question by looking at its counterpart. In practice, it first leverages
a co-attention encoder to produce a question-aware context representation, and then sends it into a
dynamic point decoder to iteratively predict the start and end index of the answer span. We adopted
this idea and developed a co-attention QA model.

In the video understanding field, one successful approach [5] is to first segment an input video into
several clips, then model each clip and finally aggregate the scores for all the clips. This motivated us
to adapt this idea to QA. We first slide a window over the input context and generate a start and end
index probability distribution for each window and question pair, then we do an aggregation over
all these distributions to obtain the final output. There is a similar idea [6] in the QA domain that
leverages a network to first extract key sentences from the input context, then uses traditional LSTM
to process them. The main difference from this approach is that we don’t depend on another separate
network. Instead, we directly operate on the raw context, thus preserving more information.

3 Approach

3.1 Baseline

Our baseline is the adapted BiDAF [1] implementation from Chris Chute. It was provided by CS224N
teaching staff in the starter code. Starter code repository: https://github.com/chrischute/
squad.

3.2 Character-level word embedding

Our first modification to the baseline was to reproduce the original BiDAF architecture: each word
embedding is built by concatenating a character-based word embedding to the pretrained GloVe word
embedding.

Our Character Embedding layer follows the specification from [1]. Each word is represented as a list
of character indices. Then characters’ indices are embedded into 50-dimensional vectors. These are
fed into a 1D Convolutional layer, the character embedding size being the number of input channels
and the word embedding size being the number of output channels. The outputs of the CNN are
max-pooled over the entire width to obtain a fixed-size vector for each word.

The character-level word embedding is then concatenated to the GloVe word embedding to produce a
more powerful word embedding.
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3.3 Tag features

Chen et al. showed that using clever features can drastically improve performance [7]. Like what
they did in their model, we leveraged tag features that capture some properties of the word in the
context of the sentence. Following their recommendations, we used both Part Of Speech (POS) and
Named Entity Recognition (NER) tags as new input features. The tag classes were first embedded as
one-hot vectors. Then after training the initial model, we unfroze the one-hot encoding to learnable
tag classes’ embeddings. This further improved performance.

We also added Term Frequency as a new word feature. But contrary to Chen et al. who directly used
the (normalized) Term Frequency (TF), we used the (normalized) Term Frequency-Inverse Document
Frequency (TF*IDF). For a word w in a context c, the corresponding weight Ww,c is defined as:

Ww,c = TFw,c ln(Ntrain/DFw)

Where TFw,c is the (normalized) term frequency of word w in the context c, Ntrain is the size of the
train corpus (number of train examples), and DFw is the number of documents containing the word
w. The idea is that words such as the article "the" can have a very high term frequency while being
meaningless for the prediction. But such words will likely be present in every document, leading to
Ntrain/DFw 1 and the inverse document frequency. The TF*IDF will be small in the end. That’s
why TF*IDF weight is a better estimate of the potential usefulness of a word than the standard TF.

Finally we also added the Exact Match (EM) indicator that indicates whether or not a context word
appears in the question and vice-versa for a question word. All these features were concatenated to
the previous embedding.

3.4 Index distance-aware loss

Here, we also explore a new way of quantifying our happiness regarding the predicted output of
questions that have an answer. From a qualitative perspective, we see that predicting an index ppred
that is 10 words away from the true index ptrue is worse than if it is only 2 words away. We would
like to include a loss term Lind penalizing the distance between predicted and true indices in the total
loss function.

One might be tempted to include a term of the form :

Lind = || argmax(ppred)− ytrue|| (1)

where || · || is a given norm. However, we see that this operation will not work for us since indices are
just discrete values that do not have a differentiable expression with respect to the model parameters.

We alleviate this issue by substituting the raw index comparison with a series of operations that
emulate the property we want to highlight. Distributions of probability for ppred that are spread out
with respect to the target value ytrue are to be penalized more than those that display high values of
probability around the latter index. With that observation in mind, we introduce for each sample a
mask m(ytrue), function of ytrue. The mask is of same dimension as ppred. It has one key property:
the component of m at position ytrue is zero, and the remaining components of the vector increase
as their indices get further from ytrue. As a result, a measure of the penalized dispersion of values
around ytrue can be found through the vector:

m(ytrue) ◦ ppred (2)

We can choose our additional loss term to be of the form

Lind = λ ·
∑
i

[m(ytrue) ◦ ppred]i (3)

where ◦ denotes the element-wise multiplication operation and λ is a hyper-parameter we introduce
to control the importance of this penalization with respect to the other loss terms.

Figure 1 shows the shape that m(ytrue) can take respectively in the ’square root’, ’linear’ and
’quadratic’ modes.
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(a) Square root (b) Linear (c) Quadratic

Figure 1: Representation of the penalization loss for the three modes considered

3.5 Segment-Based Aggregation

Here we propose a segment-based aggregation approach for question answering. This strategy is
motivated by the coarse-to-fine approach in Question Answering [6] as well as the aggregation over
segments method in Video Understanding [9, 5]. As illustrated in Fig. 2, we slide a window over the
input context with a pre-defined window size and stride. Then for each of the selected windows, we
calculate a corresponding pstart and pend. During the aggregation stage, we select out the pstart and
pend with the highest predicted probability or the one within the distribution with the lowest entropy.
We use these as the final predictions for this QA pair. This approach should be helpful in handling
the problem of long-term dependency, thus include more information.

BiLSTM BiLSTM

Aggregation Module

…

…

Final Prediction

Context

Window length = 4
Stride = 6

Figure 2: Illustration of our segment-based aggregation approach. For demonstration purpose, we
use a window length 4 and stride 6.

3.6 Deep Residual Co-attention

We adopted the idea of co-attention from [8]. It basically computes a co-attention score between
question and context in order to focus on the relevant parts of both. [10] further improves on this
idea by constructing a multi-layer co-attention encoder. On the decoder side, it designs a dynamic
point decoder which adopts an iterative approach to alternately predict the start and end index of the
answer span. Next, we illustrate this approach step by step.

3.6.1 Deep Residual Co-attention Encoder

We first compute feature encodings for document (ED1 ) and question (EQ1 ):

ED1 = biLSTM1(L
D) ∈ Rh×(m+1), EQ1 = tanh(W · biLSTM1(L

Q) + b) ∈ Rh×(n+1) (4)
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Where LD ∈ Re×m and LQ ∈ Re×n are the word embeddings for the document and the question.

Then we compute the affinity matrix between the document and question as A = (EQ1 )TED1 ∈
R(m+1)×(n+1), and apply it to get the summary vectors:

SD1 = EQ1 softmax(A
T ) ∈ Rh×(m+1), SQ1 = ED1 softmax(A) ∈ Rh×(n+1) (5)

Where softmax(A) computes the column-wise softmax of A.

After this, we further compute a document co-attention context representation:

CD1 = SQ1 softmax(A
T ) ∈ Rh×m (6)

Up to this point, we have finished the calculations for a single layer. In the next layer, we first compute
ED2 and EQ2 , taking SD1 and SQ1 as input, then SD2 , S

Q
2 . The final output of the encoder is then:

U = biLSTM(concat(ED1 ;ED2 ;SD1 ;SD2 ;CD1 ;CD2 )) ∈ R2h×m (7)

Where concat() concats the inputs along the first dimension.

3.6.2 Dynamic Point Decoder

The decoder side mainly takes advantage of a bi-directional LSTM to produce hidden representations
and a Highway Maxout Network (HMN) to estimate the start and end position of an answer span.

It first computes the new hidden state by taking the previous hidden state, estimation of the start and
end position as inputs:

hi = LSTMdec(hi−1, [usi−1
;uei−1

]) (8)

Where usi−1 , uei−1 are the co-attention encoding of the estimated start and end positions from U
calculated by the encoder.

Then a HMN is used to compute the start (αt) and end score (βt):

αt = HMNstart(ut, hi, usi−1
, uei−1

), βt = HMNend(ut, hi, usi−1
, uei−1

) (9)

Here, t denotes the tth word in the context, and ut is the co-attention encoding of the tth word.

Finally, we get the estimate of the start and end position:

si = argmax
t

(α1, . . . , αm), ei = argmax
t

(β1, . . . , βm) (10)

4 Experiments

4.1 Data

This paper uses the SQuAD 2.0 dataset [4]. Contrary to SQuAD 1.1, this version also includes unan-
swerable questions. An example input is a pair (context, question) and an output is the corresponding
answer or ’No Answer’ if there is none. Both the context and the question can be represented as
strings of variable lengths. The answer, if there is one, can be represented as a substring of the context
or equivalently as a pair of start and end word indices of the context. Figure 3 shows examples of
both an answerable question and an unanswerable one with respect to a given context.

Because we added new features that were not computed for the baseline, we had to rewrite the
pre-processing files. In particular, we modified the ’setup.py’ file to compute the POS and NER
tags offline and initialize the corresponding tag embeddings. We used spacy Language Model
"en_core_web_sm" to perform this tagging. The files ’util.py’, ’train.py’ and ’test.py’ were modified
accordingly to handle these new inputs.
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Context paragraph: The principle of inclusions and components states that, with sedimentary
rocks, if inclusions (or clasts) are found in a formation, then the inclusions must be older than the
formation that contains them. For example, in sedimentary rocks, it is common for gravel from an
older formation to be ripped up and included in a newer layer. A similar situation with igneous rocks
occurs when xenoliths are found. These foreign bodies are picked up as magma or lava flows, and are
incorporated, later to cool in the matrix. As a result, xenoliths are older than the rock which contains
them.
Question: What is something that is often torn up and included in sedimentary rock?
Ground Truth Answers: gravel ; gravel ; gravel ; gravel
Question: What do matrix components show about how magma flows?
Ground Truth Answers: <No Answer>

Figure 3: SQuAD 2.0 dev set example: a context with two associated questions, one with an answer
and one without

4.2 Evaluation method

Our model is evaluated using the dev leaderboard. The two SQuAD evaluation metrics are: Exact
Match (EM) score and F1 score.

• Exact Match is a binary measure (0 or 1) checking if the model outputs match one of the
ground truth answer exactly ;

• F1 score is the harmonic mean of precision and recall for the answer words.

See Table 1 for the model dev performances.

4.3 Experimental details

All the models were trained for 30 epochs. The training hyperparameters are unchanged from the
baseline: Adadelta optimizer with the same learning rate and exponentially weighted moving average
of the model parameters during evaluation.

For the distance-aware loss, a hyperparameter search has been conducted on the penalization weight
λ. We selected a value of λ = 0.5 as it made the additional loss about 1 order of magnitude smaller
than cross-entropy. The tuning has been conducted this way in order to reflect the fact that our new
loss is a correction term.

For the segment-based aggregation approach, we use a window length of 50 and a stride of 20, which
is the set that achieves the best performance.

4.4 Results

Our model does not use Pretrained Contextual Embeddings (PCE). We will be competing in the
non-PCE division.

Distance-aware loss. Our strategy was to apply an additional term to the loss to penalize distributions
of probability that have components far from the true index. It mildly improves baseline performance.
We observe that the quadratic penalization performs better than the linear penalization, which in turn
works better than the square root one. We can interpret this by the fact the variance of penalization
coefficients is the highest when m(ytrue) ∝ xα with α large.

Model ’Char-BiDAF’. Adding a character-level word embedding in addition to the pretrained GloVe
embedding improved performance compared to the baseline. This is no surprise as using character-
level embeddings allows to handle out-of-vocabulary words better: each of these words is given a
unique embedding based on its morphology. Moreover, using a CNN to build the character-level
embeddings allows to work implicitly at the level of morphenes.

Model ’Tag-BiDAF’. Adding hand-engineered features as recommended by Chen et al. [7] further
improved the performance. Intuitively this makes sense: Part Of Speech tags allow the model to get
a better understanding of the sentence structure. Name Entity Recognition makes it easier for the
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Table 1: SQuAD 2.0 Dev Leaderboard performances
Model EM F1

Baseline (BiDAF) 55.1 58.2
BiDAF + square root distance loss 55.7 59.8
BiDAF + linear distance loss 56.0 59.7
BiDAF + quadratic distance loss 56.6 60.3
BiDAF + Deep Dynamic Co-attention 57.3 61.7
BiDAF + Segment-Based Aggregation 58.4 62.1
BiDAF + character embedding (Char-BiDAF) 60.6 64.0
Char-BiDAF + POS and NER tags (Tag-BiDAF) 61.4 64.9
Tag-BiDAF + Deep Dynamic Co-attention (Coattn-BiDAF) 60.7 62.5
Tag-BiDAF + EM and TF*IDF tags (Tag-ext-BiDAF) 60.9 64.0
Tag-BiDAF + Segment-Based Aggregation (Segmented-Tag-BiDAF) 62.0 65.4

model to be attentive to named entities. This is especially useful for question of the form: "Who is
this person?" or "What happened at this date?".

Model ’Tag-ext-BiDAF’. We tried adding a last set of features to the word embedding: word Exact
Match and TF*IDF term frequency. But the performance was worse than with the previous model.
Looking at the training curves on Tensorboard, we observed that the model was overfitting quickly:
after 15 epochs, while the train NLL was still decreasing the dev metrics kept decreasing. We tried
increasing the dropout rate to regularize but it did not help.

Dynamic Co-attention As shown in Table. 1, our co-attention technique successfully improved on
the baseline. When we tried to incorporate this to our best performing word embedding, namely
Tag-BiDAF, the resulting Coattn-BiDAF did not improve on the base model.

Segment-Based Aggregation With the segment-based aggregation technique we were able to im-
prove on the baseline after tuning the window length and stride, and this further helped with our
best-performing model. This demonstrates the efficacy of the segment-based aggregation approach.

The final results on the test set leaderboard are: EM = 61.2 and F1 = 65.0

5 Analysis

Dynamic Co-attention Analysis In order to gain insight into why the co-attention mechanism does
not further improve on Tag-BiDAF and how much each component (in the co-attention module)
affects the final performance, we carried out ablation study for each component, as shown in Table
2. Where (1) coattn - feature stands for the variant without concating feature encodings E into
encoder output U ; (2) coattn - summary stands for the variant without concating summary vectors
S into encoder output U ; (3) coattn - context stands for the variant without concatenating document
co-attention context C into encoder output U .

Table 2: Ablation study on the co-attention module of Coattn-BiDAF model.
Variant EM F1

coattn - feature 60.4 62.4
coattn - summary 60.2 62.4
coattn - context 59.3 61.2

From Table. 2, we can see that each part of the co-attention encoder output possesses some importance
w.r.t the final performance. The document co-attention context C makes the biggest difference, which
makes sense since it’s the highest level of co-attention representation. To some extent, this verifies
our implementation of the co-attention idea. Future work could try incorporating more features or
using the PCE.

Segment-Based Aggregation We tuned the window length and stride hyper-parameters for the
Segmented-Tag-BiDAF model, with stride fixed at three values: 10, 20, 30 (words) and varied the
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window length from 30 to 60, with a step of 5. We show the F1 - window length plot under these
three strides in Fig. 4.

Figure 4: F1 - window length plots under different stride values using Segmented-Tag-BiDAF model.

It is not surprising to find a climbing trend in all three sub-figures, since including more information
tends to always help with prediction accuracy. We also see that under a stride 10, the F1 score doesn’t
change much with different window lengths, while for the other two cases the curve displays a steeper
slope. For stride 10 and 20, the optimal F1 scores are very close (65.2 for stride 10 and 65.4 for stride
20), and both these curves are consistently above the stride 30 case. This indicates that using a stride
10 or 20 includes a similar amount of information, while 30 is too big so it loses relevant insight.
Finally, considering both accuracy and training speed, we chose the combination of window length
50 and stride 20.

6 Conclusion and future work

Our new loss improves performance metrics and shows that it can be meaningful to penalize a
language model by the quality of its probability distribution. It is however important to note that
performance was not improved by a statistically significant margin. One of the limitations of our
approach has been the limited exploration of which penalization shape discriminates best against
undesired probability distributions. With more time and computational resources, the next step would
be to implement a module that learns the optimal penalization shape on the fly.

Augmenting the baseline BiDAF architecture with a more powerful word embedding significantly
improved the model performance. Adding tag features and a novel segment-based aggregation
approach further improves the performance. For all other methods that don’t work as expected, we
performed extensive analysis and gained a deeper insight into how we can refine them.

If we had more time we would like to try other regularization techniques (L1 and L2 among others)
as well as playing with the projected embedding dimensionality H to be able to incorporate the last
set of word features in the embedding without suffering from overfitting. If that worked, the next step
would be to leverage the parsing information. By comparing the dependencies of the question and
the context, we could identify which word groups are the most likely answers. Also, we would like to
try the co-attention idea with PCE.

Our GitHub repository: https://github.com/ColasGael/squad-QA
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